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Abstract

Purpose

Accurate liver segmentation is key for volumetry assessment to guide treatment decisions.

Moreover, it is an important pre-processing step for cancer detection algorithms. Liver seg-

mentation can be especially challenging in patients with cancer-related tissue changes and

shape deformation. The aim of this study was to assess the ability of state-of-the-art deep

learning 3D liver segmentation algorithms to generalize across all different Barcelona Clinic

Liver Cancer (BCLC) liver cancer stages.

Methods

This retrospective study, included patients from an institutional database that had arterial-

phase T1-weighted magnetic resonance images with corresponding manual liver segmenta-

tions. The data was split into 70/15/15% for training/validation/testing each proportionally

equal across BCLC stages. Two 3D convolutional neural networks were trained using identi-

cal U-net-derived architectures with equal sized training datasets: one spanning all BCLC

stages (“All-Stage-Net": AS-Net), and one limited to early and intermediate BCLC stages

(“Early-Intermediate-Stage-Net": EIS-Net). Segmentation accuracy was evaluated by the

Dice Similarity Coefficient (DSC) on a dataset spanning all BCLC stages and a Wilcoxon

signed-rank test was used for pairwise comparisons.

Results

219 subjects met the inclusion criteria (170 males, 49 females, 62.8±9.1 years) from all

BCLC stages. Both networks were trained using 129 subjects: AS-Net training comprised
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19, 74, 18, 8, and 10 BCLC 0, A, B, C, and D patients, respectively; EIS-Net training com-

prised 21, 86, and 22 BCLC 0, A, and B patients, respectively. DSCs (mean±SD) were

0.954±0.018 and 0.946±0.032 for AS-Net and EIS-Net (p<0.001), respectively. The AS-Net

0.956±0.014 significantly outperformed the EIS-Net 0.941±0.038 on advanced BCLC

stages (p<0.001) and yielded similarly good segmentation performance on early and inter-

mediate stages (AS-Net: 0.952±0.021; EIS-Net: 0.949±0.027; p = 0.107).

Conclusion

To ensure robust segmentation performance across cancer stages that is independent of

liver shape deformation and tumor burden, it is critical to train deep learning models on het-

erogeneous imaging data spanning all BCLC stages.

Introduction

Liver cancer is the third most common cause of cancer-related death worldwide [1] and both

incidence rates and mortality are rising [2, 3]. Hepatocellular carcinoma (HCC) is the most

prevalent form of primary liver cancer, accounting for 70–85% of liver cancers globally [4].

Magnetic resonance (MR) imaging offers high tissue contrast and with the use of contrast

agents and multiphasic imaging, HCC can be detected and diagnosed reliably without the

need for an invasive biopsy in a majority of cases [5]. Multiple staging systems have been

developed to assess the stage of HCC and to provide guidance regarding optimal therapeutic

management [6–10]. In particular, the Barcelona Clinic Liver Cancer (BCLC) staging classifi-

cation [6] is widely accepted and the most commonly used in Western cohorts. The BCLC

classification utilizes three clinical elements: tumor burden, functional status as measured by

the Eastern Cooperative Oncology Group (ECOG) Performance Status [11], and underlying

liver function measured by the Child-Pugh class [12] to stratify patients into five staging cate-

gories: very early stage (BCLC-0), early stage (BCLC-A), intermediate stage (BCLC-B),

advanced stage (BCLC-C), and terminal stage (BCLC-D).

Accurate organ segmentation plays an important role in medical image analysis tasks. Liver

segmentation is key for volumetry prior to therapeutic interventions [13–17] and as a pre-pro-

cessing step for subsequent cancer detection algorithms [18, 19]. Accurate volumetry assess-

ment is imperative to understanding the risk of hepatic decompensation associated with

various treatment approaches and plays a critical role in management decisions. It has been

shown that the critical residual liver volume necessary to prevent post-hepatectomy liver fail-

ure in non-cirrhotic patients is 20–30%, compared to at least 40% residual volume in cirrhotic

patients. Thus, possible curative therapies again rely heavily on accurate volume assessment in

patients with liver cancer [20]. However, manual segmentation is time-consuming and depen-

dent on the rater’s level of experience, which leads to a lack of reproducibility and inter-

observer variability [21]. Heterogeneity in terms of disease stage and imaging appearance fur-

ther complicates segmentation. Liver segmentation can be especially challenging in patients

with abnormal liver function and significant disease complexity. Various morphologic changes

occur in cirrhotic patients including left lobe hypertrophy, increased nodularity of the liver

surface, portal hypertension often manifesting with significant ascites and changes in vascula-

ture in addition to cancer-related tissue changes that alter the liver contour all contribute to

substantial variations in the imaging morphology [22, 23]. In this paper, we use the BCLC
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classification as a marker for liver function, severity of HCC, disease complexity, and overall

imaging heterogeneity.

