
Evaluation of Biomarkers and Immune
Microenvironment of Osteoarthritis:
Evidence From Omics Data and
Machine Learning
Zhixin Liu1, Heng Liu2,3, Deqiang Li1, Liang Ma1, Tongxin Lu1, Hao Sun1, Yuankai Zhang1*
and Hui Yang4*

1Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China, 2NHC Key Laboratory of Otorhinolaryngology,
Qilu Hospital of Shandong University, Jinan, China, 3Department of Otorhinolaryngology, Qilu Hospital of Shandong University,
Jinan, China, 4Department of Radiology, Qilu Hospital of Shandong University, Jinan, China

Objectives: This study aimed to identify novel biomarkers for osteoarthritis (OA) and
explore potential pathological immune cell infiltration.

Methods: We identified differentially expressed genes (DEGs) between OA and normal
synovial tissues using the limma package in R, and performed enrichment analyses to
understand the functions and enriched pathways of DEGs. Weighted gene co-expression
network analysis (WGCNA) and distinct machine-learning algorithms were then used to
identify hub modules and candidate biomarkers. We assessed the diagnostic value of the
candidate biomarkers using receiver operating characteristic (ROC) analysis. We then
used the CIBERSORT algorithm to analyze immune cell infiltration patterns, and the
Wilcoxon test to screen out hub immune cells that might affect OA occurrence. Finally, the
expression levels of hub biomarkers were confirmed by quantitative reverse transcription-
polymerase chain reaction (qRT-PCR).

Results:We identified102up-regulated genes and110down-regulated genes. The functional
enrichment analysis results showed that DEGs are enriched mainly in immune response
pathways. Combining the results of the algorithms and ROC analysis, we identified GUCA1A
andNELL1 as potential diagnostic biomarkers for OA, and validated their diagnosibility using an
external dataset. Construction of a TF-mRNA-miRNA network enabled prediction of potential
candidate compounds targeting hub biomarkers. Immune cell infiltration analyses revealed the
expression of hub biomarkers to be correlated with CD8 T cells, memory B cells, M0/M2
macrophages, resting mast cells and resting dendritic cells. qRT-PCR results showed both
GUCA1A and NELL1 were significantly increased in OA samples (p < 0.01). All validations are
consistent with the microarray hybridization, indicating that GUCA1A and NELL1 may be
involved in the pathogenesis of OA.

Conclusion: The findings suggest that GUCA1A and NELL1, closely related to OA
occurrence and progression, represent new OA candidate markers, and that immune
cell infiltration plays a significant role in the progression of OA.
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INTRODUCTION

Characterized by cartilage degeneration, sclerosis of subchondral
bone and osteophyte formation, osteoarthritis (OA) is the most
common degenerative joint disease (Mathiessen and Conaghan,
2017). Patients with OA experience chronic pain, swelling,
malformation and joint stiffness, which may lead to
progressive disability and deterioration of patients’ quality of
life (Parkinson et al., 2017). It is estimated that approximately
9.6% of men and 18% of women worldwide aged 60 years or over
suffer fromOA, and by 2030 nearly 67 million people living in the
United States will have been diagnosed with the disease
(Hootman and Helmick, 2006; Li et al., 2017). Unfortunately,
current OA therapies cannot prevent or reverse the progress of
the disease, and are limited to inhibiting pain and alleviating
inflammation (Seed et al., 2011). Advanced patients undergo joint
replacement surgery.

Considerable attention has been given to identifying
promising biomarkers for disease diagnosis and therapy
through transcriptomic and microarray analyses (Demircioğlu
et al., 2019; Carr et al., 2020). A noteworthy study has found that
the m6A demethylase FTO, which plays a tumor-suppressing
role, may be a prospective risk biomarker for thyroid cancer (Tian
et al., 2020). Based on the Gene Expression Omnibus (GEO)
database, GZMA, PRC1 and TTK were enriched in the innate
immune cell-mediated immune response and immune-related
biological processes, validating them as potential targets for
rheumatoid arthritis (RA) therapy (Cheng et al., 2021). It has
also been reported that IFI27 may play a vital role in the
occurrence of systemic lupus erythematosus (SLE), and may
be a possible target for SLE diagnosis (Zhao et al., 2021).
Therefore, it is vital to explore the molecular mechanisms
underlying the development and progression of OA, and to
identify new and effective biomarkers for its diagnosis and
treatment.

