
fimmu-11-00705 April 28, 2020 Time: 17:31 # 1

ORIGINAL RESEARCH
published: 30 April 2020

doi: 10.3389/fimmu.2020.00705

Edited by:
Fabrice Cognasse,

Groupe Sur L’immunité Des
Muqueuses Et Agents Pathogènes

(GIMAP), France

Reviewed by:
Samithamby Jey Jeyaseelan,

Louisiana State University,
United States
Kathryn Hally,

Victoria University of Wellington,
New Zealand

*Correspondence:
Paula G. Heller

paulaheller@hotmail.com

Specialty section:
This article was submitted to

Inflammation,
a section of the journal

Frontiers in Immunology

Received: 30 November 2019
Accepted: 30 March 2020

Published: 30 April 2020

Citation:
Marín Oyarzún CP,

Glembotsky AC, Goette NP, Lev PR,
De Luca G, Baroni Pietto MC,

Moiraghi B, Castro Ríos MA,
Vicente A, Marta RF, Schattner M and

Heller PG (2020) Platelet Toll-Like
Receptors Mediate

Thromboinflammatory Responses
in Patients With Essential

Thrombocythemia.
Front. Immunol. 11:705.

doi: 10.3389/fimmu.2020.00705

Platelet Toll-Like Receptors Mediate
Thromboinflammatory Responses in
Patients With Essential
Thrombocythemia
Cecilia P. Marín Oyarzún1,2, Ana C. Glembotsky1,2, Nora P. Goette1, Paola R. Lev1,2,
Geraldine De Luca1,2, María C. Baroni Pietto1,2, Beatriz Moiraghi3,
Miguel A. Castro Ríos4, Angeles Vicente5, Rosana F. Marta1,2, Mirta Schattner6 and
Paula G. Heller1,2*

1 Institute of Medical Research A. Lanari, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina,
2 Department of Hematology Research, Institute of Medical Research (IDIM), National Scientific and Technical Research
Council (CONICET), University of Buenos Aires, Buenos Aires, Argentina, 3 Department of Hematology, Hospital General
de Agudos José María Ramos Mejía, Buenos Aires, Argentina, 4 Consultorios Hematológicos, Buenos Aires, Argentina,
5 Department of Hematology, Hospital Alemán, Buenos Aires, Argentina, 6 Laboratory of Experimental Thrombosis, Institute
of Experimental Medicine (IMEX)- CONICET, National Academy of Medicine, Buenos Aires, Argentina

Essential thrombocythemia (ET) is comprised among chronic myeloproliferative
neoplasms (MPN) and is caused by driver mutations in JAK2, CALR, and MPL, which
lead to megakaryocyte proliferation and prominent thrombocytosis. Thrombosis remains
the main cause of morbidity in ET and is driven by the interplay between blood
cells, the endothelium, the clotting cascade, and host-derived inflammatory mediators.
Platelet activation plays a key role in the thrombotic predisposition, although the
underlying mechanisms remain poorly defined. In addition to their role in hemostasis,
platelets participate in innate immunity and inflammation owing to the expression
of toll-like receptors (TLR), which recognize inflammatory signals, triggering platelet
functional responses. Considering the impact of inflammation on ET procoagulant
state, we assessed the contribution of TLR2 and TLR4 to platelet hemostatic and
inflammatory properties in ET patients, by using Pam3CSK4 and lipopolysaccharide
(LPS) as specific TLR2 and TLR4 ligands, respectively. TLR2 ligation induced increased
surface translocation of α-granule-derived P-selectin and CD40L, which mediate platelet
interaction with leukocytes and endothelial cells, respectively, and higher levels of dense
granule-derived CD63 in patients, whereas PAC-1 binding was not increased and
LPS had no effect on these platelet responses. Platelet-neutrophil aggregate formation
was elevated in ET at baseline and after stimulation of both TLR2 and TLR4. In
addition, ET patients displayed higher TLR2- and TLR4-triggered platelet secretion
of the chemokine RANTES (CCL5), whereas von Willebrand factor release was not
enhanced, revealing a differential releasate pattern for α-granule-stored inflammatory
molecules. TLR-mediated hyperresponsiveness contrasted with impaired or preserved
responses to classic platelet hemostatic agonists, such as TRAP-6 and thrombin. TLR2
and TLR4 expression on the platelet surface was normal, whereas phosphorylation of
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downstream effector ERK1/2 was higher in patients at baseline and after incubation
with Pam3CSK4, which may partly explain the enhanced TLR2 response. In conclusion,
exacerbated response to TLR stimulation may promote platelet activation in ET, boosting
platelet/leukocyte/endothelial interactions and secretion of inflammatory mediators,
overall reinforcing the thromboinflammatory state. These findings highlight the role
of platelets as inflammatory sentinels in MPN prothrombotic scenario and provide
additional evidence for the close intertwining between thrombosis and inflammation in
this setting.

