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The airway epithelium provides a critical barrier to the outside environment. When its

integrity is impaired, epithelial cells and residing immune cells collaborate to exclude

pathogens and to heal tissue damage. Healing is achieved through tissue-specific stem

cells: the airway basal cells. Positioned near the basal membrane, airway basal cells

sense and respond to changes in tissue health by initiating a pro-inflammatory response

and tissue repair via complex crosstalks with nearby fibroblasts and specialized immune

cells. In addition, basal cells have the capacity to learn from previous encounters with

the environment. Inflammation can indeed imprint a certain memory on basal cells by

epigenetic changes so that sensitized tissues may respond differently to future assaults

and the epithelium becomes better equipped to respond faster and more robustly to

barrier defects. This memory can, however, be lost in diseased states. In this review, we

discuss airway basal cells in respiratory diseases, the communication network between

airway basal cells and tissue-resident and/or recruited immune cells, and how basal cell

adaptation to environmental triggers occurs.
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INTRODUCTION

The respiratory epithelium is the first-line of defense against environmental stimuli such as
cigarette smoke, allergens, microbes, and pollutants circulating in the air. This pseudostratified
epithelium consists of three main cell types, being ciliated cells, mucus-producing goblet cells,
and basal cells (1). However, in recent years, single-cell RNA sequencing (scRNA seq) data has
revealed an enormous cellular heterogeneity in the airway epithelium and has provided evidence
for novel and/or rarer cell (sub)types in addition to previous histologic data (Figure 1A). Ionocytes,
neuroendocrine cells, tuft cells, deuterosomal cells, and club cells (4–8) all have been described, but
their function in health and disease is not completely understood. In addition, the distribution and
ratio of these different cell types varies along the proximal-distal axis of the airways to meet the
local requirements for optimal respiratory functioning, and is often altered in respiratory diseases,
including asthma, chronic obstructive pulmonary disease (COPD), and chronic rhinosinusitis with
nasal polyps (CRSwNP) (9–11).

To prevent environmental triggers and microbes from entering the submucosa, the epithelium
uses an interplay of three defense mechanisms. Firstly, mucus-producing goblets cells secrete
mucins that catch environmental triggers entering the airways. In combination with the
synchronically organized movements of ciliated cells, mucus-trapped environmental particles are
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FIGURE 1 | Overview of the identified cell types in the airway epithelium and the current opinion about their lineage hierarchy. (A) The airway epithelium is mainly

composed of ciliated, goblet and basal cells and more rare cell types including club cells, ionocytes, neuroendocrine cells (NECs), tuft cells, and deuterosomal cells.

(B) The role of basal cells as progenitor cells of the airway epithelium and the lineage hierarchy of differentiated epithelial cells. For each cell (sub)type, the most

important cellular markers are indicated. Upon activation, slowly cycling airway basal cells increase their proliferation rate and become fast cycling parabasal cells.

Parabasal cells will continue differentiation and lose expression of basal cell marker Tp63 and gain expression of luminal marker Krt8. Activation of Notch signaling will

determine epithelial cell fate toward secretory (club and goblet) or ciliated cells for which the level of Notch2 signaling is decisive (2). Ciliated cell differentiation involves

the appearance of a transient state, referred to as deuterosomal cells, characterized by a massive biogenesis of centrioles (i.e., the deuterostome), which is a crucial

step in multiciliogenesis (3). On the other hand, airway basal cells can also directly differentiate into ionocytes (FoxI1+ and Ctrf+), NECs (CHGA+ and CGRP+), or tuft

cells (Pouf2f2+ and Trpm5+). However, it is still unclear which signaling pathways are involved in those lineages. In addition, in specific squamous epithelial structures

termed “Hillocks” Tp63+/Krt13+ basal cells give rise to Scgb1a1+/Krt13+ club cells. Created with BioRender.com.

eradicated from the lumen (12). Secondly, the epithelium
produces antibacterial (poly)peptides (e.g., lactoferrin, lysozyme)
and defensins [e.g., human β-defensin (hBD)-1/2] that directly
affect bacterial growth after sensing microbial compounds

via specific receptors [e.g., toll-like receptors (TLRs); (13,
14)]. Lastly, neighboring epithelial cells are tightly connected
to each other which is essential for the formation of a
physical barrier. These connections are mainly formed by two

Frontiers in Allergy | www.frontiersin.org 2 November 2021 | Volume 2 | Article 787128

https://BioRender.com
https://www.frontiersin.org/journals/allergy
https://www.frontiersin.org
https://www.frontiersin.org/journals/allergy#articles