In this study, we first acquired differentially expressed genes
(DEGs) in OA and normal synovial tissue by mining four GEO
datasets (GSE55235, GSE55457, GSE12021 andGSE82107). Next, we
conducted a series of enrichment analyses of functions and pathways
for these DEGs. To evaluate the key module and to screen out hub
biomarkers highly correlated with OA, we performed weighted gene
co-expression network analysis (WGCNA) and applied three
machine-learning algorithms: least absolute shrinkage and
selection operator (LASSO), support vector machine-recursive
feature elimination (SVM-RFE) and logistic regression. We
validated the selected hub genes using GEO datasets (GSE89408),
and verified their diagnostic value with receiver operating
characteristic (ROC) curves. A TF-mRNA-miRNA network was
then constructed, and potential candidate compounds targeting
the biomarkers were predicted. We used the CIBERSORT
algorithm and the Wilcoxon test to analyze the difference in
immune infiltration between OA and normal tissues and the
relationship between biomarkers and infiltrating immune cells,
and to identify hub immune cells that might affect OA. Finally,
the expression levels of hub biomarkerswere confirmed by qRT-PCR.
This study strengthens understanding of the mechanisms of
development and pathogenesis in OA at the transcriptome level,

and provides new insights into potential biomarkers for diagnosis and
treatment of OA.

MATERIALS AND METHODS

Data Collection
Gene expression profiles of OA and normal synovial tissue were
downloaded from the GEO database (https://www.ncbi.nlm.nih.
gov/geo/) (Barrett et al., 2013). To be eligible for selection, the
profiles must have been produced with Homo sapiens expression
profile analysis using array, and be of OA or normal synovial
tissue from joint synovial biopsies, the datasets must contain
more than five samples and complete sample information, and
each subject had to have one biopsy sample analyzed without
duplication. Three GPL96 datasets (GSE55235, GSE55457 and
GSE12021), and GSE82107 based on the GPL570 platform, were
selected as test sets, including 40 OA samples and 36 normal
samples. We downloaded the original GSE89408 count data, a
dataset based on the GPL11154 platform, as a validation set (22
OA and 28 normal synovial tissue samples). Patients’ clinical
features are detailed in Supplementary Material S1.

Data Processing and Identification of DEGs
The datasets were combined, and the sva package (Leek et al.,
2012) was used to normalize the original data (Supplementary
Figure S1). The DEGs were screened in the batch calibrated test
set using the limma package (Ritchie et al., 2015). We selected |
log2 fold change FC | > 1 and adj. p. value ＜ 0.05 as truncation
criteria.

Functional Enrichment Analyses
The GOplot program package (Walter et al., 2015) was used to
visualize the gene ontology (GO), Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway and disease ontology (DO) analysis.
Terms and pathways with p < 0.05 were considered statistically
significant. We used the clusterprofiler R package (Yu et al., 2012) to
conduct GSEA on the DEGs using sequencing data, and the GSVA R
program (Hänzelmann et al., 2013) to identify pathways most closely
associated with DEGs, with p values <0.05 being considered
statistically significant. The h. all.v7.4. symbols gene set was
downloaded from MSigDB (Liberzon et al., 2015), and GSEA
analysis was performed on the gene set and gene expression
matrix to explore possible regulatory pathways involved.

WGCNA Network Analysis and Key Module
Identification
A co-expression network targeting DEGs was constructed using
the WGCNA package (Langfelder and Horvath, 2008). In
WGCNA analysis, all DEGs with an adjusted p value <0.05
and | log2 fold change FC | > 1 in the OA and normal
samples were taken as inputs for topology calculation, with
soft threshold values ranging from 1 to 20. The β value is
determined from the lowest value near scale-free network, and
the optimal soft threshold was determined to be 8. Following the
optimal soft threshold, the relation matrix was converted into an

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 9050272

Liu et al. Biomarkers and Immunity of Osteoarthritis

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


adjacency matrix and then into a topological overlap matrix
(TOM). We carried out average link hierarchy clustering, and
classified relevant modules according to the TOM, with the
number of genes in each module being no less than 50.
Similar modules were then merged. The Pearson method was
used to calculate correlation between the combined module and
OA, and hub modules and potential hub genes relating to clinical
traits were identified.