Keywords: essential thrombocythemia, platelet immunology, JAK2, thrombosis, inflammation, toll-like receptors

INTRODUCTION

Essential thrombocythemia (ET) is comprised among chronic
myeloproliferative neoplasms (MPN) and is characterized by
clonal proliferation of predominantly large hyperlobulated
megakaryocytes in a normocellular bone marrow leading to
sustained thrombocytosis. Driver mutations in JAK2, CALR,
or MPL underlie most cases of ET, although the molecular
pathogenesis of triple-negative cases remains largely undefined.
Hyperactive JAK2 signaling is a common feature of MPN,
irrespective of the type of driver mutation, and can be found
even in triple-negative patients (1). Thrombosis remains the
main cause of morbidity and mortality in ET and involves
both arterial and venous thrombotic events. In addition, platelet
aggregates formed under high shear stress conditions in the
microvascular bed lead to the characteristic microcirculatory
disturbances which are typically relieved by aspirin (2). The
thrombotic predisposition in MPN results from the complex
interplay among multiple factors (3). Those derived from the
MPN clone comprise both excessive numbers and qualitative
abnormalities in blood cells, which give rise to an activated
prothrombotic phenotype that favors cellular interactions,
endothelial activation and triggers the coagulation cascade
(3, 4). In addition, inflammation has been shown to play a
major role in MPN pathogenesis and, in this context, host-
derived inflammatory cytokines impact on the MPN clone and
further foster cellular activation, generating a self-reinforcing
thromboinflammatory loop (4, 5). Activated platelets play a
central role in ET prothrombotic state. Unequivocal evidence
for in vivo platelet activation has been revealed by several
studies and is reflected by platelet activation markers, including
P-selectin and CD40L (6–8), platelet-leukocyte aggregates (6, 7)
and elevated plasma levels of α-granule-derived molecules (2,
9). Factors leading to platelet activation remain incompletely
defined. Both intrinsic platelet features induced by clonal
mutations, cellular interaction with activated leukocytes and
endothelial cells and hyperresponsiveness to soluble mediators
have been proposed as likely mechanisms (4). Paradoxically,
platelet activation may occur concomitantly with platelet
dysfunction, which may be explained, at least in part, by in vivo
degranulation of activated platelets and secondary storage pool
deficiency (2).

In addition to their traditional function in hemostasis,
recent evidence has revealed the key role of platelets in innate

immunity and inflammation (10–12). Platelets participate in host
defense owing to their ability to sense pathogens through the
expression of functional toll-like receptors (TLRs), including
plasma membrane-bound and endosomal receptors (13). Platelet
surface TLRs include TLR4, which engages components of
gram-negative bacteria, and TLR2, that recognizes gram-positive
bacteria and may form heterodimers with either TLR1 or
TLR6, whereas platelet endosomal receptors include TLR3,
TLR7, and TLR9, which are mainly activated by viruses (13).
Platelet TLR ligation elicits diverse proinflammatory as well
as traditional prothrombotic activities of platelets (10, 13),
providing a link between innate immunity and coagulation and
contributing to pathological vascular occlusion in the setting of
immunothrombosis. In particular, stimulation of TLR2/TLR1 by
the synthetic lipopeptide Pam3CSK4 triggers platelet aggregation
and granule secretion (14, 15), release of thromboinflammatory
chemokines, such as RANTES (CCL5) and PF4 (CXCL4)
(16), platelet-neutrophil aggregate formation and priming of
platelet-induced neutrophil extracellular traps (NETs) (17). The
effects of TLR2/TLR6 complex ligation depends on the nature
of the ligand involved, as Mycoplasma-derived macrophage
activating lipoprotein-2 (MALP-2) antagonizes TLR2/TLR1-
mediated platelet responses (18), whereas the synthetic diacylated
lipoprotein Pam2CSK4 triggers platelet activation (19). On the
other hand, the direct effects of TLR4 ligation on platelet
activation remain controversial. Whereas some groups reported
that lipopolysaccharide (LPS)-induced TLR4 ligation induces
direct platelet activation and/or granule release (20, 21) or
potentiates the response to hemostatic agonists (15), others did
not corroborate these findings (22). Nonetheless, it is well-
established that LPS differentially modulates the release of α-
granule-derived cytokines (23) and primes platelet-neutrophil
aggregate formation (15) and platelet-mediated NET formation
(17). In addition, LPS elicits platelet IL-1β RNA splicing and
synthesis, providing further evidence for the involvement of
TLR4 in platelet inflammatory responses (24).

Besides recognizing pathogens, TLR2 and TLR4 can also
be stimulated by diverse endogenous ligands and thereby
participate in thromboinflammatory reactions that take place in
clinical conditions characterized by sterile inflammation, thus
contributing to vascular disease (25). Previous findings from our
group and others have revealed the presence of host-derived
TLR ligands in MPN, including histone/DNA complexes (26),
Hsp27 (27) and EDA-fibronectin (28), which engage TLR2 and/or
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TLR4. In order to determine the potential contribution of TLRs to
platelet activation in ET, we assessed TLR2- and TLR4-mediated
platelet thromboinflammatory responses, using the synthetic
lipopeptide Pam3CSK4 and LPS, as prototypical TLR2/1 and
TLR4 ligands, respectively, and employed classic hemostatic
agonists, such as TRAP-6 and thrombin, for comparison.