To improve liver segmentation reproducibility, automated methods based on image analy-

sis methods and machine learning have been developed and shown promising results [24–27].

Current state-of-the-art methods utilize deep learning based on convolutional neural networks

(CNNs) [28]. Such CNNs have demonstrated superior segmentation results across a wide vari-

ety of medical image segmentation applications [29] and also have the advantage of processing

times in the order of seconds. In particular, these algorithms have been applied to segment the

liver on computed tomography (CT) and MRI data [30–42]. However, machine learning algo-

rithms, and in particular high-dimensional and non-linear deep learning algorithms, are

prone to over-fitting, which results in models that are not robust to data that varies substan-

tially from their training data [43]. This is a problem of distributional shift, or dataset shift,

where a mismatch between distributions of training data and testing data exists [44]. Software

development specifications aimed at ensuring quality in the development and the use of AI

modules identify distributional shift as one of the major risks to robust application of AI [45].

To avoid distributional shifts caused by sample selection bias, it is critical that algorithms be

trained on data representative of the test set.

Therefore, deep learning liver segmentation algorithms trained only on early and interme-

diate HCC stages will result in algorithms tuned to this specific patient population and thus

fail to generalize to more advanced stages due to their heterogeneous imaging morphology.

The aim of this study was to assess the ability of state-of-the-art deep learning 3D liver segmen-

tation algorithms to generalize across the clinical distribution all different BCLC liver cancer

stages.

Materials and methods

Inclusion of patients

This HIPAA-compliant, retrospective, single-institution study was IRB-approved with full

waiver of consent and included all patients from an institutional database with T1-weighted

arterial-phase MR images and a corresponding manual liver segmentation available for pro-

cessing. All patients were >18 years old and had treatment-naïve HCC that was either imag-

ing- or histopathologically-proven. Patient data was collected from the hospital’s electronic

health record and all patients were retrospectively staged according to the BCLC staging

system.

Magnetic resonance imaging data

MR images were acquired between the years 2008 and 2019. Images were downloaded from

the Picture archiving and communication system (PACS) server, de-identified using in-house

software and subsequently converted to the Neuroimaging Informatics Technology Initiative

(NIfTI) format. All patients underwent a standard institutional imaging protocol for triphasic

MR image acquisition. Arterial phase images were used for liver segmentation because most

HCC lesions display arterial phase hyperenhancement (APHE), which is reflected in the cur-

rent LI-RADS criteria [46]. Tumors with APHE exhibit good contrast and high signal-to-noise

ratio which facilitates tumor delineation. Late arterial-phase T1-weighted breath-hold

sequences were acquired 12–18 seconds (s) post-contrast injection with several gadolinium-

based contrast agents. Images were acquired on a variety of scanners with different field

strengths (1.16T, 1.5T, and 3T). Full details of the imaging parameters can be found in the (S1

Table). Briefly, the median repetition time (TR) and median echo time (TE) were 4.39 ms and

2 ms, respectively. The median slice thickness was 3 mm, the median bandwidth 445 Hz, and
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the image matrix ranged from 1406×138 to 3206×247. All liver segmentations were done by a

medical student (M.G., over 2.5 years of image analysis training) under the supervision of a

board-certified abdominal radiologist (M.S., 10 years of experience) using 3D Slicer (v4.10.2)

[47].

Data partition

Early and intermediate BCLC stage (i.e., BCLC-0, BCLC-A, BCLC-B) patients were randomly

split into training, validation, and testing sets containing 70%, 15%, and 15% of the subjects,

respectively. Due to the relatively lower number of data samples of late BCLC stages (i.e.,

BCLC-C, BCLC-D), these subjects were split among the training and testing sets to each con-

tain 50% of the subjects, respectively. The sampled subjects from the set of training data were

then used to create two equally sized training subsets.

Model development

Two deep neural networks were trained in a supervised manner to automatically segment the

liver from 3D arterial-phase MR images. Both models have an identical fully-convolutional

encoder-decoder architecture [48] based on the U-net [49] that includes residual units [50]

and uses 3D convolution operations (see Sec. S1 File for details). The only difference between

the two algorithms were the datasets used for training, which were composed from different

combinations of BCLC stages. The first model, “Early-Intermediate-Stage-Net” (EIS-Net), was

trained on early and intermediate BCLC stages. The second model, “All-Stage-Net” (AS-Net),

was trained using a dataset comprised of all five BCLC stages. Both models used the same vali-

dation set and were tested on the same test set. The manual liver segmentations were used as

ground-truth.

The input MR images were standardized to have isotropic voxel spacing of 2mm3 and

intensities were scaled so that the 25th and 75th percentile ranged between -0.5 and +0.5 [51].