Ruysseveldt et al. Airway Basal Cells in Health and Disease

adhesion complexes i.e., tight junctions (TJs) and adherence
junctions (AJs). TJs encircle the epithelial cells at the apex
and form a proteinaceous seal that regulates paracellular
transport of ions, water, and macromolecules (15). They are
composed of transmembrane proteins including the families
of claudins, occludin, and junctional adhesion molecules
that form homotypic/heterotypic interactions to span the
intercellular space (16–18). AJs are multiprotein complexes
typically containing a classic transmembrane cadherin (e.g.,
E-cadherin), which is intracellularly connected to the actin
cytoskeleton via α- and β-catenin (19). The presence and
functionality of these junctional complexes are crucial for
maintaining epithelial barrier integrity and their absence or
impairment, referred to as barrier dysfunction, is known to cause
excessive inflammation of the underlying tissue (9, 20, 21).

To maintain a fully differentiated airway epithelium, epithelial
progenitor cells, or airway basal cells continuously monitor
airway homeostasis. Basal cells are anchored to the basal
lamina via desmosomes and, as a result, are located deeper
in the epithelium where they are protected from the external
environment. Previous studies, including xenograft models and
in vivo lineage-tracing, have clearly demonstrated that basal cells
are the principal stem cells of the airways with the ability to
self-renew post-injury and they are able to differentiate into
most other epithelial cell types including columnar ciliated
cells, goblet cells, club cells, tuft cells, neuroendocrine cells,
and pulmonary ionocytes [Figure 1B; (22–27)]. During epithelial
homeostasis, basal cells are relatively quiescent due to the
slow turnover of the intact airway epithelium. However,
upon injury, basal cells become activated, acquire danger-
associated phenotypes (including increased mobility, cytoskeletal
rearrangements, deposition of extracellular matrix components)
to provide a rapid response and subsequent reconstitution of
a fully differentiated epithelium (28). Beside its stem cell-like
functions, recent studies have illustrated an interesting role
of basal cells in (innate) immunity responses suggesting that
their activity and behavior might play a pivotal role in diverse
respiratory diseases.

In this review, we will focus on airway basal cell diversity
and associated functions, mainly in the upper airways. We will
review the cellular interaction between airway basal cells and
tissue-resident and recruited immune cells, how basal cells sense
environmental stress, and how they can adapt to future insults by
learning from previous encounters. Finally, our review concludes
with a discussion on the clinical implications of basal cells in
health and disease.

BASAL CELL PHENOTYPES

Basal cells are epithelial progenitor cells and are defined by
the expression of transformation-related protein (TP63) and
cytokeratins 5 and 14 (KRT5/14) (29, 30). Beside these classical
markers, Zhao et al. demonstrated that YES-associated protein
1 (YAP) is essential for the maintenance of airway basal cell
identity and that YAP is closely related to TP63 to regulate stem
cardinal behavior and to help determine epithelial architecture

TABLE 1 | Overview of currently identified airway basal cell subtypes.

Specific markers Functional annotation References

TP63+ KRT5+ Quiescent progenitor cell (29, 34)

TP63+ KRT5+ KRT14+ Parabasal cell, proliferative columnar

progenitor cell

(33, 34)

TP63− KRT8+ Parabasal cell, proliferative columnar

progenitor cell

(35, 36)

TP63+ KRT5− KRT14+ Hillock basal cell, progenitor Hillock

club cell

(8)

TP63− KRT6+ KRT13+

KRT14+ vimentin+
Motile basal cells, formation

provisional barrier

(37)

(31). Depending on their position along the proximal-distal axis,
basal cells comprise around 30% of the total airway epithelial cell
population in the upper airways and the trachea. The number
of basal cells gradually decreases to 6% more distally where
they are rather observed in clusters or even as individual cells
(32, 33). Although various research groups have studied basal cell
numbers along the airways, information about the distribution
in the upper respiratory tract, including the nasal cavity, is
surprisingly lacking.