PATIENTS AND METHODS

Patients
Twenty patients with essential thrombocythemia (ET) diagnosed
according to the 2016 WHO classification were included in
this study. Clinical features are summarized in Table 1. Twenty
healthy individuals were studied as controls and, in all cases, a
control was studied simultaneously with each patient. Patients
and controls were matched according to age, 53.3 (27–73) vs.
49 (26–76) years old, and sex, 70% and 65% were women,
respectively. Platelet counts in controls were 223.5 (166–
330) × 109/L. Subjects were not taking aspirin nor drugs
that may interfere with platelet function at the time of the
study. This study was approved by the Ethics Committee of
the Instituto de Investigaciones Médicas A. Lanari (protocol
#241), University of Buenos Aires, and patients and controls gave
written informed consent.

Reagents
Lipopolysaccharide derived from Escherichia coli O111:B4,
TRAP-6, ADP and prostaglandin (PG) E1 were obtained from
Sigma-Aldrich (St. Louis, MO, United States). Pam3CSK4 was

TABLE 1 | Patient features at the time of the study.

Patients (n = 20)

Age (years) 53.3 (27–73)

Sex, n (%)

Female 13 (65)

Male 7 (35)

Mutation, n (%)

JAK2 V617F 10 (50)

CALR* 7 (35)

Triple-negative 3 (15)

Platelet count (×109/L) 679 (310–1715)

Hemoglobin (gr/dL) 13.55 (10–15.8)

Leukocyte count (×109/L) 8.76 (3.9–11.5)

Prior thrombosis, n (%)** 3 (15)

Microvascular symptoms, n(%) 9 (45)

Cytoreductive treatment, n(%)

None 16 (80)

Hydroxyurea 4 (20)

Time since diagnosis (months) 91.9 (0.4–365.7)

Values are reported as median and range. *All CALR + patients harbored type
1 mutations, except for one patient, who had type 2 mutation. **One patient
had arterial thrombosis (AMI, stroke), one had venous thrombosis (portal vein
thrombosis), and one had both arterial and venous thrombosis (stroke plus portal
vein thrombosis). Two patients were on oral anticoagulants at the time of the study.

purchased from InvivoGen (San Diego, CA, United States)
and thrombin from Biopool (Umea, Sweden). Fluorescein
isothiocyanate (FITC)-conjugated mouse anti-human P-selectin
(CD62P), anti-CD40L (CD154), and CD63 and PE-conjugated
mouse anti-human CD41, TLR2, and TLR4 were from BD
Biosciences (San Jose, CA, United States). FITC-conjugated
CD45 and Human CCL5 (RANTES) ELISA Max were purchased
from BioLegend (San Diego, CA, United States) and Quantikine
ELISA Human P-selectin/CD62P was from R&D Systems
(Minneapolis, MN, United States). Rabbit anti-human VWF and
HRP-conjugated anti-human VWF were from Dako (Glostrup,
Denmark), mouse anti- p-ERK1/2 (Tyr 204) and rabbit anti
ERK 1/2 were obtained from Santa Cruz Biotechnology (Dallas,
TX, United States).

Platelet Activation by Flow Cytometry
Platelet-rich-plasma (PRP) was obtained from citrate-
anticoagulated blood by centrifugation at 200 g during 10 min
and adjusted to 100 × 109/L with Tyrode’s buffer (134 mM
NaCl, 12 mM NaHCO3, 2.9 mM KCl, 0.34 mM Na2HPO4, 1mM
MgCl2, 1mM CaCl2, 10 mM Hepes, 5 mM glucose, pH 7.4).
Platelets were stimulated with 10 ug/mL Pam3CSK4, 20 uM
TRAP-6 or 20 uM ADP and labeled with FITC-conjugated anti-
CD62P (P-selectin), anti-CD154 (CD40L), anti-CD63, PAC-1
or the corresponding IgG1 isotype controls for 15 min at 37◦C.
After stimulation, cells were fixed with 1% paraformaldehyde
(PFA) and analyzed in a flow cytometer. The platelet population
was identified by typical forward and side scatter features
(Supplementary Figure S1A). Technical replicates are provided
in Supplementary Table S1.

Platelet-Neutrophil Aggregate Formation
To assess platelet-leukocyte aggregates, citrate-anticoagulated
whole blood was adjusted to 60 × 109/L leukocytes with
phosphate-buffered saline and incubated with FITC-conjugated
anti-CD45 and PE-conjugated anti-CD41 at basal state or
after stimulation with 10 ug/mL Pam3CSK4, 10 ug/mL LPS
or 20 uM TRAP-6 for 15 min at 37◦C. Next, cells were
fixed with 1% PFA and analyzed in a flow cytometer. The
neutrophil population was selected according to CD45 expression
and side scatter (Supplementary Figure S1B) and platelet-
neutrophil aggregates were identified as the percentage of events
staining positive for CD41. Technical replicates are provided in
Supplementary Table S1.