For model training, random 3D image patches (64×64×32 voxels) were extracted in a 3:1 ratio

centered on the liver mask compared to the background image to focus model training on the

liver. Both models were trained over 2000 epochs using mini-batches of 64 patches and the

Dice similarity loss function [52] using the Adam optimizer [53] with a fixed learning rate of

0.0001. Dice loss was optimized as this metric represents evaluation of the segmentation task

at hand. The framework for model training and evaluation is depicted in Fig 1.

Fig 1. Overview of the training and evaluation framework for the automated 3D liver segmentation method. Training input consists

of 3D arterial-phase magnetic resonance image (MRI) volumes with corresponding manually annotated ground-truth liver segmentation

masks. To evaluate model performance in an independent test set, the output liver segmentations were compared to annotated ground-

truth.

https://doi.org/10.1371/journal.pone.0260630.g001
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Models were implemented in Python (v3.7) using PyTorch (v1.5.1) and the open-source

Medical Open Network for AI (MONAI) (v0.3.0) framework. Model training and evaluation

was performed on a Linux workstation using an NVIDIA RTX 2080 Ti GPU. All code is pub-

licly available under https://github.com/OnofreyLab/liver-segm.

Model evaluation and statistical analysis

The two algorithms’ 3D liver segmentations were assessed qualitatively and compared quanti-

tatively against the manual segmentations. To quantify segmentation performance, the Dice

Similarity Coefficient (DSC) was calculated to measure overlap with the ground-truth. The

worst-case segmentation surface accuracy of the algorithms’ liver segmentation to the ground-

truth was evaluated by means of a Modified Hausdorff Distance (MHD). Here, the MHD was

defined as the 95th percentile of the original Hausdorff Distance (HD) since HD was shown to

be sensitive to outliers [54]. To assess average segmentation surface accuracy, the Mean Abso-

lute Distance (MAD) of the output liver segmentation mask to the ground-truth was calcu-

lated. The units for MHD and MAD were calculated in voxels (for images with 2mm3 voxel

spacing). Equations for the segmentation metrics can be found in the S1 File.

Descriptive statistics were calculated using the Python library SciPy (v1.5.2) and were

reported as absolute and relative frequencies (n and %) for categorical variables, mean and

standard deviation (SD) for normally distributed variables, or median and interquartile range

(IQR) for not normally distributed variables. A Wilcoxon signed-rank test was used for statisti-

cal pairwise comparisons between the algorithms and a p-value <0.05 was considered

significant.

Compliance with ethical standards

This HIPAA-compliant retrospective, single-institution study was conducted in accordance

with the Declaration of Helsinki, and approval was granted by the Institutional Review Board

of the Yale University School of Medicine with waiver of informed consent.

Results

Study population

From an institutional database of 629 HCC subjects, 219 subjects met the defined inclusion

criteria. Population sample statistics are summarized in Table 1 and MR imaging parameters

are summarized in the (S1 Table). Briefly, the study population comprised 170 male (77.6%)

and 49 female (22.4%) subjects with an age distribution of 62.8±9.1 (mean±SD) years with

treatment-naïve HCC. Thirty (13.7%) patients were staged as BCLC-0, 122 (55.7%) as

BCLC-A, 32 (14.6%) as BCLC-B, 15 (6.8%) as BCLC-C, and 20 (9.1%) as BCLC-D.

Data split

Each of the two training sets consisted of 129 patients: For the "Early-Intermediate-Stage-Net"

(EIS-Net), the training set comprised of 21 (16.2%) BCLC-0, 86 (66.6%) BCLC-A, and 22

(17.1%) BCLC-B patients; the training set for the "All-Stage-Net" (AS-Net) comprised of 19

(14.7%) BCLC-0, 74 (57.3%) BCLC-A, 18 (14.0%) BCLC-B, 8 (6.2%) BCLC-C, and 10 (7.7%)

BCLC-D patients. Both algorithms shared the same validation set comprised of 28 patients

with the following BCLC stages: Four (14.3%) BCLC-0, 19 (67.8%) BCLC-A and 5 (17.9%)

BCLC-B patients and were evaluated on the same test set consisting of 44 patients comprised

by the following cancer stages: 5 (11.4%) BCLC-0, 17 (38.6%) BCLC-A, 5 (11.4%) BCLC-B, 7
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Table 1. Demographic, radiological, and cancer staging sample statistics of the training, validation, and testing cohorts from 219 HCC patients included in this

study.