In the eighties, Donnelly et al. observed for the first time
diversity within the basal cell population, going from quiescent
undifferentiated progenitors over intermediate phenotypes, often
referred to as parabasal cells, that lost contact with the basal
lamina and were shown to contribute to cell renewal (34).
Later on, the heterogeneity in differentiation potential was
confirmed by in vivo lineage-tracing experiments (35) and further
uncovered by gene expression analyses (Table 1). Indeed, Krt14
expression is rather associated with parabasal cells in rat lungs.
In the human airways, KRT14 expression is also more restricted
to parabasal cells compared to the more universal basal cell
marker KRT5. Using an in vivo injury/repair mouse model, Rock
et al. demonstrated that after abolishment of nearly all luminal
cells, basal cells fuel a well-organized repair process and expand
in close proximity to the basal lamina, while maintaining the
expression of basal cell-specific markers like Tp63 and Krt5.
Interestingly, a new phenotype of parabasal cells was observed
after the peak of proliferation that was no longer characterized
by the classic basal cell markers. These parabasal cells expressed
Krt8 which is also expressed by columnar epithelial cells [i.e.,
ciliated and secretory cells; (35, 36)]. The transition from basal
to parabasal cell was Notch-dependent and has been confirmed
and elaborated on by other research groups (38). Indeed,
Notch3 was shown to control the pool of proliferating basal
cells and is key to providing a population of parabasal cells
that will subsequently differentiate into ciliary or secretory cells
by activation of Notch1 and Notch2 (38). How this Notch-
mediated basal cell proliferation and differentiation is initiated
and suppressed, however, remains uncertain. Other research
groups studying the regeneration of the epithelium by basal cells
observed even more damage-associated phenotypic changes (28,
37). Basal cells closely located to sites of epithelial injury become
activated and acquire mesenchymal cell-associated vimentin,
various matrix metalloproteinases (e.g., MMP-3, MMP-9, and
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MMP-11) necessary for migration toward the wound, squamous
cell-associated KRT6, KRT13, and upregulate KRT14 required
for the formation of a provisional barrier (28, 37). Recently, a
novel epithelial structure containing many Krt13+ cells led to
the identification of a new cell type, namely Scgb1a1+ Krt13+

club cells (8). These structures are characterized by high turnover
rates and were termed “Hillocks.” In these “Hillocks,” a distinct
subgroup of basal progenitor cells expressing both Tp63 and
Krt13, referred to as Hillock basal cells, were identified that
specifically give rise to these Hillock club cells (8). The function
of Hillocks and Hillock basal cells in health, however, is not
discovered thus far.

It is clear that (para)basal cells are not a uniform cell
population. More recently, single-cell RNA sequencing
experiments nicely revealed the basal cell trajectory toward
terminally differentiated cells using diffusion pseudotime
mapping, illustrating the diversity of basal cell intermediate
phenotypes (5). As their data also suggested impairment of
differentiation potential of basal cells in polyp tissue of CRS
patients compared to non-polyp tissue. Ordovas-Montanes
et al. additionally performed assays for transposase-accessible
chromatin (ATAC) sequencing to identify intrinsic epigenetic
changes. This revealed that epigenetic alterations lie at the
basis of the pathologic phenotype of basal cells in CRSwNP
and provided the first evidence for immune memory in airway
epithelial progenitor cells in analogy to what was previously
shown in the skin (39). Today, pathologic phenotypes of basal
cells such as basal cell hyperplasia and metaplasia have been
identified in multiple inflammatory conditions of the airways,
including asthma, COPD and cystic fibrosis, and are believed to
play a critical role in their pathogenesis (40–44).

SENSING TISSUE DAMAGE AND
ORCHESTRATING EPITHELIAL REPAIR
AFTER INJURY

As stated previously, the airway epithelium has the important
function to provide a physical barrier to prevent the infiltration
of potential threats. However, the continuous passage of chemical
compounds, microbes, and airborne particles can potentially
damage the epithelium, making the underlying tissue vulnerable
for infections. In order to preventmore harm, tissue damage need
to be resolved as soon as possible. Airway epithelial injuries can
be sensed by the remaining neighboring epithelial cells, resulting
in the production of alarmins, damage-associated phenotypic
changes of the basal cells, and the initiation of tissue repair
mechanisms. As a result, immune cells are triggered to generate
an appropriate response and facilitate resolution and tissue
homeostasis. In this part, we will focus on the mechanisms
behind tissue repair after injury.