Levels of RANTES and von Willebrand
Factor in the Platelet Releasate and
Plasma by ELISA
Platelet-rich plasma was obtained from acid-citrate-dextrose
(ACD)-anticoagulated blood in the presence of 1uM PGE1,
washed twice with Tyrode’s buffer (pH = 6.5) and adjusted to
300 × 109/L platelets in Tyrode’s buffer (pH = 7.4) to assess
platelet secretion. Then, washed platelets were stimulated with
10 ug/mL Pam3CSK4, 10 ug/mL LPS, 0.5 IU/mL thrombin
or 20 uM TRAP-6 during 30 min at 37◦C. Activation
was stopped with 1 uM PGE1, supernatants were collected
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FIGURE 1 | TLR-triggered platelet activation. Platelet-rich-plasma from patients (n = 20) and controls (n = 20) was stimulated with 10 µg/mL Pam3CSK4 (PAM) or
20 µM TRAP-6 and analyzed by flow cytometry for expression of cell adhesion molecules and activation markers. A healthy individual was studied in parallel with
each patient. (A) Platelet surface P-selectin expression (B) CD40L translocation, (C) CD63 exposure, and (D) PAC-1 binding in resting, Pam3CSK4-, and TRAP-6-
stimulated platelets. Data represent mean ± SEM mean fluorescence intensity (MFI). *P < 0.05, **P < 0.01, ***P < 0.001, unpaired t-test. Representative
histograms for patient (red) and control (gray) platelets stimulated with Pam3CSK4 or TRAP-6 are shown for all parameters below each graph.

after two centrifugation steps at 1100g and 9500g at 4◦C,
respectively, and preserved at -80◦C until measured. Human
CCL5 (RANTES) and von Willebrand factor (VWF) antigen
were determined in the platelet releasate by ELISA using a
commercial assay for RANTES and a homemade sandwich
assay for VWF, as described (26). Plasma samples were
obtained from EDTA-anticoagulated blood by two sequential
centrifugation steps at 2500 g at 4◦C and stored at −80◦C
until assayed. Plasma levels of RANTES and VWF were
measured in plasma using the above-mentioned assays. In

addition, soluble P-selectin levels were assessed in plasma by a
commercial ELISA.

Platelet Surface TLR 2 and TLR4
Expression
Platelet TLR2 and TLR4 expression was measured in EDTA-
anticoagulated PRP adjusted to 60 × 109/L platelets in the
presence of PE-conjugated anti-TLR-2 or anti-TLR-4 for 30 min
at room temperature. Cells were fixed with 1% PFA and analyzed
by flow cytometry. Pam3CSK4-induced TLR2 expression was
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FIGURE 2 | Platelet-neutrophil interaction induced by TLR ligation. (A) Platelet-neutrophil aggregate formation was assessed in whole blood from patients (n = 20)
and controls (n = 20) at baseline and after stimulation with 10 µg/mL Pam3CSK4 (PAM), 10 µg/mL lipopolysaccharide (LPS), and 20 µM TRAP-6. Cells were stained
with FITC-conjugated CD45 and PE-conjugated CD41 and analyzed by flow cytometry. The neutrophil population was selected according to CD45 expression and
side scatter (SSC) and platelet-neutrophil aggregates were identified as the percentage of events staining positive for CD41. A healthy individual was studied in
parallel with each patient. Data represent mean ± SEM values. *P < 0.05, **P < 0.01, unpaired t-test. (B) Representative images of platelet-neutrophil aggregates at
baseline and triggered by Pam3CSK4, LPS, and TRAP-6. The percentage of CD45+CD41+ events is depicted in each graph. (C–E) Correlation between PAM-,
LPS-, and TRAP-6-induced platelet-neutrophil aggregates (PNA) in essential thrombocythemia patients. Data were analyzed using Spearman correlation. Results are
depicted in each graph.

measured in citrate-anticoagulated PRP after incubation with
10 ug/mL Pam3CSK4 during 15 min at 37◦C. Mean fluorescence
intensity of TLR staining relative to the corresponding isotypic
control was expressed as relative fluorescence intensity (RFI).
Technical replicates are provided in Supplementary Table S1.

Phosphorylation of ERK1/2 by Western
Blot
Washed platelets (2 × 1012/L) were prepared as detailed above,
incubated in resting conditions or stimulated with 10 ug/mL
Pam3CSK4, 10 ug/mL LPS or 0.5 UI/mL thrombin for 15 min
at 37◦C. Lysates were prepared with RIPA buffer (50 mM
Tris–HCl, pH 8, 150 mM NaCl, 1% Non-idet P-40, 0.1%
SDS, 1% sodium deoxycholate) supplemented with protease and
phosphatase inhibitors and 35 µg protein were resolved by
SDS-PAGE. Immunoblotting was performed using mouse anti-
phospho(p)-ERK1/2 (Tyr 204) and protein loading was assessed
with rabbit anti-ERK1/2 followed by the corresponding HRP-
conjugated secondary antibodies and detection by enhanced

chemiluminescence. A ratio between pERK and ERK was
calculated by densitometry.

Statistical Analysis
Data were tested for Gaussian distribution and parametric or
non-parametric tests were applied accordingly. For comparison
between two groups, unpaired Student’s t-test or Mann-Whitney
test were used according to data distribution. Correlations
were analyzed by Spearman’s rank correlation coefficient. All
statistical analyses were two-sided and P values <0.05 were
considered significant. GraphPad Prism 7.02 software was used
for statistical analysis.