Parameter Overall Training Validation Testing

Training Pool EIS-Net AS-Net

n 219 147 129 129 28 44

Demographics

Age, mean (SD) 62.8 63.2 62.5 63.1 61.4 62.3

(9.1) (8.6) (8.5) (8.6) (11.4) (9.2)

Gender F 49 38 37 34 4 7

(22.4) (25.9) (28.7) (26.4) (14.3) (15.9)

M 170 109 92 95 24 37

(77.6) (74.1) (71.3) (73.6) (85.7) (84.1)

Ethnicity Asian 7 5 5 4 1 1

(3.2) (3.4) (3.9) (3.1) (3.6) (2.3)

Black, Non-

Hispanic

28 20 19 17 0 8

(12.8) (13.6) (14.7) (13.2) (18.2)

Hispanic 27 15 14 13 7 5

(12.3) (10.2) (10.9) (10.1) (25.0) (11.4)

Other/Unknown 4 1 1 1 2 1

(1.8) (0.7) (0.8) (0.8) (7.1) (2.3)

White, Non-

Hispanic

153 106 90 94 18 29

(69.9) (72.1) (69.8) (72.9) (64.3) (65.9)

Cirrhosis absent 12 7 5 7 1 4

(5.5) (4.8) (3.9) (5.4) (3.6) (9.1)

present 207 140 124 122 27 40

(94.5) (95.2) (96.1) (94.6) (96.4) (90.9)

Etiology HCV 125 89 83 79 13 23

(57.1) (60.5) (64.3) (61.2) (46.4) (52.3)

HBV 14 11 9 10 1 2

(6.4) (7.5) (7.0) (7.8) (3.6) (4.5)

Alcohol 60 42 36 33 10 8

(27.4) (28.6) (27.9) (25.6) (35.7) (18.2)

NASH 30 17 13 14 6 7

(13.7) (11.6) (10.1) (10.9) (21.4) (15.9)

Autoimmune 4 2 2 1 0 2

(1.8) (1.4) (1.6) (0.8) (4.5)

Cryptogenic 3 3 3 3 0 0

(1.4) (2.0) (2.3) (2.3)

not available 6 3 0 3 0 3

(2.7) (2.0) (2.3) (6.8)

Radiological data

Liver volume (ccm), median [Q1, Q3] 1596.6 1599.3 1599.3 1561.6 1753.8 1534.0

[1271.3,

2054.8]

[1259.5,

2031.5]

[1229.0,

1989.3]

[1228.5,

2053.1]

[1403.6,

2554.7]

[1304.3,

1953.1]

(Continued)
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Table 1. (Continued)

Parameter Overall Training Validation Testing

Training Pool EIS-Net AS-Net

Number of lesions 1 147 98 87 87 17 32

(67.1) (66.7) (67.4) (67.4) (60.7) (72.7)

2 36 27 24 24 6 3

(16.4) (18.4) (18.6) (18.6) (21.4) (6.8)

3 18 12 11 9 3 3

(8.2) (8.2) (8.5) (7.0) (10.7) (6.8)

>3 18 10 7 9 2 6

(8.2) (6.8) (5.4) (7.0) (7.1) (13.6)

Maximum tumor diameter (cm), median [Q1, Q3] 2.6 2.6 2.5 2.6 2.3 3.5

[2.0, 4.0] [2.0, 3.7] [1.9,3.4] [2.0, 3.7] [2.1, 3.1] [2.4, 5.0]

Cumulative tumor diameter (cm), median [Q1, Q3] 3.0 3.0 2.9 3.2 3.0 3.2

[2.0, 5.2] [2.0, 5.0] [2.0, 4.3] [2.0, 5.0] [2.1, 4.5] [2.4, 6.1]

Liver lobe bilobar 42 31 25 25 4 7

(19.2) (21.1) (19.4) (19.4) (14.3) (15.9)

left 42 23 20 20 8 11

(19.2) (15.6) (15.5) (15.5) (28.6) (25.0)

right 135 93 84 84 16 26

(61.6) (63.3) (65.1) (65.1) (57.1) (59.1)

Disease involves >50% of the liver

parenchyma

no 199 136 123 119 27 36

(90.9) (92.5) (95.3) (92.2) (96.4) (81.8)

yes 20 11 6 10 1 8

(9.1) (7.5) (4.7) (7.8) (3.6) (18.2)

Ascites on imaging absent 167 111 100 100 21 35

(76.3) (75.5) (77.5) (77.5) (75.0) (79.5)

moderate 17 12 7 9 1 4

(7.8) (8.2) (5.4) (7.0) (3.6) (9.1)

slight 35 24 22 20 6 5

(16.0) (16.3) (17.1) (15.5) (21.4) (11.4)

Portal hypertension on imaging absent 102 69 61 63 13 20

(46.6) (46.9) (47.3) (48.8) (46.4) (45.5)

present 117 78 68 66 15 24

(53.4) (53.1) (52.7) (51.2) (53.6) (54.5)

Portal vein thrombosis absent 205 139 127 121 28 38

(93.6) (94.6) (98.4) (93.8) (100.0) (86.4)

present 14 8 2 8 0 6

(6.4) (5.4) (1.6) (6.2) (13.6)

Tumor thrombus absent 206 140 129 122 28 38

(94.1) (95.2) (100.0) (94.6) (100.0) (86.4)

present 13 7 0 7 0 6

(5.9) (4.8) (5.4) (13.6)

Infiltrative no 208 141 129 123 28 39

(95.0) (95.9) (100.0) (95.3) (100.0) (88.6)

yes 11 6 0 6 0 5

(5.0) (4.1) (4.7) (11.4)

Staging system

(Continued)
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(15.9%) BCLC-C, and 10 (22.7%) BCLC-D patients. Full details on sampling of the data sets

can be found in the flowchart in Fig 2.

