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In computed tomography (CT), there are many situations where reconstruction has to be performed with sparse-view data. In
sparse-view CT imaging, strong streak artifacts may appear in conventionally reconstructed images due to limited sampling rate
that compromises image quality. Compressed sensing (CS) algorithm has shown potential to accurately recover images from
highly undersampled data. In the past few years, total-variation-(TV-) based compressed sensing algorithms have been proposed
to suppress the streak artifact in CT image reconstruction. In this paper, we propose an efficient compressed sensing-based
algorithm for CT image reconstruction from few-view data where we simultaneously minimize three parameters: the ℓ

1
norm,

total variation, and a least squares measure. The main feature of our algorithm is the use of two sparsity transforms—discrete
wavelet transformanddiscrete gradient transform. Experiments have been conducted using simulated phantoms and clinical data to
evaluate the performance of the proposed algorithm.The results using the proposed scheme showmuch smaller streaking artifacts
and reconstruction errors than other conventional methods.

1. Introduction

X-ray computed tomography (CT) is extensively used clin-
ically to evaluate patients with a variety of conditions.
However, by its nature, CT scans expose the patients to
high X-ray radiation doses which can result in an increased
lifetime risk of cancer [1, 2]. The radiation dose to the
patients is proportional to the number of X-ray projections.
Additionally, medical research makes extensive use of CT
on the microscopic scale, known as micro-CT. Longitudinal
studies on experimental animals such as rats, mice, and
rabbits are also restricted in resolution and image quality
by radiation dose. Currently, the defacto standard for recon-
struction on the commercial CT scanners is the filtered
backprojection (FBP) algorithm, which typically requires
a large number (300–1000) of angular views for yielding
accurate reconstruction of the image object.

Recently a number of strategies have been proposed to
decrease radiation dose in CT scans. One approach to lower

the total X-ray radiation dose is to simply reduce the dose
level mAs/view in data acquisition protocols. This approach
typically results in an insufficient number of X-ray photons
received by the detectors, increasing the noise level on the
sinograms produced.The noise-contaminated sinogram data
will degrade the quality of reconstructed CT images when
a conventional FBP algorithm is used [3]. Another way to
reduce the total radiation dose is to reduce the number of pro-
jections needed. According to the standard image reconstruc-
tion theory in image processing, when the number of the view
angles does not satisfy the Shannon/Nyquist sampling the-
orem, aliasing artifacts will spread out in the reconstructed
images. As a consequence, FBP algorithms do not produce
diagnostically satisfactory images in sparse-view data collec-
tion schemes, because they are derived by assuming densely
sampled projections over the scanning angular range.

Since analytical reconstruction methods, such as FBP,
cause such serious streaking artifacts in the resulting recon-
structed CT images, iterative algorithms have been proposed
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and investigated as a means to eliminate these defects. One
approach is algebraic and is based upon solving a system
of linear equations. This scheme is often referred to as
algebraic reconstruction technique (ART) [4, 5], and it has
several variants with different iteration schemes, such as
simultaneousART (SART) [6, 7].TheARTalgorithms consist
of altering the grayness of each pixel intersected by the ray
sum in such a way as to make the ray sum agree with the
corresponding element of the measured projection. In each
iteration, the current guess of the image is reprojected and
checked to see how it matches with the real measurements.
These algebraic methods are computationally intensive and
require large amounts of memory [8]. However increases
in computing power may render them more available over
time. Other iterative approaches, such as statistical image
reconstruction (SIR) [9], use the statistical distribution of
photons resulting from the X-ray interaction process. Both
the ART and SIR methods solve the reconstruction prob-
lem iteratively. Iterative algorithms have been proven to be
advantageous over analytical algorithms when projection
data are incomplete and noisy, for example, in the sparse-
view reconstruction scenario. However, when the Shan-
non/Nyquist sampling requirement is violated, that is, less
than 100 view angles, the linear system will become highly
underdetermined and unstable, failing to maintain clinically
acceptable image quality.

In the past few years, compressed sensing (CS) algorithms
[10, 11] have attracted huge attention in the CT and micro-
CT community. Onemay view CS-based algorithm as simply
another iterative algorithm, but what makes the CS method
distinctive from other iterative algorithms is that it exploits
the sampling strategy in which the sampled data are truly
helpful for an accurate reconstruction of an image object.
Several compressed sensing based CT image reconstruction
algorithms are proposed in the sparse-view scenario [12, 13].
In particular, the total-variation-(TV-) based methods have
demonstrated their power in CT reconstruction with only a
few X-ray projections with their dataset. For example, Sidky’s
work in [13] showed that their method can yield accurate
reconstructions in ideal conditions where only 20 view angles
projection data were acquired using simulated data from a
jaw phantom. In such algorithms, an objective function of
TV norm is minimized subject to a data fidelity posed by
the acquired projection data. Minimizing the image gradient
essentially suppresses those high spatial frequency parts such
as streaking artifacts and noise in the reconstructed images.
The major problem of this TV-based compressed sensing
method is that it tries to uniformly penalize the image’s
gradient irrespective of the underlying image structures and
thus low contrast regions are sometimes over smoothed [3].
To resolve this issue, we propose a new algorithm based
on compressed sensing that jointly minimizes the wavelet
transform and total variation of the object image. The 2D
wavelet transform is good at capturing point singularities
[14], thus preserving edges and low contrast information.
This process suppresses the streaking artifacts and noise,
while detailed structures are also preserved, resulting in an
improved image.