Machine Learning-Based Hub Biomarker
Screening
Machine-learning classification algorithms are increasingly being
used to predict feature genes associated with diseases. LASSO
(Engebretsen and Bohlin, 2019) is a regression analysis method
for both gene selection and gene classification. In order to avoid
collinearity generated by high-dimensional data, redundant genes
were eliminated using LASSO’s 10-fold cross validation
(GLMNET package) on the genes screened by WGCNA. SVM-
RFE (Yoon and Kim, 2009; Lin et al., 2012) is a machine-learning
method based on the support vector machine (SVM), which finds
the optimal variable by subtracting the feature vector generated
by SVM. The SVM-RFE method was then used on the genes
processed by LASSO for further screening to produce the optimal
number of genes, while minimizing classification errors and
overfitting. We then used univariate logistic regression analysis
to screen the genes, with p < 0.001 as the threshold. Finally, the
DEGs, SVM-RFE-screened genes and logistic regression-
screened genes were overlapped to identify hub biomarkers.

Validation of Hub Biomarkers
Expression analysis of the hub biomarkers was performed on the
test set. The ROC curves were then plotted using the pROC R
package (Robin et al., 2011), and the area under the curve (AUC)
was calculated separately to evaluate the predictive utility of
identified hub genes. Values of AUC >0.7 and p < 0.05
indicated that the genes were highly predictive for OA
diagnosis. The validation set GSE89408 based on the
GPL11154 platform was used to verify the analysis results.

Construction of Regulatory Network
The mirDIP database (Tokar et al., 2018) was used to predict the
potential miRNA of targeted hub genes and identify the miR
regulatory network. TF-hub gene interactions with p values <0.05
were selected from the TRRUST database (Han et al., 2018) to
establish upstream regulatory networks. In addition, compounds
with potential relationships to hub genes were searched in the
Comparative Toxicogenomics database (Davis et al., 2019).
Finally, the hub genes regulatory network was visualized based
on the Networkanalyst database (Zhou et al., 2019).

Analysis of Immune Cell Infiltration,
Correlations Between Hub Genes and
Immune Cell Infiltration
The CIBERSORT algorithm (Chen et al., 2018) was used to
calculate the proportions of different immune cell types,

according to the expression levels of immune cell-related
genes. The output results for 22 infiltrated immune cell types
were integrated to generate an immune cell component matrix for
analysis. Relationships between hub biomarkers’ expression levels
and immune cell infiltration were examined using Pearson’s rank
correlation analyses, conducted and visualized with the ggpubr R
package.

Identification of Hub Immune Cells
The Wilcoxon test was used to investigate differences in immune
cell content between different tissues. The random forest program
package was used to construct a random forest tree of the 22 kinds
of immune cells to identify the point with the minimum error,
and the immune cells were ranked by importance. Genes with
importance scores greater than two were selected for screening.
The identified immune cells were overlapped to screen out hub
immune cells that might affect the occurrence of OA.