Model performance

Both the EIS- and AIS-net models were trained for 2000 epochs, at which time the loss func-

tion of the two models converged on both the training and validation datasets. The DSC

(mean±SD) performance on the training datasets were 0.952±0.042 and 0.951±0.035 and on

the validation dataset 0.928 ±0.093 and 0.928±0.093 for the EIS-Net and AS-Net, respectively.

Segmentation of the validation and test set data was performed on the whole image using a

large patch (224x224x128) in order to avoid stitching artifacts from smaller, overlapping

patches. Segmentation times (median [IQR]) for both the EIS- and AS-Net were 0.73 [0.33]

seconds and 0.70 [0.27] seconds on the validation and test set, respectively.

Qualitative assessment of the algorithms’ segmentation outputs on the test set across differ-

ent BCLC stages showed that both the EIS-Net and the AS-Net performed well on early and

intermediate BCLC stages (i.e., BCLC-0, BCLC-A, BCLC-B). However, the AS-Net

Table 1. (Continued)

Parameter Overall Training Validation Testing

Training Pool EIS-Net AS-Net

Child-Pugh Class A 140 92 86 83 18 30

(63.9) (62.6) (66.7) (64.3) (64.3) (68.2)

B 64 48 43 39 10 6

(29.2) (32.7) (33.3) (30.2) (35.7) (13.6)

C 15 7 0 7 0 8

(6.8) (4.8) (5.4) (18.2)

ECOG performance status 0 168 111 107 96 26 31

(76.7) (75.5) (82.9) (74.4) (92.9) (70.5)

1 34 26 21 23 2 6

(15.5) (17.7) (16.3) (17.8) (7.1) (13.6)

2 8 6 1 6 0 2

(3.7) (4.1) (0.8) (4.7) (4.5)

3 3 1 0 1 0 2

(1.4) (0.7) (0.8) (4.5)

4 6 3 0 3 0 3

(2.7) (2.0) (2.3) (6.8)

BCLC Stage 0 30 21 21 19 4 5

(13.7) (14.3) (16.3) (14.7) (14.3) (11.4)

A 122 86 86 74 19 17

(55.7) (58.5) (66.7) (57.4) (67.9) (38.6)

B 32 22 22 18 5 5

(14.6) (15.0) (17.1) (14.0) (17.9) (11.4)

C 15 8 0 8 0 7

(6.8) (5.4) (6.2) (15.9)

D 20 10 0 10 0 10

(9.1) (6.8) (7.8) (22.7)

Numbers in parentheses are percentages if not indicated otherwise. EIS-Net = Early-Intermediate-Stage-Net, AS-Net = All-Stage-Net, HBV = Hepatitis B Virus,

HCV = Hepatitis C Virus, ECOG = Eastern Cooperative Oncology Group, BCLC = Barcelona Clinic Liver Cancer.

https://doi.org/10.1371/journal.pone.0260630.t001
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outperformed the EIS-Net on more advanced stages (i.e., BCLC-C and BCLC-D). Examples of

representative liver segmentations across BCLC stages are shown in Fig 3.

Detailed assessments of the segmentation results showed that the EIS-Net failed on some

advanced BCLC cancer stages with big HCC tumors, where large areas of hypointense necrotic

Fig 2. Inclusion and exclusion criteria, and partitioning of the dataset for model training and evaluation. From an institutional database, 219

HCC patients that had arterial-phase MR images and a manual liver segmentation available for processing were included. Subjects from each BCLC

stage were then allocated to the test set and patients were selected for shared validation and testing sets. From the overall training pool, subjects were

sampled to create two training data subsets for the Early-Intermediate-Stage-Net (EIS-Net) and the All-Stage-Net (AS-Net).

https://doi.org/10.1371/journal.pone.0260630.g002

Fig 3. Example liver segmentations results across Barcelona Clinic Liver Cancer (BCLC) stages. Rows from top to bottom show axial, sagittal

and coronal arterial-phase magnetic resonance images of different subjects across BCLC stages (from left to right). The last row displays the liver

segmentations as 3D renderings. The liver segmentation masks of the Early-Intermediate-Stage-Net (blue) and All-Stage-Net (orange), as well as

the ground-truth (yellow) are overlaid on the images. While the Early-Intermediate-Stage-Net was trained only on patients with BCLC stages 0, A

and B, the All-Stage-Net was trained on a training set spanning all BCLC cancer stages.