2. Theory and Method

2.1. X-Ray Computed Tomography (CT) Imaging System. A
parallel beam CT scanning system uses an array of equally
spaced sources of X-ray beams and an array of detectors. Let
𝜇(𝑥, 𝑦) denote the X-ray attenuation coefficient distribution
of tissue of a 2D target object and let 𝑙 denote the straight
line from the X-ray focal spot to the detector pixel, which is
also referred to as the X-ray path. The X-ray tube emits X-
ray photons which travel in a straight line through the object.
The photons are attenuated by the materials in the target
object. Radiation that is not absorbed by the object’s internal
structure reaches the detectors. According to Beer’s law, the
detected photon number 𝐼 and the entering photon number
𝐼
0
at a given detector pixel have the following relationship

[15]:

𝐼 = 𝐼
0
exp(−∫

𝑙

𝜇 (𝑥, 𝑦) 𝑑𝑙) , (1)

where the line integral is performed along the X-ray path.
Alternatively, one can define

𝑦 = ∫
𝑙

𝜇 (𝑥, 𝑦) 𝑑𝑙 = ln
𝐼
0

𝐼
, (2)

where 𝑦 is the so-called projection data or sinogram, which
is essentially the line integral in (1). Then the image recon-
struction process consists of estimating the attenuation coef-
ficients, 𝜇, from the detected projection data 𝑦. In computer
implementation, the attenuation coefficients are digitized
into the so-called pixel representations [16]:

𝜇 (𝑥, 𝑦) = ∑

𝑖∈𝑆

𝜇
𝑖
𝜔
𝑖
(𝑥, 𝑦) , (3)

where 𝑆 denotes the index of the set of𝑁 pixel locations, 𝑖 is
the pixel index, and𝜔

𝑖
(𝑥, 𝑦) is the basis function. Substituting

(3) into the line integral equation in (2), one can obtain

𝑦 = ∑

𝑖∈𝑆

𝜇
𝑖
∫
𝑙

𝜔
𝑖
(𝑥, 𝑦) 𝑑𝑙 = ∑

𝑖∈𝑆

𝐴
𝑗𝑖
𝜇
𝑖
= 𝐴𝜇, (4)

where the X-ray system matrix 𝐴 is given by

𝐴
𝑗𝑖
= ∫
𝑙𝑗

𝜔
𝑖
(𝑥, 𝑦) 𝑑𝑙, (5)

which is the line integral of the basis function 𝜔
𝑖
(𝑥, 𝑦) along

the jth X-ray path. The system matrix is independent of
the image object; it is rather dependent on the CT scanner,
including the positions of sources and detectors. Hence (4)
gives a system of linear equations with 𝜇

𝑖
.

2.2. Brief Overview of Existing Methods. In this study, our
proposed algorithm will be compared with the state-of-the-
art methods, including filtered backprojection (FBP) [15],
algebraic reconstruction technique (ART) [4, 5], and its
variants, simultaneous algebraic reconstruction technique
(SART) [8]. A brief summary of these methods is given in
the following.
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Figure 1: A parallel beam projection through 𝜇(𝑥, 𝑦) at angle 𝜃.
𝑃
𝜃
(𝑡) is the measured projection.

2.2.1. Filtered Backprojection (FBP). Consider the parallel
beam of rays intersecting an object as shown in Figure 1. The
parallel beam is inclined to the X-axis at angle 𝜃 and each ray
can be characterized by its perpendicular distance, 𝑡, to the
origin. Equation (2) can be rewritten as

𝑃
𝜃
(𝑡) = ∫

𝑙𝜃,𝑡

𝜇 (𝑥, 𝑦) 𝑑𝑙 = ln
𝐼
0

𝐼
. (6)

Using a Dirac delta function, we have an alternate
representation:

𝑃
𝜃
(𝑡) = ∫

∞

−∞

∫

∞

−∞

𝜇 (𝑥, 𝑦) 𝛿 (𝑥 cos 𝜃 + 𝑦 sin 𝜃 − 𝑡) 𝑑𝑥 𝑑𝑦.

(7)

FBP begins by filtering the projection data with a high
pass filter, which in reality is implemented by the Ram-Lak
filter or Shepp-Logan filter, then takes the integral over 0 to
𝜋 with respect to 𝜃. Since filtering in frequency domain can
be done by the convolution operation in spatial domain, the
formulation of filtered backprojection is

𝜇 (𝑥, 𝑦) = ∫

𝜋

0

𝑑𝜃∫

∞

−∞

𝑃
𝜃
(𝑡
󸀠
) 𝜑 (𝑡 − 𝑡

󸀠
) 𝑑𝑡
󸀠
, (8)

where 𝜑(𝑡) is the corresponding high pass filter in spatial
domain.