qRT-PCR Validation of Hub Biomarkers
In order to confirm the results of bioinformatics analysis, we
collected synovial tissues from 10 OA patients and 10 patients
without OA for qRT-PCR verification. The study protocol was
approved by the ethics committee of Qilu Hospital of
Shandong University, and all patients signed informed
consent. Total RNA was extracted from synovial tissue
using TRIzol® Reagent (15596026, Thermo Fisher Scientific,
Inc.). An qRT-PCR kit (K1005S, Promega Biotech Co.) was
used to synthesize the first strand of cDNA from equal
amounts of total RNA samples, and real-time fluorescence
PCR was performed with SYBR Green Realtime PCR Master
Mix (QPK-201, TOYOBO Co., Ltd., Kita-ku, Osaka, Japan)
according to the manufacturer’s protocol. We selected ß-actin
as the inner control and employed the 2−ΔΔCt method to
quantify the relative mRNA level. The sequences of NELL1
were as follows: TCACAGGAAGCCACTGCGAGAA (sense)
and CCATCGTCATGGAAACCGCTTC (antisense). The
sequences of GUCA1A were as follows: GCAGAGGAGTTC
ACCGATACAG (sense) and GTCAGTGTGTCCAGGAGC
ATCT (antisense). The sequences of ß-actin were as
follows: CACCATTGGCAATGAGCGGTTC (sense) and
AGGTCTTTGCGGATGTCCACGT (antisense). One-way
analysis of variance was used for the statistical analysis,
and p < 0.05 indicated a significant difference.

RESULTS

Differentially Expressed Genes Between OA
and Normal Synovial Tissues
We analyzed the DEGs of 40 OA and 36 normal synovium
samples in the test set (GSE55235, GSE55457, GSE12021 and
GSE82107 datasets), and identified a total of 212 DEGs in the OA
samples compared with the normal group (Supplementary
Material S2). Figure 1A shows a heat map of the top 20
differential genes by log fold change, and the volcano map in
Figure 1B illustrates that 102 genes were significantly up-
regulated and 110 significantly down-regulated.
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Enrichment Analysis of DEGs
Next, in order to explore the potential biological mechanism of
OA progression, we observed the enrichment pathway of DEGs
from multiple perspectives. DO analysis revealed disease types
that may share a common pathogenesis with OA, such as pre-
eclampsia, periodontal disease and dental disease (Figure 2A).
GO enrichment analysis of the DEGs showed that the immune
response in OA samples was stronger than in the normal sample,
including regulation of leukocyte migration and myeloid
leukocyte migration. The top 10 biological processes were
selected, with Q values <0.05, as shown in Figure 2B. KEGG
pathway enrichment analysis showed related genes involved in,
for example, the IL-17 signaling pathway, cytokine-cytokine
receptor interaction and the TNF signaling pathway
(Figure 2C). These results indicated that immune-related
factors may affect the progression of OA, GSEA analysis was
performed on the gene set and expression matrix. The results
demonstrated that hypoxia, IL-2-STAT5 signaling and other
pathways play an important role (Figure 2D). These strong
evidence chains suggest that OA may be regulated by immune
pathways.

Further Screening With WGCNA Analysis
To further correlate clinical information with key genes, we
performed WGCNA analysis. The clustering of each sample
was good, with no outlier samples. A soft threshold from 1 to
20 was used for topology calculation, and the optimal soft
threshold was determined to be 8 (Figure 3A). Using the soft
threshold, the relational matrix was transformed into an

adjacency matrix, and then into a topological overlap matrix
(TOM) to determine average link hierarchical clustering. Related
modules were classified according to the TOM, with the number
of genes in each module being no less than 50 (Figure 3B).
Similar gene modules were merged, resulting in eight modules
(Figure 3C). Correlation between genes and clinical traits in the
module was calculated, revealing that the blue module containing
1,776 genes exhibited the highest positive correlation with OA
occurrence (r = 0.73), and the grey module containing 128 genes
had the highest negative correlation with OA occurrence (R =
−0.84). A total of 1,904 potential core genes were identified.

Exploration of Hub Biomarkers
Next, we applied a series of machine-learning
algorithms—LASSO, SVM-RFE and logistic regression—to
screen the most significant genes associated with OA. A total
of 1,904 potential hub genes screened byWGCNA in OA patients
were selected between the two groups to fit the LASSO regression
model. The next step was to use LASSO’s 10-fold cross-validation
to remove any further redundant genes, as a result of which 33
potential genes with non-zero coefficients identified in OA and
normal cohorts were screened out (Figure 3D). We used the
SVM-RFE algorithm for in-depth screening of these 33 genes.
The results showed that the RMSE value was lowest when 19
genes were selected as variables (Figure 4A). Taking occurrence
of OA as the dependent variable, univariate logistic analysis was
then carried out. The forest map produced 25 genes with p values
less than 0.001 (Figure 4B). Finally, we overlapped the genes of
the two previous identification algorithms with 212 DEGs, and

FIGURE 1 | Identification of significant differentially expressed genes (DEGs) in OA. (A) Heatmap of DEGs between OA and normal samples. (B) Volcano plot of
DEGs between OA and normal samples. Red rectangles/plots represent up-regulated genes and blue rectangles/plots represent down-regulated genes.
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identified GUCA1A and NELL1 as our hub biomarkers
(Figure 4C).