RESULTS

Platelet Activation Triggered by TLR
Stimulation
Platelet TLR2 ligation leads to surface translocation of α-
granule adhesion molecules, such as P-selectin and CD40L, which
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FIGURE 3 | TLR-induced platelet release of proinflammatory mediators. Washed platelets from patients (n = 20) and controls (n = 20) were incubated in resting
conditions or stimulated with 10 µg/mL Pam3CSK4 (PAM), 10 µg/mL lipopolysaccharide (LPS) or 0.5 U/L thrombin and the content of α-granule derived molecules
was measured in the platelet supernatant by ELISA. (A) RANTES and (C) von Willebrand factor (VWF) levels in the platelet releasate. Values represent mean ± SEM.
*P < 0.05, unpaired t-test. Circulating levels of (B) RANTES and (D) VWF in plasma from patients (n = 20) and controls (n = 20). Median values and interquartile
range are depicted for RANTES and mean ± SEM values for VWF. P = NS, Mann-Whitney and Student’s t-test, respectively.

mediate platelet interaction with leukocytes and endothelial
cells, respectively (11, 12). Whereas baseline P-selectin did not
differ between patients and controls, TLR2-agonist Pam3CSK4
triggered higher P-selectin levels in ET (Figure 1A). In striking
contrast, P-selectin exposure induced by PAR-1 agonist, TRAP-6,
was impaired (Figure 1A). Although baseline surface P-selectin
was not increased in this cohort, evidence for in vivo platelet
and/or endothelial activation was revealed by elevated soluble
P-selectin in plasma (Supplementary Figure S2), suggesting
P-selectin shedding. In accordance with P-selectin, Pam3CSK4-
triggered exposure of CD40L was enhanced in patients, whereas
no difference was found for TRAP-6 (Figure 1B). As shown for
α-granule molecules, Pam3CSK4-triggered expression of dense
granule and lysosome-derived CD63 was increased, with a trend
toward decreased response to TRAP-6 (Figure 1C). Enhanced
TLR2-mediated translocation of granule membrane proteins was
not coupled to increase in a classic hemostatic response, such as
GPIIbIIIa activation, as shown by normal Pam3CSK4-induced
PAC-1 binding, whereas the response to TRAP-6 was impaired
(Figure 1D). Decreased TRAP-6-induced P-selectin and PAC-1
was associated with reduced response to another hemostatic

agonist, such as ADP (Supplementary Figure S3). In our system,
no consistent induction of P-selectin, CD40L, CD63 and PAC-
1 was achieved in platelets stimulated with LPS, in agreement
with some but in contrast to other studies which evaluated the
response of normal platelets to LPS (15, 20–22).

Platelet-Neutrophil Interaction Primed by
TLR Ligands
Activated platelets engage neutrophils, promoting their
reciprocal activation and functional responses (11, 12). In
this cohort, we confirmed the presence of increased baseline
circulating platelet-neutrophil aggregates in ET patients, as
previously shown by us and other authors (6, 7, 26). Furthermore,
both Pam3CSK4 and LPS triggered higher platelet-neutrophil
complex formation in patients, whereas the response to TRAP-6
did not differ from controls (Figures 2A,B). Interestingly, tight
correlation was shown in patients between Pam3CSK4- and LPS-
mediated platelet-neutrophil aggregates and response to both
immune agonists correlated also, although to a lesser degree,
with the response to TRAP-6 (Figures 2C–E). In addition,
although patients had elevated platelet counts, no correlation

Frontiers in Immunology | www.frontiersin.org 6 April 2020 | Volume 11 | Article 705

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


fimmu-11-00705 April 28, 2020 Time: 17:31 # 7

Marín Oyarzún et al. Platelet Toll-Like Receptors in Essential Thrombocythemia

FIGURE 4 | Platelet TLR expression and downstream signaling. (A) Surface expression of TLR2 and TLR4 was measured in patient (n = 20) and control (n = 20)
platelets after incubation with PE-conjugated specific antibodies and the corresponding isotype IgG control. Cells were analyzed by flow cytometry and mean
fluorescence intensity of TLR staining relative to isotype IgG was expressed as relative fluorescence intensity (RFI). Mean ± SEM for TLR2 and median and
interquartile range for TLR4 are depicted. P = NS, Student’s t-test and Mann-Whitney test, respectively. Representative histograms of TLR2 (red) and TLR4 (blue)
staining and the corresponding isotype controls (gray) are shown on the right panel for a patient and a control studied simultaneously. (B) Phosphorylation of ERK1/2
in patient (n = 8; 5 JAK2V617F+ and 3 CALR+) and control (n = 8) platelets. Washed platelets were incubated under resting conditions or after stimulation with
10 µg/mL Pam3CSK4 (PAM), 10 µg/mL lipopolysaccharide (LPS) and 0.5 U/L thrombin (Thr). Lysates were resolved by SDS-PAGE and immunoblotting was
performed with mouse anti-phospho(p)ERK1/2. Protein loading was assessed with rabbit anti-ERK1/2 followed by the corresponding HRP-conjugated secondary
antibodies and detection by enhanced chemiluminescence. The ratio between pERK1/2 and ERK1/2 was calculated by densitometry. *P < 0.05, unpaired t-test.
A representative western blot image is shown on the right panel.

was found between platelet counts and platelet-neutrophil
aggregates (Supplementary Figure S4), nor between platelet-
neutrophil aggregates and P-selectin expression (Supplementary
Figure S5). Overall, enhanced TLR-triggered platelet-neutrophil
interaction could contribute to platelet and leukocyte activation
in the MPN setting.