2.2.2. Algebraic Reconstruction Technique (ART). ART con-
siders the CT imaging process as a linear system of equations
as in (4):

𝑦 = 𝐴𝜇, (9)

where 𝐴 is the system matrix (given in (5)) describing the
forward projection in the CT scan. ART algorithms solve
the above equations in an iterative way so that the difference
between the projection data from real scan and the projection
data calculated from the estimated image is backprojected
onto the estimated image at current iteration step. Given that

the system matrix 𝐴 is of size𝑚× 𝑛, the method involves the
ith row of 𝐴 in the following update of iteration:

𝑥
𝑘+1

= 𝑥
𝑘
+ 𝜆
𝑘

𝑏
𝑖
− ⟨𝑎
𝑖
, 𝑥
𝑘
⟩

󵄩󵄩󵄩󵄩𝑎𝑖
󵄩󵄩󵄩󵄩

2
𝑎
𝑖
, (10)

where 𝑖 = 𝑘 mod 𝑚 + 1, 𝑎
𝑖
is the ith row of the matrix 𝐴,

𝑏
𝑖
is the ith component of the vector 𝑏, and 𝜆

𝑘
is a relaxation

parameter. In the original work in [17], Kaczmarz used a fixed
𝜆
𝑘
= 𝜆 = 1 ∈ (0, 2) and the kth iteration consists of a “sweep”

through the 𝑚 rows of 𝐴, that is, 𝑖 = 1, 2, . . . , 𝑚. Kaczmarz’s
method was employed in this study as comparison with the
proposed algorithm.

2.2.3. Simultaneous Algebraic Reconstruction Technique
(SART). The reason for calling the methods “simultaneous”
is that all the equations are used at the same time in
one iteration. The general form of simultaneous iterative
reconstruction technique (SIRT) is

𝑥
𝑘+1

= 𝑥
𝑘
+ 𝜆
𝑘
𝑇𝐴
𝑇
𝑀(𝑏 − 𝐴𝑥

𝑘
) , 𝑘 = 0, 1, 2, . . . , (11)

where the matrices𝑀 and 𝑇 are symmetric positive definite.
Although SARTwas originally developed in the framework of
ART [6], it can also be written and implemented in the SIRT
form and takes the following matrix form [18]:

𝑥
𝑘+1

= 𝑥
𝑘
+ 𝜆
𝑘
𝐷
−1

𝑟
𝐴
𝑇
𝐷
−1

𝑐
(𝑏 − 𝐴𝑥

𝑘
) , (12)

where the diagonal matrices 𝐷
𝑟
and 𝐷

𝑐
are defined in terms

of the row and column sum:

𝐷
𝑟
= diag (󵄩󵄩󵄩󵄩𝑎𝑖

󵄩󵄩󵄩󵄩1) , 𝐷
𝑐
= diag (󵄩󵄩󵄩󵄩󵄩𝑎

𝑗󵄩󵄩󵄩󵄩󵄩1
) . (13)

ART-typemethods are known to have better performance
than FBP algorithms in suppressing streak artifacts and noise
in sparse-view CT imaging.

3. Proposed CS-Based Algorithm

Theproblemof sparse-viewCT image reconstruction actually
leads to an underdetermined system of linear equations
(equation (9)). One way to improve performance is to incor-
porate a priori knowledge into the iteration process. One way
to do that is based on the idea of sparsity at compressed
sensing [10, 11]. The essence of compressed sensing is that a
signal, which in our case is the image 𝜇, can be completely
reconstructed with a high probability with far less samples
than required by conventional Nyquist-Shannon sampling
theorem, if the image has a sparse/compressible representa-
tion in a transform domain Φ, such that most entries of the
vectorΦ𝜇 are zero or close to zero.The entire process of com-
pressed sensing consists of three steps [19]: encoding, sensing,
and decoding. In the first step, the object image 𝜇 of size 𝑛 is
encoded into a smaller vector 𝑦 = 𝐴𝜇 of a size𝑚 (𝑚 < 𝑛) by
the system matrix, as shown in Section 2.1. Then the second
step is obtaining the undersampledmeasurements 𝑦 from the
imaging system, which in CT is to obtain the undersampled
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Figure 2: Analysis to find the optimum number of iterations for different methods: (a) ART and SART, (b) TV and the proposed scheme.
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(a) (b)

(c) (d)

(e) (f)

Figure 4: The reconstruction results of the nodule phantom using 50 projections. (a) The ground truth image, (b) the result obtained using
FBP algorithm, (c) the ART algorithm, (d) the SART algorithm, (e) the TV algorithm, and (f) the proposed CS algorithm.