Validation of Hub Biomarkers
ROC and differential expression analysis were performed on
GUCA1A and NELL1, respectively. The results showed that
these genes had good predictive performance in the test set:
both GUCA1A (AUC = 0.822) and NELL1 (AUC = 0.871) were
significantly over-expressed in the OA samples (Figures 5A,B).
External validation using the GSE89408 dataset showed that the
expressions of GUCA1A and NELL1 were similar to the test set,
with both being up-regulated in OA tissues, and also had strong
diagnostic performance (GUCA1A, AUC = 0.747; NELL1, AUC
= 0.713) (Figures 5C,D). These results indicated that expressions
of GUCA1A and NELL1 were highly correlated with OA
progression, and that these genes may act as biomarkers to
diagnose and verify effective treatment of OA.

TF-mRNA-miRNA Network Analysis and
Prediction of Potential Candidate
Compounds
Regulatory networks play a key role in understanding disease
mechanisms. We used the TRRUST and mirDIP databases to

predict interactions between hub biomarkers and transcription
factors (TFs) as well as miRNA. A TF-mRNA-miRNA triple
network was then constructed. We found 3 TFs and 26 miRNAs
targeting NELL1, and identified two TF–GUCA1A pairs and
three miRNA–GUCA1A pairs (Figure 6A). This network
revealed hub nodes and their interactions associated with the
molecular mechanisms of OA, and indicated that NELL1 and
GUCA1A are related to multiple regulatory networks in OA
progression. These two hub biomarkers may play a crucial role in
the pathological process of OA. This enabled us to predict
potential candidate compounds targeting GUCA1A and
NELL1 that may alleviate OA patients’ symptoms (Figure 6B).

Analysis of Differences in Immune
Microenvironment
In view of the important role of immune-related pathways in the
occurrence of OA in enrichment analysis (Figure 2), the
CIBERSORT algorithm was used to analyze the content of
immune cells in the different samples. The bar chart in
Figure 7A illustrates the overall landscape of immune cell
distribution, and the heat map in Figure 7B details the
correlations of 22 immune cell types. The Wilcoxon test
showed that the OA samples contained more memory B cells,

FIGURE 2 | Functional enrichment analysis of DEGs. (A) DO analysis results for disease types that may share a common pathogenesis with OA. (B) The top 10
enriched biological processes of DEGs identified using GO analysis. (C) KEGG enrichment analysis based on the DEGs. The gradual bubble color represents the
adjusted p value, and the bubble size represents the gene count. (D) GSEA analysis of DEGs in the OA and normal groups.
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plasma cells, M0 macrophages and resting mast cells. Compared
with OA tissues, normal tissues had higher contents only of
resting CD4 memory T cells and activated NK cells (Figure 8A).

In addition, to identify hub immune cells that alter the immune
microenvironment in OA synovial tissues, we performed random
forest tree analysis on 22 immune cells (Figures 8B,C) and

FIGURE 3 | WGCNA-based identification of co-expression modules from merged datasets. (A) Soft thresholds (β) and scale-free topology fitting indices (R2). To
maximizemodel fit, a β value of eight was chosen. (B)Dendrograms generated via average linkage hierarchical clustering of identifiedmodules. (C) Associations between
modules’ clinical status in normal and OA patient samples, with individual rows corresponding to module eigengenes and columns corresponding to clinical
characteristics. Correlations and p values are shown in the first and second lines of each cell, respectively. (D) Coefficient profile plot generated against the
log(lambda) sequence, using the LASSO logistic regression algorithm to screen diagnostic markers. Different colors represent different genes.