TLR-Mediated Release of Platelet
Thromboinflammatory Mediators
Besides expression of α-granule-derived adhesive molecules,
activated platelets release a diverse array of α-granule-stored
molecules, including the inflammatory chemokine RANTES,
which is a potent chemoattractant for a variety of cells,
including monocytes, and von Willebrand factor (VWF), which,

in addition to its hemostatic function, plays an emerging
role in vascular inflammation (12). We next assessed the
secretion of these mediators by ET platelets. Baseline content
of RANTES tended to be higher in the releasate of patient
compared to control platelets. In addition, both Pam3CSK4 and
LPS induced higher RANTES secretion in ET, whereas levels
achieved after stimulation with a prototypic hemostatic agonist
such as thrombin (Figure 3A) or TRAP-6 (Supplementary
Figure S6A) did not differ from controls. As shown for platelet-
neutrophil aggregates, a close correlation was found between
the release of RANTES induced by Pam3CSK4 vs. LPS, while
neither of them correlated with levels of RANTES achieved
with hemostatic agonists (Supplementary Figure S7). Despite
increased platelet RANTES release, levels of this chemokine
were seldom elevated in patient circulation (Figure 3B). In
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contrast to RANTES secretion, baseline, Pam3CSK4- and
LPS-triggered VWF release were not enhanced in ET and,
similarly, no difference was found for thrombin (Figure 3C)
or TRAP-6 (Supplementary Figure S6B). Plasma VWF levels
were not significantly elevated in the overall patient cohort
(Figure 3D) and no correlation was found between plasma
and platelet-released VWF (data not shown), reflecting that
endothelial cells rather than platelets represent the main source
of VWF in circulation.

Platelet TLR Expression
To assess whether the enhanced response to TLR agonists
shown here by increased adhesion molecules, platelet-neutrophil
aggregates and RANTES release, could be due to differences in
receptor expression, we evaluated the levels of TLR2 and TLR4
on the platelet surface. Levels of these immune receptors did
not differ between patients and controls (Figure 4A), excluding
the possibility that receptor overexpression could account for
TLR-induced hyperreactivity. Furthermore, TLR2 expression in
platelets incubated with Pam3CSK4 was similar in patients and
controls (Supplementary Figure S8). No substantial modulation
of TLR4 expression was achieved with LPS (data not shown).

TLR-Induced ERK1/2 Phosphorylation
Next, in an attempt to explain the differential response to
inflammatory vs. hemostatic stimuli, we assessed intracellular
signaling triggered by Pam3CSK4 and LPS in patient and control
platelets and used thrombin for comparison. TLR stimulation
results in the activation of several signaling pathways in platelets,
including ERK1/2, PI3K/AKT, and NF-kB, all of which modulate
TLR-triggered platelet responses (9, 14–16, 21). We focused
on ERK1/2, which is essential to several platelet functional
responses (29). Interestingly, baseline ERK phosphorylation
was increased in patient platelets (Figures 4B,C). Although
Pam3CSK4, LPS and thrombin triggered ERK phosphorylation
in controls (P < 0.01, P < 0.05, and P < 0.0001, respectively),
they failed to further increase ERK1/2 phosphorylation in
patients. Nonetheless, pERK1/2 levels in platelets incubated with
Pam3CSK4 remained higher in patients vs. controls, which may
partly explain the enhanced TLR2-mediated responses, while,
notably, LPS tended to attenuate pERK1/2 signal in patients,
reaching levels similar to controls and thrombin-induced levels
did not differ between both groups (Figures 4B,C).

Relationship Between TLR-Mediated
Platelet Responses and Clinical Features
Although JAK2-positive patients have been reported to have
higher frequency of thrombosis and to display higher levels of
several prothrombotic markers (3), no significant differences in
TLR-triggered platelet responses were found between JAK2+
(n = 10) and CALR+ (n = 7) patients (Table 2). The vast majority
of patients in this cohort were not receiving cytoreductive
therapy. Interestingly, those receiving hydroxyurea (n = 4) had
higher Pam3CSK4- and LPS-induced platelet RANTES secretion
vs. those without treatment, although no differences were
shown for other platelet responses (Supplementary Table S2).

TABLE 2 | Comparison of TLR-triggered platelet responses between
JAK2V617F+ and CALR+ patients.

JAK2 V617F+ (n = 10) CALR+ (n = 7) P

PAM-induced P-selectin
(MFI)

56,6 ± 8,7 68,3 ± 18,8 NS

PAM-induced CD40L (MFI) 14,2 ± 3,3 20,4 ± 4,9 NS

PAM-induced CD63 (MFI) 65,5 ± 7,7 55,5 ± 7,3 NS

PAM-induced PAC-1 (MFI) 43,4 ± 6,6 33,1 ± 9,6 NS

PAM-induced PNA (%) 61,7 ± 6,9 69,5 ± 7,1 NS

LPS-induced PNA (%) 51,7 ± 6,5 49,6 ± 4,9 NS

PAM-induced RANTES
release (ng/mL)

42,6 ± 10,1 28,6 ± 6,8 NS

LPS-induced RANTES
release (ng/mL)

51,3 ± 12,9 33,1 ± 5,9 NS

PAM-induced VWF release
(ng/mL)

94,6 ± 26,2 69,3 ± 35,9 NS

LPS-induced VWF release
(ng/mL)

85,1 ± 20,5 60,8 ± 22,4 NS

PAM means Pam3CSK4; LPS, lipopolysaccharide; MFI, mean fluorescence
intensity; PNA, platelet-neutrophil aggregates. Mean ± SEM values are shown.
P = NS (not significant), unpaired t-test or Mann-Whitney test.