projection data. Incorporating the a priori knowledge into the
process of image reconstruction, the third step is to solve the
following constrained optimization problem:

min
𝜇

󵄩󵄩󵄩󵄩Φ𝜇
󵄩󵄩󵄩󵄩1 subject to 󵄩󵄩󵄩󵄩𝐴𝜇 − 𝑦

󵄩󵄩󵄩󵄩2 < 𝜀, (14)

where 𝜀 is a parameter controlling the data consistency.
It has been mathematically proven that, if the image has
only 𝑘 entries with relatively large magnitudes, the order of
𝑘 ln√𝑛 measurements is sufficient to accurately reconstruct
𝜇 via ℓ

1
norm minimization procedure with high probability
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INPUTS:
𝑦: undersampled projection data
𝐴: system matrix associated with the measurements
Φ: wavelet transform operator
𝜆
1
, 𝜆
2
: tuning constants

OPTIONAL PARAMETERS:
Tol: stopping criteria by gradient magnitude (default 10−4)
Iter: stopping criteria by number of iterations (default 100)
𝛼, 𝜍: line search parameters (defaults 𝛼 = 0.01, 𝜍 = 0.6)
OUTPUTS:
𝜇: the numerical approximation to (18)
% Initialization
𝑘 = 0; 𝜇

0
= 𝜇FBP ; 𝑔𝑜 = ∇𝐽(𝜇

0
); Δ𝜇
0
= −𝑔
𝑜

% Iterations
while (󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩2 < Tol)
{

% Backtracking line-search
𝑡 = 5;while (𝐽(𝜇

𝑘
+ 𝑡Δ𝜇

𝑘
) > 𝐽(𝜇

𝑘
) + 𝛼𝑡 ⋅ 𝑅𝑒𝑎𝑙(𝑔

𝑘
∗ Δ𝜇
𝑘
)

and 𝑘 < Iter)
{𝑡 = 𝜍 𝑡}

𝜇
𝑘+1

= 𝜇
𝑘
+ 𝑡Δ𝜇

𝑘

𝑔
𝑘+1

= ∇𝐽(𝜇
𝑘+1

)

𝜂
𝑘
= 𝑔
𝑘+1

− 𝑔
𝑘

𝛽
𝑘+1

= max{0,min{
𝑔
𝑇

𝑘+1
𝜂
𝑘

Δ𝜇
𝑇

𝑘
𝜂
𝑘

,

󵄩󵄩󵄩󵄩𝑔𝑘+1
󵄩󵄩󵄩󵄩

2

Δ𝜇
𝑇

𝑘
𝜂
𝑘

}}

Δ𝜇
𝑘+1

= −𝑔
𝑘+1

+ 𝛽
𝑘+1

Δ𝜇
𝑘

𝑘 = 𝑘 + 1}

Algorithm 1: Iterative algorithm for ℓ
1
minimization.

(Algorithm 1). A previous method called PICCS used total
variation (TV) as a sparsity transform [12], where the CT
image is reconstructed by minimizing the energy function
with a TV regularization term:

𝜇 = argmin
𝜇
𝐽 (𝜇) = argmin

𝜇
𝜆
󵄩󵄩󵄩󵄩𝜇
󵄩󵄩󵄩󵄩TV +

󵄩󵄩󵄩󵄩𝐴𝜇 − 𝑦
󵄩󵄩󵄩󵄩

2

2
, (15)

where the regularization factor 𝜆 is introduced to leverage the
cost function’s emphasis on the sparseness prior and the data
fidelity term. The selection of this regularization factor has
been an interesting area of research in the field of regularized
iterative methods [20–22]. A well-known method to find
the best one is via the 𝐿 curve. In our study, we chose the
optimized regularization parameter for TV method for each
dataset. The discussion of selection is given in Section 4. The
TV term of an image in this work is defined as follows:

󵄩󵄩󵄩󵄩𝜇
󵄩󵄩󵄩󵄩TV = ∫

󵄨󵄨󵄨󵄨∇𝜇
󵄨󵄨󵄨󵄨 𝑑𝑥. (16)

In a discrete version, (16) becomes

󵄩󵄩󵄩󵄩𝜇
󵄩󵄩󵄩󵄩TV = ∑

𝑖,𝑗

√(∇𝜇
2

𝑥
)
𝑖,𝑗
+ (∇𝜇2

𝑦
)
𝑖,𝑗
, (17)

where ∇𝜇
𝑥
,∇𝜇
𝑦
represent the finite differences of the image

along 𝑥 and 𝑦 directions. Despite the great success of the TV
model in terms of reconstructing high-quality images, edges

with low contrast regions are sometimes oversmoothed,
causing loss of low contrast information. To overcome
this disadvantage, we propose a novel compressed sensing-
based method by combining two sparsity transforms: TV
and wavelet. Wavelet is good at preserving edges and low
contrast information while TV is efficient at suppressing
noise and streaking artifacts. In this way, we obtain a good
balance between streaking artifacts suppression and detail
preservation. Our iterative reconstruction algorithm solves
the image via the following optimization problem:

𝜇 = argmin
𝜇
𝜆
1

󵄩󵄩󵄩󵄩𝜇
󵄩󵄩󵄩󵄩TV + 𝜆

2

󵄩󵄩󵄩󵄩Φ𝜇
󵄩󵄩󵄩󵄩1 +

󵄩󵄩󵄩󵄩𝐴𝜇 − 𝑦
󵄩󵄩󵄩󵄩

2

2
. (18)

The two regularization factors 𝜆
1
and 𝜆

2
control the

amount of smoothing. A large 𝜆
1
and small 𝜆

2
are not able to

capture enough detail information. In such a circumstance,
the algorithm becomes essentially the TV method. In con-
trast, small 𝜆

1
and large 𝜆

2
tend to give low weights to image

gradients, making themethod inefficient at suppressing noise
and streaking artifacts. The process to find the optimized
selections of 𝜆

1
and 𝜆

2
is discussed in Section 4. We exploit

a fast implementation of the wavelet transform [23], which
speeds up the implementation.

Since (18) poses an unconstrained convex optimization
problem, we propose solving it using a nonlinear conjugate
gradient descent algorithm with backtracking line search
where 𝐽(𝜇) is the cost function as defined in (18).

The conjugate gradient requires the computation of∇𝐽(𝜇)
which is

∇𝐽 (𝜇) = 𝜆
1
∇
󵄩󵄩󵄩󵄩𝜇
󵄩󵄩󵄩󵄩TV + 𝜆

2
∇
󵄩󵄩󵄩󵄩Φ𝜇

󵄩󵄩󵄩󵄩1 + 2𝐴
∗
(𝐴𝜇 − 𝑦) . (19)

As the ℓ
1
norm and total variation term (16) is the sum of

absolute values. The absolute value, however, is not a smooth
function and as a result (19) is not well defined. In [24], Lustig
et al. approximated the absolute value with a smooth function
|𝑥| ≈ √𝑥∗𝑥 + 𝜉, where 𝜉 is a positive smoothing parameter.
Then the gradient becomes 𝑑|𝑥| ≈ (𝑥/√𝑥∗𝑥 + 𝜉). We adopt
this idea in our implementation. In particular, a smoothing
factor 𝜉 = 10

−15 is used.

4. Experimental Results

In this section, we present our experimental results. There
are four sets of experiments. In the first two experiments,
true CT images and simulated projections were used to
study the performance of our algorithm under ideal and
degraded conditions. The third and fourth experiments
used real data collected using the Canadian Light Source
(http://www.lightsource.ca/) and University of Saskatchewan
facilities. In all cases, we investigated reconstructions from
20, 30, 40, 50, 60, 70, 80, 90, 100, 110, up to 120-view datasets
extracted from the full dataset, respectively, representing
different levels of data sampling. The study showed how the
varying degree of sampling impacts the reconstruction. In
each case, a uniformly spaced view angle data decimation
scheme over 180∘ was used to obtain undersampled data.

Reconstructions were quantitatively evaluated in terms of
relative root mean square error (RRMSE), streak indicator

http://www.lightsource.ca/
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(a) (b) (c)

(d) (e) (f)

Figure 5: A detailed section of Figure 4: (a) ground truth, (b) FBP method, (c) ART method, (d) SART method, (e) TV method, and (f) the
proposed method.

(SI), and structural similarity (SSIM) index. The relative root
mean square error (RRMSE) is defined as

RRMSE =

󵄩󵄩󵄩󵄩𝑦 − 𝑦ref
󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩𝑦ref
󵄩󵄩󵄩󵄩2

, (20)

where 𝑦 is the reconstruction image by our proposedmethod
and 𝑦ref is the reference image. Since undersampling streak
artifacts are an important feature in sparse-view CT image
reconstruction, streaking level is also quantified by the streak
indicator (SI) [25]. The streak indicator (SI) is defined as

SI = TV (𝑦 − 𝑦ref) . (21)

The lower the value of SI is, the less the streaking artifacts
are present in the reconstructed image.

The structural similarity (SSIM) index is highly effective
for measuring the structural similarity between two images
[26]. Suppose 𝜌 and 𝑡 are local image patches taken from the
same location of two images that are being compared. The
local SSIM index measures three similarities of the image
patches: the similarity of luminance 𝑙(𝜌, 𝑡), the similarity of
contrast 𝑐(𝜌, 𝑡), and the similarity of structures 𝑠(𝜌, 𝑡). Local
SSIM is defined as
𝑆 (𝜌, 𝑡) = 𝑙 (𝜌, 𝑡) ⋅ 𝑐 (𝜌, 𝑡) ⋅ 𝑠 (𝜌, 𝑡)