FIGURE 4 |Machine learning-based hub biomarker screening. (A) Diagnostic marker screening using the SVM-RFE algorithm. (B) The 10 most significant genes
identified by univariate logistic analysis (p ＜ 0.001). (C) Overlapping genes predicted by the DEGs, logistic regression and SVM-RFE algorithms.
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overlapped the Wilcoxon test with the immune cells identified in
random forest trees. Finally, we identified six types of hub
immune cells that may affect the occurrence of OA
(Figure 8D): activated NK cells, activated mast cells, plasma
cells, M0 macrophages, resting mast cells and memory B cells.

Correlation Analysis of Immune Cells and
Hub Biomarkers
Correlation analysis between 22 kinds of immune cells and two
hub biomarkers in OA tissue produced statistically significant
results. GUCA1A is negatively correlated with memory B cells
and resting mast cells, while M0 and M2 macrophages are
positively correlated (Figure 9A). In addition, NELL1 is
positively correlated with CD8 T cells and M0 macrophages,
and negatively correlated with resting dendritic cells (Figure 9B).

qRT-PCR Validation of Hub Biomarkers
We performed radiological evaluations on the knee joints of different
groups of patients to verify the typical imaging manifestations of OA.
The results showed that compared with healthy donors, preoperative
knee X-ray and gross images of OA patients showed bone spur,
subchondral sclerosis and narrowing of joint space (Figure 10A).
Then, qRT-PCR was used to detect the expression level of hub
biomarkers in the OA synovium of the knee joint and normal control
groups. Statistical analysis proved that both GUCA1A and NELL1
were significantly over-expressed in the synoviumofOA samples (p<
0.01) (Figure 10B). All validations are consistent with the microarray
hybridization, indicating that GUCA1A andNELL1may be involved
in the pathogenesis of OA.

DISCUSSION

OA is a chronic degenerative joint disease that causes irreversible
bone erosion and cartilage destruction, and is one of the most
common causes of disability (Wight et al., 2017; Smolen et al.,
2018). However, because the pathophysiological mechanism of
OA is unclear and effective biomarkers are lacking, diagnosis and
treatment of OA is difficult. This study is the first to integrate
WGCNA and machine-learning algorithms to identify new
biomarkers associated with OA, and to explore the role of
immune cell infiltration in OA using CIBERSORT and
Wilcoxon tools.

In this study, we downloaded four gene expression profiles
(GSE55235, GSE55457, GSE12021, and GSE82107) from the
GEO database, and identified a total of 212 DEGs, including
102 up-regulated and 110 down-regulated genes in the OA
sample compared with the normal sample. Then, we
investigated the biological functions of these common DEGs
and KEGG analysis revealed these genes to be enriched in the
IL-17 signaling pathway and TNF signaling pathway, both of
which are inflammatory. IL-17 and TNF are pro-inflammatory
cytokines that are closely associated with cartilage destruction,
cartilage matrix degradation and bone resorption (Kenna and
Brown, 2013; Wang and He, 2018), both of which are promising
therapeutic targets related to OA, which is consistent with our
findings and highlights the correlation between these gene and
the pathogenesis of OA. Our GO enrichment analysis of DEGs
suggested that immune responses, such as regulation of leukocyte
migration and myeloid leukocyte migration, were stronger in OA
samples than in normal tissues. OA is a chronic inflammation

FIGURE 5 | Validation of hub biomarkers. (A) Expression and diagnostic value of GUCA1A in OA using the test set. (B) Expression and diagnostic value of NELL1 in
OA using the test set. (C) Expression and diagnostic value of GUCA1A in OA using the validation set. (D) Expression and diagnostic value of NELL1 in OA using the
validation set.
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disease, which closely related to immune cell infiltration of bone
and cartilage (Haseeb and Haqqi, 2013), and immune cell
infiltration of OA synovial tissue correlates with OA disease
progression and pain (Lopes et al., 2017). These results
confirm that immune-related factors may affect the
progression of OA, so continued efforts to identify OA-related
immune cell infiltration may be of value for treatment of this
disease.