https://doi.org/10.1371/journal.pone.0260630.g003
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tumor tissue were not classified as liver tissue. The AS-Net, by contrast, correctly classified

those regions as liver tissue. In other cases, the EIS-Net incorrectly classified structures around

the liver, such as parts of the small intestine or colon, as part of the liver, while the AS-Net cor-

rectly delineated the anatomical liver contour in those scans. Furthermore, in some patients,

regions of large ascites surrounding the liver were classified as liver parenchyma by the EIS-

Net, leading to large over-segmentation of the liver, whereas the AS-Net did not consider these

areas to be part of the liver. Representative examples of better liver segmentation results of the

AS-Net against the EIS-Net are shown in Fig 4.

Quantitative analysis of the segmentation to the expert ground-truth showed (mean±SD)

Dice Similarity Coefficients (DSC) for liver segmentations compared with manual segmenta-

tions of 0.946±0.032 and 0.954±0.018 for the EIS-Net and the AS-Net, respectively

(p<0.0001). The Modified Hausdorff Distance (MHD) (mean±SD), measuring the closeness

of the algorithms’ liver segmentation to the manual ground-truth, were 5.812±8.822 and 3.500

±4.033 for the EIS-Net and AS-Net, respectively (p = 0.005). The Mean Absolute Distance

(MAD) (mean±SD) for the liver segmentations compared with the expert segmentations were

1.243±1.901 for the EIS-Net and 0.750±0.370 for the AS-Net (p = 0.005). Further radiological

assessment showed that a DSC of 0.95 between the ground-truth and the algorithms’ liver seg-

mentation correlated well with the ground-truth.

When the models’ liver segmentation performances were compared across different BCLC

stages, they did not differ significantly for the early and intermediate BCLC stages (DSC:

p = 0.107, MHD: p = 0.413, MAD: p = 0.428) between both liver segmentation models.

Fig 4. Examples of the superior liver segmentation performance of the All-Stage-Net over the Early-Intermediate-Stage-Net. Columns show

results from five different subjects. Rows from top to bottom show axial, sagittal and coronal arterial-phase magnetic resonance images on which

the All-Stage-Net (overlaid in orange) outperformed the Early-Intermediate-Stage-Net (overlaid in blue). Expert ground-truth liver segmentations

are overlaid in yellow. The last row displays the liver segmentations as 3D renderings. White arrows point on areas of liver segmentation failure of

the Early-Intermediate-Stage-Net. While the Early-Intermediate-Stage-Net was trained only on patients with Barcelona Clinic Liver Cancer

(BCLC) stages 0, A and B, the All-Stage-Net was trained on a training set spanning all BCLC cancer stages.

https://doi.org/10.1371/journal.pone.0260630.g004
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However, the AS-Net performed significantly better on advanced HCC stages (DSC:

p<0.0001, MHD: p = 0.003, MAD: p<0.0001). Pairwise comparisons between the EIS-Net and

AS-Net for each BCLC stage are shown in Table 2. Boxplots in Fig 5 show that the AS-Net had

lower performance variance, better mean performance, fewer outliers and better worst-case

performance than the EIS-Net on all BCLC stages across all quantitative segmentation metrics

(DSC, MHD, MAD), indicating a more consistent and robust segmentation performance.

In livers where HCC involved <50% of the parenchyma, the AS-Net outperformed the

EIS-Net significantly with all performance measures (DSC: p = 0.005, MHD: p = 0.007, MAD:

p = 0.046). In livers where�50% of the parenchyma was involved by tumor tissue, the AS-Net

had significantly better results when the performances were compared by the DSC and MAD

(p = 0.023 and p = 0.039, respectively). However, no statistical significance was found between

the two algorithms for the MHD (p = 0.225).

Table 2. Liver segmentation performance (Dice Similarity Coefficient (DSC), Modified Hausdorff Distance (MHD), and Mean Absolute Distance (MAD)) of the

EIS-Net and AS-Net methods compared to manual ground-truth across different Barcelona Clinic Liver Cancer (BCLC) cancer stages.