During normal tissue homeostasis, the airway epithelium
has a rather slow turnover rate (30–50 days) in comparison
with, for example, the intestinal epithelium (3–5 days). To
maintain this quiescent state, airway epithelial cells express anti-
inflammatory compounds, such as SCGB1A1 and IL-37, that
attenuate the expression of pro-inflammatory cytokines and have

been shown to lower allergic airway inflammation (45, 46).When
the epithelium is injured, it reacts vigorously to reestablish the
breached barrier with resident cells as the source of the new
cell population. Indeed, upon damage, the neighboring epithelial
cells will undergo phenotypic changes, due to loss of contact
inhibition from neighboring cells and an increasing gradient of
factors (e.g., cytokines and growth factors) from the wound site,
which enable them tomigrate over and seal the wound (47). Gene
expression analysis of those spreading cells in human showed
that these cells were positive for vimentin and KRT14, illustrating
the important role of basal cells in the initial phase after injury
(48, 49). Interestingly, secretory epithelial cells (i.e., goblet and
club cells) have the capacity to dedifferentiate in absence of
basal cells and become functional TP63+ and KRT5+ airway
progenitor cells (49–51). In the small airways (i.e., bronchioles),
dedifferentiation of these cells is the main source of tissue repair,
as basal cell numbers are particularly low in human or even
absent in murine small airways (50). In the alveoli, several
cell populations are identified as alveolar stem cells/progenitors
involved in regeneration, including bronchioalveolar stem cells
(BASCs) (52–54), alveolar type II cells (AT2s) (55, 56), and
basal cell-like TP63+ lineage-negative epithelial progenitor cells
(LNEPs) (57–59). The motile phenotype of those migratory cells
is established by rearrangements of the actin cytoskeleton and
related integrins (e.g., α5β3), resulting in polarization and the
formation of lamellipodia and filopodia (47). In combination
with other environmental changes (e.g., loss of cell contacts
upon injury), transforming growth factor (TGF)-β, produced
by damaged epithelial cells, and increased β-catenin signaling
are the driving force behind this injury-initiated epithelial to
mesenchymal transition (EMT) (60, 61). However, other studies
propose an inhibitory role for TGF-β on tissue repair as it is a
major promoting factor of fibrosis (62–64).

The migration of progenitor cells is facilitated by the
degradation and subsequent modification of the extracellular
matrix (ECM), a process referred to as ECM remodeling. The
degradation is primarily performed by matrix metalloproteinases
(i.e., MMP-3, MMP-9, and MMP-11), that are mainly released by
the migratory basal cells (28, 37). In addition, those migratory
basal cells also deposit new ECM compounds that ease their
migration and provide a temporary provisional barrier that
covers the wound in attendance of full resolution, a mechanism
that is again proposed to be initiated by TGF-β (48, 65). While
colonizing the denuded epithelium, the migratory progenitor
cells start to proliferate to completely cover the damaged
site. Once at place, they differentiate to generate a functional
pseudostratified epithelium which can continue for days to
even weeks. Multiple factors have been identified to stimulate
proliferation, but the activation of EGFR on the repair cells is
believed to play the leading role (66). EGFR can be stimulated
by AREG, produced by basal repair cells (autocrine regulation)
as well as ILC2s and Tregs, but also in a ligand-independent way
by oxidative stress generated by cigarette smoke or neutrophils
(67–69), illustrating the extensive capacity of EGFR to regulate
basal cell proliferation. In addition, WNT signaling in airway
epithelial progenitors also controls the regeneration after injury
(70). In the trachea of adult mice, canonical Wnt signaling is
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activated within basal cells after damage, stimulates proliferation,
and directs their differentiation into ciliated or secretory cells
(71, 72). Similar observations were made for other epithelial
progenitor cells (i.e., club cells, BASCs, and AT2) in other regions
of the airways, emphasizing a universal role for WNT signaling
in tissue repair along the airways (70, 73, 74). Besides, basal cell
differentiation and proliferation is also shaped by activation of
Notch1 and Notch2 in response to Notch3 stimulation, as stated
previously in this review (38). In addition, various molecules
have been identified to be able to modulate differentiation of
airway basal cells, including insulin growth factor (IGF)-1 and
interleukin (IL)-13 (75, 76).

It is clear that basal cells are essential players in tissue repair
after injury and that their activity is tightly regulated by a wide
variety of control mechanisms and signaling pathways. Although
this complex phenomenon has been studied for decades now, it
is still not yet completely understood.