To better understand the progression of OA, hub modules and
candidate biomarkers of OA were identified using WGCNA.
WGCNA analysis indicated that the blue and grey modules
containing 1,904 genes were most strongly correlated with
clinical characteristics of OA. Using three different machine-
learning algorithms (LASSO, SVM-RFE and logistic regression),
GUCA1A and NELL1 were identified as hub genes, which were
statistically significantly over-expressed in the OA samples (p <
0.05). ROC curve analysis showed that GUCA1A and NELL1 had
high sensitivity and specificity in OA diagnosis in both the test set
and the validation set. We also constructed a TF-mRNA-miRNA
network, enabling us to predict potential candidate compounds
targeting GUCA1A and NELL1 to elucidate the pathogenesis of
OA at the transcriptome level. NEL-like molecule-1 (NELL1), a
new secretory protein originally identified in unilateral coronal
craniosynostosis in humans (Ting et al., 1999), plays an
important role in osteogenic differentiation, bone regeneration,

chondrogenesis and inflammation (Aghaloo et al., 2006; Lee et al.,
2010; Cao et al., 2021). Recent research has reported the ability of
NELL1 to induce chondrogenesis and an anti-inflammatory
response in OA through up-regulation of runt-related
transcription factor 1 (RUNX1), making it a potential
candidate for articular cartilage repair (Li et al., 2020). In our
study, compared with healthy patients, we found that the
expression level of NELL1 increases in OA synovial tissues.
The ROC curve for NELL1 indicated that it has good
predictive performance in OA (AUC >0.87), suggesting that
NELL1 plays a significant role in the progression of OA. OA
is considered to be an inflammatory disease of the joint cartilage
and is caused by multiple factors. Inflammatory cytokines are
mainly expressed in OA, but under pathological conditions, the
body still has some anti-inflammatory gene expression for self-
protection and repair. When the ultimate balance between anti-
inflammatory and pro-inflammatory is broken, anti-
inflammatory genes can’t work as effectively (Wojdasiewicz
et al., 2014). NELL1 may play this role, and the expression of
NELL1 may be the body’s self-protection regulation. Li et al.
found that NELL1-haploinsufficient (NELL1+/6R) mice showed
elevated inflammatory markers and accelerated progression of
OA. After intra-articular injection of NELL1, the IL1β-induced
inflammation and cartilage degradation were rescued obviously
(Li et al., 2020). The above results remind us NELL1 may be a

FIGURE 6 | Construction of regulatory network. (A) TF-mRNA-miRNA network of hub biomarkers. (B) Potential candidate compounds targeting GUCA1A and
NELL1.
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promising target for precise treatment of OA for suppressing
inflammation and arthritis-related cartilage damage. The
guanylate cyclase activator 1A gene (GUCA1A), located in
6p21.1, encodes guanylyl cyclase-activating protein 1
(GCAP1), and has been identified as being involved in
dominant cone dystrophy, cone-rod dystrophy and macular
dystrophy (Payne et al., 1998; Wilkie et al., 2000). However,
GUCA1A has not previously been reported in OA-related studies.

We have identified that GUCA1A is also highly specifically
expressed in the synovial membrane of OA and has a high
diagnostic value (AUC >0.82) for OA. These results were
validated using the GSE89408 dataset. Finally, the results of
qRT-PCR showed both GUCA1A and NELL1 were
significantly increased in OA samples (p < 0.01). All
validations are consistent with the microarray hybridization,
indicating that GUCA1A and NELL1 may be involved in the

FIGURE 7 | Analysis of differences in immune microenvironment. (A) Relative proportions of synovial tissue infiltration by 22 different immune cell subtypes. (B)
Correlations among 22 different immune cell populations, with blue and red indicating positive and negative correlations, respectively. White indicates absence of any
correlation between the indicated immune cell populations.
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pathogenesis of OA, and thus we consider NELL1 and GUCA1A
to be very effective biomarkers for OA diagnosis.