Of note, 3 of 4 HU-treated patients had had a previous
thrombotic event, which occurred several years before inclusion
in this study. On this regard, patients with previous thrombosis
(n = 3) had higher levels of LPS-triggered platelet RANTES
release compared to those without thrombosis and a similar
trend was found for Pam3CSK4. The implications of higher
RANTES release in patients with previous thrombosis or HU
treatment are not clear and should be confirmed in a larger
cohort. No differences in Pam3CSK4- and LPS-induced platelet
parameters were evident between patients with (n = 9) or without
microvascular disturbances (Supplementary Table S2).

DISCUSSION

Platelet immune receptors play a key role in the complex
intertwining of thrombosis and inflammation that takes place in
the setting of several prothrombotic conditions associated with
sterile inflammation, such as atherosclerosis, diabetes, cancer
and autoimmune disorders (12). Emerging work highlights
the fundamental contribution of systemic inflammation to
MPN procoagulant state, as shown by the stepwise association
of C-reactive protein levels and the thrombotic risk in
both ET and Polycythemia Vera (5, 30). In this study,
we show that upon ligand binding, activation of TLR2
and TLR4 leads to exacerbated platelet responses in ET
patients, potentially contributing to thromboinflammation and
vascular disease.

The MPN thromboinflammatory scenario involves multiple
closely connected players, including activated platelets and
leukocytes (3, 4). Platelet activation leads to surface translocation
of α-granule-derived P-selectin which engages PSGL-1 on
neutrophils and monocytes, initiating platelet-leukocyte crosstalk
(12). Enhanced P-selectin exposure triggered by TLR2 activation
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FIGURE 5 | TLR-mediated platelet responses in essential thrombocythemia (ET). TLR2 stimulation leads to enhanced translocation of α-granule molecules
P-selectin and CD40L, which mediate platelet interaction with leukocytes and the endothelium, respectively, and of dense granule-derived CD63. Activation of TLR2
and TLR4 in patient platelets triggers higher levels of platelet-neutrophil aggregates and higher release of RANTES, which is involved in monocyte chemoattraction to
the vascular wall, while secretion of VWF is preserved. TLR and JAK2 activation converge on ERK1/2 signaling, which is hyperactivated in ET, contributing to
TLR-hyperresponsiveness. These functional responses may reinforce ET thromboinflammatory state.

shown in this study may contribute to exacerbated platelet-
leukocyte interaction that takes place in ET, which has been
shown to be critical to thrombosis development (3). In addition
to P-selectin, ligation of TLR2 resulted in increased expression
of another α-granule adhesion molecule, such as CD40L. Platelet
CD40L favors platelet interaction with the endothelium via its
CD40 counterreceptor leading to upregulation of endothelial
adhesion molecules and proinflammatory cytokines (12). On this
basis, increased TLR2-mediated platelet CD40L expression may
contribute to platelet-endothelial interaction in ET. Together
with α-granule-stored molecules, stimulation of TLR2 led to
increased exposure of dense granule and lysosomal-derived
CD63, whereas, in contrast to enhanced translocation of granular
proteins, GPIIbIIIa activation, which represents a crucial step
in platelet hemostatic function, was preserved. Considering that
Pam3CSK4 selectively activates TLR2/TLR1, further work would
be required to address whether TLR2-mediated hyperreactivity
is limited to TLR2/TLR1 or involves other TLR2 partners, such
as TLR2/TLR6. Strikingly, exacerbated TLR2/TLR1-mediated
platelet activation contrasted with impaired response to classic
hemostatic agonists, such as TRAP-6 and ADP. Although
this work is, to our knowledge, the first to evaluate platelet
responses to inflammatory mediators in ET, contradictory
results have been reported regarding platelet activation triggered
by classic hemostatic agonists. Whereas increased thrombin-
induced P-selectin and preserved ADP response were shown
in one study (6), impaired ADP- and TRAP-6-triggered
P-selectin, CD63 and/or PAC-1 were shown in two other,
coupled with intrinsic dysfunction of the PI3K/AKT pathway

(31, 32). The finding of hyperresponsiveness to an immune
stimulus (Pam3CSK4) vs. decreased response to hemostatic
agonists (TRAP-6 and ADP) in this study indicates that the
response of ET platelets may be influenced by the nature of
the specific agonist involved, highlighting that inflammatory
mediators may represent relevant drivers of platelet activation
in this setting.