= (

2𝜇
𝜌
𝜇
𝑡
+ 𝐶
1

𝜇2
𝑝
+ 𝜇
2

𝑡
+ 𝐶
1

)(

2𝜎
𝜌
𝜎
𝑡
+ 𝐶
2

𝜎2
𝑝
+ 𝜎
2

𝑡
+ 𝐶
2

)(

2𝜎
𝜌𝑡
+ 𝐶
3

𝜎
𝜌
𝜎
𝑡
+ 𝐶
3

) ,

(22)

where 𝜇
𝜌
and 𝜇

𝑡
are local means, 𝜎

𝜌
and 𝜎
𝑡
are local standard

deviations, and 𝜎
𝜌𝑡
is cross-correlation after removing their

means. 𝐶
1
, 𝐶
2
, and 𝐶

3
are stabilizers. The SSIM score of the

entire image is then computed by pooling the SSIM map,
for example, simply averaging the SSIM map. Although in
other papers, such as in [27], a metric name universal quality
index (UQI) was used, SSIM is an improved version of the
algorithm. Also, the correlation coefficient (CC) defined in
[27] is also similar to SSIM.Hence, SSIM is highly effective for
measuring image quality. Higher SSIM value indicates higher
image quality.

In order to find the optimum number of iteration,
we have conducted another experiment using simulated
phantom. The results are shown in Figure 2. It can be seen
from Figure 2(a) that the RRMSE of ART becomes almost
unchanged after 30 iterations. Hence, 30 is used as the
optimum number of iterations for ART for all experiments.
Similarly, the optimum number of iterations for SART, TV,
and the proposed method is also estimated, and 150 is used
for them. To verify the number of iterations, the experiments
were repeated on noisy phantom and real data, and the results
were found to be consistent with that of Figure 2.

Moreover, the reconstruction accuracy depends on the
selection of optimum regularization parameters for both TV
method and the proposed method. We have used a real
dataset (such as rat dataset as described later in Section 4.3)
using 50 projections as an example to show the methodology
of determining the optimal parameters. For TV method,
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(a) (b)

(c) (d)

(e) (f)

Figure 6: Simulated reconstruction of noisy phantom from 50 noisy projections over 180∘: (a) the true image, (b) FBP, (c) ART, (d) SART, (e)
TV, and (f) the proposed method.

the reconstruction error is plotted against 𝜆 (15), as shown
in Figure 3(a). The lowest reconstruction error is obtained
when 𝜆 is between 0.0005 and 0.001. In this study, we have
selected 𝜆 = 0.0005. The optimal 𝜆 for all datasets is shown
in Table 1.

For the proposed algorithm, there are two parameters.
We alternately plotted the reconstruction error against one
parameter keeping the other fixed.We started by setting 𝜆

2
=

0.0005. Figure 3(b) shows that the lowest reconstruction error
is obtained when 𝜆

1
is 0.001. Then we set 𝜆

1
to 0.001 and
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Figure 7: Pixel-intensity profiles of reconstructed images compared with ground truth (GT): (a) FBP, (b) ART, (c) TV, and (d) the proposed
method.

Table 1: Optimum parameter selections for each dataset.

Data TV algorithm Proposed algorithm
𝜆 𝜆

1
𝜆
2

Phantom without noise 0.0005 0.0005 0.0005
Phantom with noise 0.0015 0.001 0.0006
Human bone 0.001 0.001 0.001
Rat 0.0005 0.001 0.0005

searched the optimal value for 𝜆
2
that gives the lowest error,

as shown in Figure 3(c). Thus, we used this recurring process
to determine the optimum values of 𝜆

1
and 𝜆

2
. Similar

search was conducted for all dataset. The optimal values of
these parameters are shown in Table 1. The full-view FBP
reconstruction image was used as the reference.

4.1. Experiment Results Using Phantom. The first experiment
was performed using nodule phantom image and simulated
projection without any noise purposely added. This data is
provided free of charge by the National Cancer Institute
(NCI) [28]. We used one typical cross-section of CT slice
as a sample set. We suppose that it is the desired CT image
and each pixel value presents an attenuation coefficient. The
sample image was 512 × 512. Simulated projections were
obtained by computing the line integrals across the image
with different views uniformly distributed over 180∘. The
reconstructed images using 50 projections are shown in
Figure 4. As can be noticed from Figure 4(b), the conven-
tional FBP algorithm is not able to reconstruct diagnostically
satisfactory image with such few projections and strong
streaking artifacts are present. Although streaking artifacts
are reduced in ART and SART reconstructions, we can still
see them in smooth regions, as indicated by black arrows in
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ROI

Figure 8: The FBP reconstruction of the complete dataset. The
image has a large smooth region, so to better demonstrate the details,
a region of interest (ROI) is selected.

Table 2: Reconstruction results using phantom image.

Reconstruction methods RRMSE SI SSIM
FBP 0.1282 44.9556 0.6110
ART [17] 0.1120 25.5737 0.7681
SART [18] 0.1198 25.0023 0.7663
TV [12] 0.0715 20.0115 0.8716
Proposed method 0.0609 18.0646 0.9310

the figure. In contrast, even with fewer projections, both the
TV method and the proposed algorithm can capture most of
the structures, leading to visually much better results.