THE BASAL CELL—IMMUNE CELL
CROSSTALK

The last decades, our understanding of how the airway
epithelium can induce and regulate immune responses upon
encountering environmental triggers grows enormously (77–
80). The question, however, remains how the airways remain
protected from infection in case of epithelial cell damage and
when basal cells become exposed to potential threats. An answer
was provided by Amatngalim et al., who demonstrated that basal
cells, beside their function as stem cells/progenitors in epithelial
regeneration, also serve as a unique source of host defense
(81). Stimulation of basal cells with Haemophilus influenzae, a
common respiratory pathogen, resulted in the upregulation of
the antimicrobial protein RNase7, pro-inflammatory cytokines
IL-6, IL-8, and other innate immune mediators. In addition, it
was shown that Pseudomonas aeruginosa binds α5β1 integrin
(82), rhinoviruses attach to intercellular adhesion molecule
(ICAM-)1 (83), and respiratory syncytial virus (RSV) infects the
cells via ICAM-1 and/or EGFR recognition (84, 85), illustrating
that airway basal cells are a target for multiple respiratory
pathogens. These infections drive basal cell fate toward mucus-
producing secretory cells to promote a faster eradication of
pathogens from the airways. With the help of emerging
novel technologies, new insights have been gained regarding
the specific role of basal cells in immunity and intercellular
communication. In this section, we will focus on the crosstalk
between basal cells and immune cells, including macrophages,
innate lymphoid cells (ILCs), and regulatory T cells.

Macrophages
Macrophages are the primary initiators of innate immunity in the
lung and possess a large arsenal of immune receptors (86, 87).
Traditionally, two distinct subsets of macrophages are defined,
M1 and M2 macrophages (88). M1 macrophages have a pro-
inflammatory character and are involved in pathogen removal.
M2 macrophages are more associated with parasite defense and

tissue repair (89). Novel studies, however, demonstrated that a
wide spectrum of various macrophage phenotypes exists (90).

In the context of breached barriers, macrophages, and
airway epithelial cells work closely together to promptly restore
epithelial barrier integrity (Figure 2A). It is known that columnar
epithelial cells express a wide variety of pathogen-recognition
receptors (PRRs) that can sense the presence of microbial
triggers in the lumen and subsequently promote the production
of cytokines (e.g., IL-6, IL-8), defensins (e.g., h-BD1), and
alarmins [e.g., TSLP, IL-33, and IL-25; (91)]. In case of a
breached barrier, the trigger can undermine the epithelial
barrier and reach the submucosa, where it will stimulate
and activate macrophages by binding their PRRs (92). As a
response, macrophages upregulate their expression of cytokines,
including tumor necrosis factor α (TNFα), IL-1β, and IL-6,
which are then recognized by their receptors on epithelial cells
to further induce their production of cytokines, defensins, and
alarmins and to upregulate epithelial TLR expression resulting
in increased reactivity of the epithelium to pathogens (93).
In most of these studies, the epithelium was seen as a whole
entity, without a clear understanding how specific subgroups
of epithelial cells react. Transcriptome analysis of human
airway basal cells has demonstrated cell-specific insights in how
basal cells communicate with macrophages. More specifically,
basal cells express a surprisingly broad spectrum of epithelial
growth factor (EGF) family ligands, including amphiregulin
(AREG), epiregulin, and neuregulin, which can stimulate the
EGF receptors (EGFR) on macrophages, leading to macrophage
activation and cytokine production via induction of the nuclear
factor kappa-light-chain-enhancer of activated B cells (NFκB)
and mitogen-activated protein kinase (MAPK)1/3 pathways (94,
95). In addition, members of the TNF receptor (TNFR) and
IL-1 receptor (IL-1R) protein families have been shown to be
enriched in basal cells compared to the differentiated epithelium,
indicating that basal cells are important in sensing macrophage-
produced immune mediators (95). In that perspective, IL-6, a
major M1 macrophage cytokine, promotes the regeneration of
ciliated cells from basal cell progenitors in the airways via signal
transducer and activator of transcription (STAT)3 activation (96).
Further evidence for a basal cell-macrophage axis was delivered
by Engler et al., who discovered a population of C-C chemokine
receptor type 2 (CCR2)-expressing monocytes, a progenitor of
monocyte-derived macrophages, that live in very close proximity
to airway basal cells and appeared to be necessary for efficient
epithelial repair after chemical injury using polidocanol (97). It
remains unknown whether macrophages play a role in epithelial
homeostasis during steady-state, though, it is believed that
alveolar macrophages are kept quiescent via cell-to-cell contacts
with epithelial cells (e.g., gap junctions) and communicate via
extracellular vesicles (98). Taken together, the crosstalk between
basal cells andmacrophages is essential to accelerate tissue repair.
However, how these two cell types activate/control each other’s
function in health is not completely understood.