EIS-Net AS-Net

Count Mean SD Median Mean SD Median p-Value

DSC 44 0.946 0.032 0.957 0.954 0.018 0.960 <0.001 �

Overall

Early & intermediate stages 27 0.949 0.027 0.959 0.952 0.021 0.960 0.107

BCLC-0 5 0.959 0.011 0.959 0.961 0.010 0.962 0.312

BCLC-A 17 0.940 0.030 0.948 0.944 0.022 0.949 0.132

BCLC-B 5 0.970 0.005 0.970 0.970 0.005 0.969 0.438

Advanced stages 17 0.941 0.038 0.954 0.956 0.014 0.962 <0.001 �

BCLC-C 7 0.931 0.053 0.952 0.954 0.007 0.952 0.016 �

BCLC-D 10 0.949 0.024 0.962 0.958 0.017 0.965 0.020 �

MHD (in voxels) 44 5.812 8.822 2.236 3.500 4.033 2.236 0.005 �

Overall

Early & intermediate stages 27 4.076 5.217 2.236 3.759 4.815 2.236 0.413

BCLC-0 5 2.232 0.159 2.236 2.213 0.359 2.000 1.000

BCLC-A 17 5.266 6.329 2.236 4.758 5.887 2.236 0.359

BCLC-B 5 1.878 0.585 1.732 1.912 0.656 1.732 0.317

Advanced stages 17 8.570 12.320 3.464 3.089 2.398 2.236 0.003 �

BCLC-C 7 8.928 14.142 3.742 3.117 0.914 3.000 0.249

BCLC-D 10 8.319 11.675 2.532 3.069 3.109 2.236 0.012 �

MAD (in voxels) 44 1.243 1.901 0.698 0.750 0.370 0.626 0.005 �

Overall

Early & intermediate stages 27 0.856 0.556 0.678 0.814 0.449 0.699 0.428

BCLC-0 5 0.635 0.076 0.642 0.632 0.085 0.607 0.625

BCLC-A 17 1.002 0.660 0.705 0.943 0.523 0.759 0.782

BCLC-B 5 0.579 0.117 0.529 0.561 0.126 0.519 0.625

Advanced stages 17 1.858 2.925 0.745 0.648 0.152 0.617 <0.001 �

BCLC-C 7 2.341 3.945 0.849 0.719 0.128 0.658 0.031 �

BCLC-D 10 1.520 2.128 0.657 0.598 0.153 0.575 0.014 �

Quantitative analysis of liver segmentation performances of the Early-Intermediate-Stage-Net (EIS-Net) and All-Stage-Net (AS-Net) compared against the experts’

manual segmentations by means of the Dice Similarity Coefficient (DSC), Modified Hausdorff Distance (MHD), and Mean Absolute Distance (MAD). A Wilcoxon

signed-rank test was used for pairwise comparisons between the liver segmentation algorithms and a p-value <0.05 was considered statistically significant (denoted

with �).

https://doi.org/10.1371/journal.pone.0260630.t002
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When compared specifically for the extent of cumulative tumor diameter, the AS-Net and

EIS-Net did not yield statistically significantly different results for tumors<3cm (DSC:

p = 0.090, MHD: p = 0.385, MAD: p = 0.142). However, the AS-Net showed significantly better

results than the EIS-Net for tumors�3cm (DSC: p = 0.002, MHD: p = 0.003, MAD:

p = 0.018). Comprehensive pairwise comparisons between the two segmentation models for a

range of different patient features can be found in the (S2–S4 Tables).

Discussion

Accurate and robust whole liver segmentation is key for volumetry assessment to guide treat-

ment decisions when deciding if various treatment options such as liver resection, radioembo-

lization or portal vein embolization are safe [13, 15, 55, 56]. Moreover, liver segmentation is an

important pre-processing step for subsequent cancer detection algorithms. Segmentation can

be especially challenging in patients with cancer-related tissue changes and liver shape defor-

mity as morphology can be substantially altered. To improve automated segmentation perfor-

mance on MR images in patients with heterogeneous imaging characteristics across the full

spectrum of primary liver cancer, a deep learning algorithm was trained using imaging data

spanning the full distribution of BCLC staging.

In this study, we demonstrated that training across the distribution of BCLC stages signifi-

cantly improved the ability of deep learning liver segmentation algorithms to generalize across

cancer stages. Models trained using data across all BCLC stages yielded better and more con-

sistent segmentation performance when compared to models trained only on early and inter-

mediate cancer stages. Both the “Early-Intermediate-Stage-Net” (EIS-Net) and the “All-Stage-

Net” (AS-Net) showed good segmentation results on livers with early and intermediate BCLC

stages. However, the EIS-Net failed on the segmentation of some advanced BCLC stage

patients on which the AS-Net showed robust segmentation results. Overall, training with

diverse data reduced the variance in segmentation performance, making deep learning algo-

rithms more robust and able to achieve greater performance consistency across a heteroge-

neous cohort of imaging data that is typically encountered in clinical practice.