To explore the potential pathological relevance of immune cell
infiltration in this disease, we used the CIBERSORT algorithm to
conduct a comprehensive evaluation of OA immune infiltration,
which provided insights into how these immune cells affect OA
pathology. We found that increased infiltration of memory B cells,

plasma cells, resting mast cells and M0 macrophages, and decreased
infiltration of restingmemoryCD4T cells and activatedNK cellsmay
be related to the occurrence and development of OA. De Lange-
Brokaar et al. have found that mast cell content is significantly higher
in OA samples compared with RA, and is associated with structural
damage inOApatients, suggesting the role ofmast cells in this disease
(De Lange-Brokaar et al., 2016). Previous studies have shown that

FIGURE 8 | Assessment of immune cell infiltration. (A) Comparisons of 22 immune cell types, with blue and red indicating normal and OA tissues, respectively.
(B,C) Random forest tree analysis of 22 immune cells. (D) Overlapping immune cells predicted by the immune cell and Wilcoxon test.
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macrophages may regulate joint inflammation and OA severity
through various secretory mediators, and the modulation of
macrophage functional phenotypes appears to be an effective
treatment option to prevent OA or enhance cartilage repair and
regeneration (Wu et al., 2020; Zhang et al., 2020). Studies indicate that
accumulation of memory CD4 T cells is a common phenomenon

during the local inflammatory response of RA and OA joints, and is
involved in the progression of OA (Ezawa et al., 1997). Increasing
evidence suggests that NK cells are key to promoting immune cells in
OA, and that their interaction is promoted by the CXCL10/CXCR3
axis (Benigni et al., 2017). Our analysis results combined with the
above literature evidence have shown that resting mast cells, M0

FIGURE 9 | Correlation analysis of immune cells and hub biomarkers. (A) Correlation between GUCA1A and infiltrating immune cells. (B) Correlation between
NELL1 and infiltrating immune cells. p < 0.05 considered statistically significant.

FIGURE 10 | qRT-PCR validation of hub biomarkers. (A) X ray images and macroscopic views (arthroscopic image and intraoperative image) of knee joint from
healthy donors and OA patients. (B,C) Validation of GUCA1A and NELL1 by qRT-PCR between the OA group (n = 10) and the control group (n = 10). Data are mean ±
SEM; ppp < 0.01, and pppp < 0.001.
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macrophages, resting memory CD4 T cells and activated NK cells
play important roles in OA, which should be the focus of further
research. However, no research has been conducted on the role of
memory B cells and plasma cells in OA, and further experimental
data are required. In our study, to screen out hub immune cells that
might alter the immune microenvironment in OA synovial tissues,
we performed random forest tree analysis on 22 immune cells, and
overlapped the Wilcoxon test with the immune cells identified in
random forest trees.We have identified six types of hub immune cells
that may affect the occurrence of OA: activated NK cells, activated
mast cells, resting mast cells, memory B cells, plasma cells and M0
macrophages. In addition, associations between GUCA1A, NELL1
and immune cells revealed these genes to be correlated with levels of
CD8 T cells, memory B cells, restingmast cells, resting dendritic cells,
and M0 and M2 macrophages. We hypothesize that GUCA1A and
NELL1 may be involved in the occurrence and progression of OA by
mediating the above immune cells, and further studies are needed to
clarify the complex interaction between genes and immune cells. The
above results suggest that various infiltrating immune cells play key
roles in OA pathogenesis.

Some potential limitations of this study must be considered
when interpreting the results. The CIBERSORT analysis was
based on limited genetic data that may deviate from
heterotypic interactions of cells, disease-induced disorders or
phenotypic plasticity. The exact mechanisms of NELL1 and
GUCA1A in regulating the initiation and progression of OA
require further investigation, and further experimental studies are
needed to validate the findings of this study.

CONCLUSION

In conclusion, we identify GUCA1A and NELL1 as diagnostic
biomarkers of OA, and find that memory B cells, plasma cells,
resting mast cells, M0 macrophages, resting CD4 memory T cells
and activated NK cells may relate to the occurrence and progression
of OA. These immune cells and immune-related genes may be
potential immunotherapeutic targets for patients with OA.
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