However, we can still see some residual streak artifacts
in the TV reconstruction. The image reconstructed from our
proposed method shows the least level of streaking artifacts.
One possible reason for that is, in wavelet domain, the noise
is uniformly spread throughout the coefficients while mostly
the image information is concentrated in the few largest
coefficients [29, 30]. Hence noise is of potentially small values
in wavelet domain. As (18) tries to minimize the ℓ

1
norm

of wavelet coefficients, small values corresponding to noise
and artifacts are also suppressed, leading to better reconstruc-
tion. Besides, all TV-based methods tend to remove small
structure and degrade the image resolution and image quality.
But compared to TV method, the proposed method has a
slight advantage in preserving edges. To see it clearly, an
expanded region is shown in Figure 5. We can see from the
figure that both TV method and the proposed method can
further remove the streaking artifacts that are presented in
ART and SART reconstructions. But the fine structures get
blurred as TV method suppresses the gradient of the image.
As indicated by the black arrows, the low contrast edges are
better reconstructed by our proposed method. To quantify
the results, we also show the RRSME, SI, and SSIM values of
the reconstructed images in Table 2. Clearly, the result from
our method has lower error level, less streak artifacts, and
higher structural similarity.

Table 3: Reconstruction results using phantom image (with noise).

Methods RRMSE SI SSIM
FBP 0.2908 127.4656 0.3284
ART [17] 0.1197 28.7409 0.7260
SART [18] 0.1324 28.0063 0.7344
TV [12] 0.0891 24.1023 0.7693
Proposed method 0.0687 21.2074 0.8967

4.2. Experiment Results Using Phantom (with Noise). The
second experiment was performed using noisy simulated
data. Additive Gaussian white noise 𝑒 of relative magnitude
‖𝑒‖
2
/‖𝐴𝜇true‖2 = 0.05was purposely added to the sinograms.

The results are displayed in Figure 6. To better compare
the TV method and our proposed method, we also show
horizontal line intensity profile going through the red line
of Figure 6. The line intensity profiles are shown in Figure 7.
Compared to FBP, the ART is more robust to noise and thus
has greatly suppressed the streaking artifacts. SART produces
similar results (not shown in Figure 7). But there are high
frequency vibrations around the edges, as indicated by black
arrows. The vibration is caused by limited view and added
noise. The vibration is eliminated in terms of frequency and
amplitude in the TV reconstruction. In contrast, the intensity
profile of reconstructed image by the proposedmethod shows
a rather smoothed curve in nonedge regions and is also
much closer to the ground truth profile near the edges,
demonstrating its ability to produce better edges. The results
are summarized in Table 3. It was evident that our algorithm
showed strong robustness against noise.

4.3. Experiment Results Using Real Dataset. In the third and
fourth experiments, we used real data collected from the
Canadian Light Source facility and from a desktop Bruker
SkyScan 1172 Micro-CT system with two datasets: human
femoral cortical bone and the hindpaw of a normal Wistar
rat. For the human bone, micro-CT scanning was performed
at the BioMedical Imaging and Therapy Bending Magnet
Beamline (BMIT-BM; 05B1-1). Projections were collected
with a Hamamatsu C9300 (Hamamatsu Photonics, Hama-
matsu, Japan) CCD camera fitted with a beam monitor with
a 10 𝜇m thick gadolinium oxysulfide scintillator. The sample
was rotated through 180∘ at 0.1 degree steps, generating 1800
original projections. The image size is of 3780 × 3780 pixels.
We have selected a region of interest (ROI) from this image
to further demonstrate the advantage on the reconstructed
images. The FBP reconstruction using 1800 projections is
shown in Figure 8. The last dataset in this study was a micro-
CT scan of an adultWistar rat hindpaw.This scanwas taken at
70 kVp with the Bruker SkyScan 1172 Micro-CT in Anatomy
and Cell Biology at the University of Saskatchewan. The
reconstructed pixel size was 26.6𝜇m. In total, 900 projections
were acquired over a rotation through 180∘ at 0.2 degree steps.

The ROI reconstruction results restricted to 50 views for
the human cortical bone image are shown in Figure 9. The
gray tissue shown is the bone permeated with vascular canals,
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Figure 9: The ROI reconstructions of human bone. (a) The image reconstructed by FBP with 1800 projections, (b) the result obtained using
FBP algorithm, (c) the ART algorithm, (d) the SART algorithm, (e) the TV algorithm, and (f) the proposed CS algorithm, all using 50-views.

which appear darker in the image. Surrounding these larger
canals some smaller objects can be seen. These are osteocyte
lacunae, spaces within the bone where cells reside. The edges
of the canals and lacunae are highlighted by propagation
phase contrast halos. As expected the FBP reconstruction

shows a greater amount of high spatial frequency noise
over the entire area due to the limited sampling rate. The
resolution is significantly diminished and many details of
interest including the lacunae are lost. Image quality is
lowered with strong and obvious streaking artifacts.
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(a) (b)

Figure 10: (a) The FBP reconstruction of human bone, (b) reconstruction using the proposed CS algorithm.