Innate Lymphoid Cells
Innate lymphoid cells (ILCs) are relatively recently discovered
non-B non-T lymphocytes that originate from a common
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FIGURE 2 | Illustration of the crosstalk between airway basal cells and macrophages, ILC2s and Tregs, respectively, upon epithelial damage. (A) When the epithelial

barrier is damaged, pathogens, or other environmental triggers can enter the subepithelial space and will be sensed by macrophages via PRRs. Macrophages

(Continued)
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FIGURE 2 | become activated and express pro-inflammatory mediators, including IL-1β, TNFα, and IL-6, that will be sensed by airway basal cells via their respective

receptors and will encourage basal cell differentiation. In their turn, airway basal cells will produce EGF ligands that boost macrophage activation even further. (B)

Airway basal cells and other epithelial cells can sense epithelial damage when in close proximity and will express IL-33, IL-25, and TSLP as a response. These

mediators will then activate ILC2s and stimulate their expression of AREG. AREG will be sensed by airway basal cells and will lead to ECM deposition and proliferation

of basal cells. (C) Tregs are activated after epithelial damage and produce TGF-β, IL-10, AREG, and KGF. While TGF-β will induce EMT in basal cells, leading to

increased motility and ECM deposition to move over the wound and provide a provisional barrier, IL-10, AREG, and KGF will stimulate basal cell expansion before full

restoration of the epithelium. Created with BioRender.com.

lymphoid progenitor but lack specific antigen-receptors. They are
described as the innate counterpart of adaptive T cells, although,
in contrast to T cells, ILCs are largely tissue resident cells,
deeply integrated in the residential tissues, and are only rarely
observed in primary or secondary lymphoid organs (99). ILCs are
especially abundant at barrier surfaces of the lung, skin and gut,
and thus support their capacity to quickly react in case of tissue
disturbances (100–102). ILCs are classified in three main groups:
type 1, type 2, and type 3 ILCs, which has been nicely reviewed
previously (99, 103, 104).

Considering their proximity with tissue barriers, ILCs play
an important role in controlling tissue homeostasis, immunity
against infections and induction of tissue repair (105). When
focusing on tissue repair, the main role is reserved for ILC2s,
which are directly activated by epithelial-derived alarmins, such
as IL-25, IL-33, and TSLP [Figure 2B; (106–109)]. Indeed,
Monticelli et al. demonstrated that ILC2s promote lung tissue
homeostasis after influenza infection in response to IL-33
stimulation and that depletion of ILC2 strongly impairs tissue
regeneration (110). Other studies showed that a subset of
airway basal cells function as an important source of IL-33
during inflammation (111). Using a post-viral mouse model for
COPD, Byers et al. illustrated that Krt5+, Tp63+, and Krt14+

basal cells produce IL-33 after Sendai virus infection. Similar
observations were made in whole lung explants from COPD
patients undergoing lung transplantation (111). Subsequently,
IL-33 stimulates ILC2s to produce AREG, which will induce
basal cell proliferation, an essential early step in the process of
tissue regeneration upon damage (112). However, overactivation
of ILC2 and AREG production might eventually lead to basal cell
hyperplasia, which has been allocated as one of the mechanisms
mediating the pathogenesis behind smoking-induced lesions
(112). In addition, AREG has been associated with fibrosis in
the lungs, liver, and skin (108, 112, 113), due to excessive ECM
deposition by epithelial cells. Although it was not specified which
type of epithelial cell(s) is/are responsible, it is known that
basal cells increase ECM production upon injury to generate a
provisional barrier in an early response (37, 114, 115).

Taking together, it is clear that airway basal cells establish a
powerful crosstalk with ILC2s that requires strict regulations as
a disbalance can result in pathologic remodeling of the resident
tissue. At this point, there is no evidence for a direct interaction
between airway basal cells and other ILC subtypes.

Regulatory T Cells
Regulatory T cells (Tregs) were originally identified as a small
subset of CD4+ immune cells that play a central role in

tolerance and suppression of autoimmunity (116, 117). They
are subdivided in two main groups: (1) natural Tregs (nTregs),
that are generated in the thymus during conventional T cell
development, and (2) induced Tregs (iTregs), that arise in the
peripheral circulation after induction of other T cell subtypes
with TGF-β (118, 119). Besides CD4, Tregs express surface
marker CD25 and are characterized by transcription factor
forkhead box p3 (FoxP3), which is needed for the release of
anti-inflammatory cytokines such as IL-10, IL-35, and TGF-
β to control immune responses (120–123). Tregs have the
capacity to suppress the proliferation and/or activation of a wide
variety of immune cells (e.g., CD4+ T cells, CD8+ T cells, B
cells, and NK cells) via multiple mechanisms, including cell-
to-cell contact-dependent suppression, cytokine production, and
perforin/granzyme-mediated cytotoxicity (124).