In addition to proinflammatory adhesion molecules, ligation
of both TLR2 and TLR4 triggered increased platelet-neutrophil
aggregate formation in ET patients, which could be due to
the combined effect of TLR ligands on both platelets and
neutrophils. No relationship was found between levels of
these heterotypic complexes and P-selectin exposure, neither
at baseline nor after Pam3CSK4 or TRAP-6 stimulation,
probably reflecting that, besides P-selectin/PSGL-1, other
molecular partners, such as Mac-1/GPIbα or GPIIbIIIa (via
fibrinogen), mediate stable platelet/neutrophil interplay
(12). Platelet-neutrophil crosstalk amplifies the activated
state of both cell types and primes neutrophil function,
including production of reactive oxygen species, which has
been shown to be increased in MPN (26), and the release
of neutrophil extracellular traps (NETs), whose role in MPN
remains controversial (26, 33, 34). Collectively, enhanced
TLR-triggered platelet-neutrophil interaction shown here may
amplify both platelet and neutrophil activation and functional
responses in ET.

A large scope of platelet activities, including those involved
in inflammation and immunity, are mediated by the release of
bioactive molecules stored in α-granules, which involve growth
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factors, angiogenesis mediators, hemostatic factors, and platelet-
derived chemokines, such as RANTES (11, 12). In this study,
baseline release of RANTES tended to be higher in patient
compared to control platelets, and, moreover, both TLR2-
and TLR4-mediated RANTES secretion were increased in ET.
RANTES orchestrates several thromboinflammatory responses,
including leukocyte chemoattraction and monocyte recruitment
to the vessel wall, which is a critical step in atherogenesis
(35). Furthermore, RANTES cooperation with PF4, which
represents another platelet-derived chemokine, primes platelet-
induced NET formation (36). In light of its functional effects,
platelet delivery of RANTES and its deposition on inflamed
or atherosclerotic endothelium may contribute to vascular
disease in MPN, pointing to a role for platelets as a local
source of inflammatory mediators in this scenario. Circulating
RANTES derives from multiple cellular sources, being mainly
released by T cells, although platelets and monocytes represent
additional relevant sources. Despite higher platelet RANTES
secretion, plasma levels of RANTES were seldom elevated in
this patient cohort, indicating that RANTES may mediate local,
but not systemic inflammation in ET. In contrast to platelet
RANTES secretion, release of VWF was not enhanced in patients.
The fact that RANTES release was not coupled to a similar
pattern for VWF is intriguing. One potential explanation may
involve differential α-granule secretion, as shown for molecules
stored in distinct granule subpopulations, which are selectively
released according to the triggering stimulus (37). As shown
for platelet adhesion molecules, increased platelet-neutrophil
aggregate formation and RANTES release triggered by TLRs
was not coupled to enhanced response to platelet classic
hemostatic agonists, reinforcing the finding of a differential
behavior upon stimulation with immune vs. prothrombotic
agonists. This selective TLR-mediated hyperresponsiveness was
not due to TLR overexpression on the platelet surface, as
no difference in TLR2 and TLR4 levels was found between
patients and controls. Considering that previous data show
that immune vs. thrombotic mediators induce differential
activation of signaling cascades, including ERK1/2, in normal
platelets, coupled to differences in platelet responses (38),
we assessed whether differences in downstream signals may
underlie the differential response to inflammatory vs. hemostatic
stimuli shown by ET platelets. To this end, we focused on
ERK1/2, which is essential in platelet activation and represents
a JAK2-downstream effector shown to be hyperactivated in
JAK2V617F-mutant cell lines (39) and MPN progenitors (40).
Interestingly, ERK1/2 phosphorylation was increased in resting
platelets from both JAK2-positive and CALR-positive patients,
suggesting that, as shown for MPN nucleated cells, ERK1/2 is
constitutively activated in ET platelets. Incubation with either
immune or hemostatic agonists failed to trigger further ERK1/2
phosphorylation in patients, suggesting that ET platelets display
maximal activation at baseline and are unable to respond to
further stimulation. Nevertheless, ERK1/2 phosphorylation levels
remained higher in patient vs. control Pam3CSK4-stimulated
platelets, which may partly explain the enhanced response
to TLR2 ligation shown in this work, while similar levels
were reached with thrombin. Notably, LPS tended to attenuate

ERK1/2 phosphorylation when compared to baseline in patients,
suggesting dephosphorylation events could occur under this
condition, as described for other cell types (41). Time-course
experiments could be useful to further define this issue but are
hampered by limited patient samples. In addition, study of other
platelet signaling pathways may help to gain further insight into
the mechanisms underlying the selective hyperresponsiveness
to TLR ligation.

CONCLUSION

In conclusion, in this study we demonstrate that stimulation of
platelet immune receptors, TLR2 and TLR4, leads to exacerbated
thromboinflammatory responses in ET platelets and reveal a
differential response pattern to inflammatory vs. hemostatic
agonists. This finding, coupled to the presence of endogenous
TLR ligands at steady state in MPN (26–28), provides an
additional mechanism that may drive platelet activation in this
context, promoting platelet-leukocyte and platelet-endothelial
interaction and secretion of inflammatory mediators, as depicted
in Figure 5. This phenomenon could be exacerbated during
acute conditions, such as infections or tissue damage, which may
trigger higher levels of TLR ligands. Our study emphasizes the
role of platelets as inflammatory sentinels and key players in
MPN prothrombotic scenario, highlighting both their hemostatic
and immune properties, and provide additional evidence for
the intertwining between thrombosis and inflammation in this
setting. Further assessment of other TLRs relevant to platelet
activation, such as endosomal TLR3, TLR7, and TLR9, could
provide further insight into the inflammatory function of
platelets in MPN.
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