Advanced liver cancer leads to heterogeneous liver tissue and significantly altered liver

shapes [22, 23]. Moreover, multifocal and large tumors displaying voluminous areas of con-

trast-enhancement, tumor necrosis, infiltrative disease, perfusion abnormalities or tumor

thrombi considerably change liver tissue morphology on MR images and therefore make it

Fig 5. Liver segmentation method performance across different Barcelona Clinic Liver Cancer (BCLC) cancer stages. The automatic liver

segmentations of the Early-Intermediate-Stage-Net (EIS-Net) and All-Stage-Net (AS-Net) were compared quantitatively against the experts’

manual segmentations by means of the Dice Similarity Coefficient (DSC), Modified Hausdorff Distance (MHD), and Mean Absolute Distance

(MAD). AS-Net showed better mean performance, fewer outliers and better worst-case performance across all segmentation metrics indicating a

more robust segmentation performance. A Wilcoxon signed-rank test was used for pairwise comparisons between the liver segmentation

algorithms and a p-value<0.05 was considered statistically significant (denoted with �, ns denotes no significant differences).

https://doi.org/10.1371/journal.pone.0260630.g005
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difficult for deep neural networks to correctly classify those areas as liver tissue. Additionally,

the liver contour can be altered by a more cirrhotic configuration displayed as a more nodular

surface, and with progressing liver failure and the development of portal hypertension, further

alterations including large volume ascites [22, 57]. All these factors substantially change the

liver morphology on MR images and make the segmentation task challenging.

We hypothesized that the AS-Net showed better performance on advanced BCLC stage

patients since it had already seen much bigger tumors, heterogeneous liver tissue, and severe

ascites in its training data. Interestingly, the AS-Net did not perform worse on earlier BCLC

stages, even with fewer training data of those stages. Moreover, the diversity in the AS-Net’s

training data helped the model generalize better on various HCC stages and showed less vari-

ance across all performance measures, indicating that the heterogeneity of cancer stages in the

training data also helped to improve consistency by reducing distributional shift between the

training and testing data [44]. The model also had better worst-case performance, indicating

that the diversity of BCLC stages lead to more robust segmentation performance.

Many current state-of-the-art deep learning segmentation algorithms use encoder-decoder

network architectures, and many practical improvements in segmentation performance can be

realized through innovations in pre-processing [51], data augmentation and loss functions

[29]. Previous liver segmentation studies have used the U-net architecture [19, 29, 32, 36, 37,

39] or its variants [34, 38]. The method of Bousabarah et al. [19] trained on 121 triphasic MR

scans and tested on a set of 26 patients yielded a mean DSC of 0.91 (±0.01). The proposed fully

convolutional neural network of Zeng et al. [34] used T2-weighted MR images and showed a

DSC (mean±SD) of 0.952±0.01 on 51 validation patients. Wang et al.’s 2D U-net CNN for

liver segmentation yielded a mean DSC of 0.95±0.03 with their method trained using 330 MRI

and CT scans and tested on 100 T1-weighted MR images [32]. While our study’s goal was to

determine the relative effect of different training data cohorts on segmentation model perfor-

mance and not to focus on obtaining peak segmentation performance by exhaustively optimiz-

ing the network architecture, both of our models demonstrated segmentation performance

comparable to that of previously published studies. Further performance gains may be realized

with additional network tuning and model training strategies, and future work will involve

accounting for distributional shifts during the model training process [58].

Our study has several limitations. First, the data for the staging of the patients of our data-

base was collected retrospectively from the electronic health record of the hospital, and most

patients in our database are distributed among earlier BCLC stages. Nevertheless, this distribu-

tion accurately reflects the clinical population at this site as most patients who undergo con-

trast-enhanced MR image acquisitions that require breath-holding are distributed across

earlier BCLC stages and patients with more advanced disease and resultant poor performance

status are unable to successfully complete the necessary instructions required for adequate MR

image acquisition. Additionally, our data was limited to treatment-naïve HCC patients and

did not include patients with other types of hepatic pathologies. Therefore, we were not able to

investigate how treatment-associated changes of the liver parenchyma would affect the models’

segmentation performance. Future work will assess the performance of the algorithm on

patients who underwent treatment and include a prospective evaluation of AS-Net using data

from multiple sites, as well as verifying that our results hold across different network

architectures.

Conclusion

In this paper, we demonstrate the training and validation of a fully automated 3D liver seg-

mentation method using deep learning across the full spectrum of BCLC cancer stages. Our
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results show that diversity in the training data across all BCLC stages significantly improves

the performance of robust whole liver MRI segmentation algorithms compared to the same

algorithm trained with images representative of a limited subset of BCLC stages. To avoid

problems caused by distributional shift and to ensure robust segmentation performance that is

independent of liver shape deformation and tumor burden and generalizable across BCLC

cancer stages, it is critical to train deep learning models on heterogeneous imaging data span-

ning all cancer stages and a diverse spectrum of diagnostic features. Moreover, we demonstrate

the importance of model validation on datasets that are composed of a spectrum of cancer

stages that exhibit heterogeneous diagnostic findings encountered in clinical practice.
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