There is increasing evidence that Treg function extends
beyond being a sole damper of inflammatory responses. In
multiple tissues (i.e., skin, intestine, lung, andmuscle), it has been
demonstrated that Tregs are important mediators of tissue or
wound repair [Figure 2C; (125, 126)]. In particular, a subtype of
Tregs expressing high levels of AREG has been identified shortly
after injury and depletion of this population in a mouse model
of acute lung injury results in prolonged and impaired tissue
regeneration (127, 128). Mock et al. discovered that epithelial
proliferation coincided with an increase of FoxP3+ Tregs during
the course of resolution in an experimental model of acute
lung disease (129). They later identified the soluble molecule
produced by Tregs as keratinocyte growth factor (KGF) as it
was responsible for enhanced primary epithelial cell proliferation
ex vivo (130). In addition, Ali et al. demonstrated in the skin
that Tregs also facilitate epithelial stem cell proliferation and
differentiation by expressing jagged1 (Jag1), which is then sensed
by Notch receptors on hair follicle stem cells (HFSC) (131).
Furthermore, anti-inflammatory IL-10 is also put forward as
a potential mediator for stem cell function. Using intestinal
organoids, it has been shown that both cocultures with Tregs and
treatment with its main cytokine IL-10 result in intestinal stem
cell expansion, while cocultures with other Th cell subgroups
or cytokine treatments caused a decrease of intestinal stem cell
numbers (132). Lastly, TGF-β induces phenotypic changes in
basal cells upon injury, leading to more motile progenitors, and
deposition of ECM compounds in order to generate a provisional
barrier that covers the wound (48, 65).

Compared to other tissues, studies on the interaction between
Tregs and airway basal cells are lagging behind. Future research is
necessary to further clarify the crosstalk and its role in regulating
epithelial homeostasis.
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INFLAMMATORY MEMORY OF AIRWAY
BASAL CELLS

The capacity of the airway epithelium to respond to a
broad spectrum of pro-inflammatory triggers by initiating an
appropriate defense reaction has already been studied for years
(79, 80). Airway epithelial cells can adapt their transcription
profile when sensing cytokines and it was, for example, shown
for IL-4 and IFN-γ that this occurs in both a synergistic and
antagonistic way (133). Recently, a new dimension regarding this
protective function has been uncovered. Indeed, there is growing
evidence that the airway epithelium can generate memory after
contact with a specific trigger (e.g., an allergen, pathogen, or
chemical). ScRNA sequencing experiments in combination with
ATAC sequencing showed that IL-4 and IL-13 responsive genes
were upregulated in basal cells from patients with CRSwNP
compared to non-polyp patients and that those basal cells
maintain an undifferentiated state due to an upregulation of
transcription factors such as KLF5 and ATF3 (5). Interestingly,
ATF3 upregulation is also observed during viral infection and
house-dust mite allergy (134). Moreover, stimulation of isolated
basal cells from both patient populations showed that basal
cells from polyp tissue upregulated a 10 times higher number
of genes compared to non-polyp tissue (i.e., ethmoid sinus
tissue of patients spanning the CRS spectrum) and that levels
of Wnt pathway activator CTNNB1 at baseline in polyp tissue
could only be reached after IL-4/IL-13 stimulation in non-polyp
tissue, indicating intrinsic changes on the epigenetic level (5).
These observations are in line with previous studies in skin and
intestine, where post-inflamed mice showed faster healing after
wounding compared to naïve mice and organoids from intestinal
epithelial stem cells of mice on a high-fat diet grew abnormally,
respectively (39, 135). Further indications for inflammatory
memory in airway epithelial cells include the observation that
barrier and junctional defects as well as ciliated cell hypoplasia
persist in air-liquid interface (ALI) airway epithelial cell cultures
from smoker and COPD patients (136). In addition, Martin
et al. demonstrated in vitro that human bronchial epithelial
cells (i.e., BEAS-2B cell line) remember infection as they can
induce either a trained or tolerant response, dependent on
the combination of primary and secondary trigger, meaning
that their secondary response was modulated after the initial
trigger (137). Moreover, they showed that inhibitors of histone
acetyltransferase (EGCG) and histone methyltransferase (BIX)
can abolish the IL-8 trained immune response without affecting
IL-8 expression. This finding suggests that immune memory of
epithelial cells is likely regulated via histone modifications and
chromatin accessibility, an observation that was also supported
by the ATAC sequencing data form Ordovas-Montanes et al.
(5) and Martin et al. (137). The ability of non-immune cells
to install an inflammatory memory is a rather new concept. It
was first believed that this concept was restricted to adaptive
(memory T and B cells) and innate (macrophages, ILCs,
natural killer cells) immune cells (138). However, emerging
groundbreaking data proposing the memory potential of tissue
stem cells, fibroblasts and microglial cells are changing our view
on immunity (139).