In the ART and SART images, the streaking artifacts
and noise are reduced, but residual artifacts can be seen and
the noise is still pervasive. Besides this, they suffer from
edge blurring artifacts and many low contrast structures
are lost. The edges of the vascular canals are no longer
able to be precisely distinguished, an important feature for
characterizing their shape and size. The streaking artifacts in
the TV reconstruction are less conspicuous than they are in
FBP, ART, and SART, but we can clearly see some relatively
low frequency patchy structures present in nonedge regions.
In clinical practice, these patchy structures may mimic low
contrast lesions and obscure the presence of small details. By
comparison, our proposed method provides reconstruction
of high fidelity, as presented in Figure 9(f). It is able to remove
most of the streak artifacts without visible introduction of
unwanted structures. For instance, the canals in the bone are
much clearer in the image reconstructed by our proposed
method than that in the image reconstructed by TVmethod,
that their edges are much cleaner.

To further quantify the reconstruction accuracy and
streaking artifacts, the RRMSEs, SIs, and SSIMs values of
the given ROI by these methods are shown in Table 4. From
the table, we can see that the RRMSE is well below 10% for
both TV and our proposed method with the latter showing
superior results.This result indicates that high reconstruction
accuracy can be achieved using our proposed method. As
well, from the SI value and visual observation of Figure 9,
one may conclude that the proposed algorithm is capable
of suppressing streaking artifacts and noise, leading to an
image of acceptable quality at lower number of views. To
highlight the ability of our proposed method to suppress
streaking artifacts, the whole reconstructions by FBP and our
proposedmethod are also shown inFigure 10. It is clearly seen
from the figure that the streaking artifacts in FBP are greatly
suppressed by our proposed algorithm.

Now let us look at the adult Wistar rat hindpaw image.
This image shows a transverse slice through the bones of
the paw, with the bottom bone showing trabecular bone

Table 4: Reconstruction results using real dataset.

Reconstruction methods RRMSE SI SSIM
FBP 0.5102 97.325 0.3040
ART [17] 0.1525 22.9236 0.6893
SART [18] 0.1412 20.0544 0.6955
TV [12] 0.0783 6.7528 0.7983
Proposed method 0.0557 4.1120 0.8642

and the other four bones showing cortical bone and marrow
cavities. The experimental results of the rat are displayed
in Figure 11. Image quality is greatly degraded by obvious
streaking artifacts in FBP reconstruction due to its inability
to handle incomplete data. These artifacts are not efficiently
removed by either ART or SART algorithms. By comparison,
images reconstructed by the TV method and proposed
method appear to have higher visual image quality, indicating
that TV-based methods are superior to these methods.

Although the TV method can suppress the noise and
streak artifacts considerably, it is still a great challenge to
reconstruct the trabecular bone, the fine structure in the
bottom right-hand corner of the image as indicated by
the red arrows in Figure 11(e), because of the nature of
total variation regularization. By the introduction of the
wavelet transform in image reconstruction procedure, our
proposed method minimizes noise and streaking artifacts
both in the discrete gradient domain and wavelet domains,
delivering better results than previous effortswithout creating
unwanted smoothing effects. Our method leads to a better
reconstruction with higher spatial resolution.

For a comprehensive comparison, the RRMSEs, SIs, and
SSIMs of the reconstructed images are also plotted against the
number of projections in Figure 12. The shape of the curves
shows the effectiveness of the corresponding reconstruction
method in sparse-view regime. It also indicates that RRMSEs
and SIs of reconstructions by our proposed method in all
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Figure 11: Reconstruction results of the hindpaw image of the adult rat. (a) FBP reconstruction using 900 projections, (b) FBP algorithm
with 50 projections, (c) ART algorithm, (d) SART algorithm, (e) TV algorithm, and (f) the proposed CS algorithm, all using 50 views.

cases are lower than those of other methods while the
SSIMs are higher than those of other methods. The results
of this test confirm that our proposed method outperforms
the TV method in maintaining the balance between noise
suppression and spatial resolution preservation.

The convergence speed of an algorithm is a crucial factor
for all iterativemethods in clinical practice. To investigate the
convergence speed of the proposed method, the plot of cost
function value 𝐽(𝜇) in (18) against the number of iterations
for the phantom dataset (without noise) is shown in Figure 13
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Figure 12: Plots of relative root mean square error (RRMSE), streak
indicator (SI), and structural similarity (SSIM) for rat dataset.

with 30 views selected for demonstration. It shows that the
curve decreases dramatically within 5 iterations, indicating
the high convergence speed of our proposed method.

5. Conclusion

In this work, we have investigated a novel compressed
sensing-based algorithm for sparse-view CT image recon-
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Figure 13: Convergence curve (cost function values versus number
of iterations) for the proposed method applied to phantom dataset.

struction, in which wavelet transform is used in the recon-
struction procedure. Results show that the proposed method
is able to suppress streak artifacts and noise caused by incom-
plete and noisy projection data without visible oversmooth-
ing of fine structure details in the images. The proposed CS-
based algorithm has potential to reduce the dose in clinical
computed tomography imaging techniques.
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