DISCUSSION

It is clear that the function of airway basal cells extends much
further than simply being the epithelial progenitor cells and that
the phenotypic diversity of this cell population facilitates their
involvement in various processes. In normal tissue homeostasis,
the airway basal cells remain rather quiescent, while in case
of tissue disturbances they are able to sense damage and/or
intruders, undergo phenotypic changes, and respond properly.
In case of epithelial injury, we discussed that basal cells undergo
EMT in response to TGF-β, characterized by the expression of
vimentin andMMPs, flattening of the cell and increasedmobility,
and reactivate cell cycling and proliferation. These features
are crucial for adequate tissue repair, but requires very strict
regulation, as this might lead to pathogenicity when disturbed.
This is observed in multiple airway diseases, including COPD
and asthma. In COPD, the airway epithelium displays features
of dedifferentiation toward mesenchymal cells, which correlate
with peribronchial fibrosis and airflow limitation, and this has
been partly allocated to TGF-β-driven epithelial reprogramming
(140). Another feature in COPD is basal cell and goblet cell
hyperplasia. As we discussed, Notch signaling is an important
controller of basal cell differentiation and certain key genes
of the Notch pathway are decreased in smokers and COPD
patients compared to healthy individuals (141). In case of
asthma, accumulation of TGF-β in the bronchoalveolar fluid
and increased sensitivity of the asthmatic basal cells to TGF-
β suggest an unmistakable role for dysregulated EMT in tissue
remodeling and impaired barrier function (142). With regard
to the upper airways, single-cell sequencing data illustrated that
basal cells in polyp tissue of CRSwNP patients are stuck in an
undifferentiated state and intermediate populations of parabasal
cells are decreased compared to non-polyp tissue, leading to
impaired differentiation potential of the epithelium and basal cell
hyperplasia (5).

While it is still a field in its infancy, cellular memory of
previous experiences that influence future responses has been
reported for several diverse stem cell populations (5, 39, 135).
This type of memory is a well-known feature of the adaptive
responses seen in immune cells. Observing trained inflammatory
responses by non-immune cells is a new emerging field in
immunology. Although the installation of such cellular memory
by basal cells can accelerate the response to a second wound,
the danger exists that persistent exposure to inflammatory cells
and signals can imprint a negative epigenetic memory that
can delay tissue regeneration and promote disease chronicity.
For example, it is suggested that epithelial barrier dysfunction,
a feature observed in several respiratory conditions including
CRS, allergy and asthma, is imprinted in the basal progenitor
cells as a result of continuous exposure to type 2 inflammatory
agents, and in that way conserved over time (20, 143–146). The
idea that disease chronicity is imprinted in basal cells was also
suggested in other epithelial tissues, including skin and intestine
(147, 148). As basal cells are the main progenitors to restore the
epithelium, the question raises whether these cells can be used
in regenerative stem cell therapy. Although this might sound
promising, this field requires extensive fundamental research
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focusing on basal cell phenotypes in health and disease prior
to studying the therapeutic potential. Some first encouraging
results were delivered by Steelant et al., who showed an equal
proliferative and differentiation capacity of basal cells from cystic
fibrosis patients compared to healthy controls, which supports
the feasibility of autologous cell therapy for cystic fibrosis lung
disease (149).

On the other hand, the existence of a cellular memory raises
the prospect of devising therapeutic agents that might mimic
the molecular underpinnings of positive regenerative memories
or erase the bad memories that occur in chronic conditions.
In that light, the use and effects of nanoparticle technology on
the epigenome has been studied over the last years (143–146).
Although evidence suggests that epigenetic modifications can
be induced by nanoparticles, the mechanisms behind these

processes remain largely unclear, and raises concerns regarding
nano- and epigenetic toxicity.
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