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Abstract
Background: Our study aimed to analyze differential microRNA expression between myelodysplastic syndromes (MDS) and
normal bone marrow, and to identify novel microRNAs relevant to MDS pathogenesis.

Methods: MiRNA microarray analysis was used to profile microRNA expression levels in MDS and normal bone marrow.
Quantitative real-time polymerase chain reaction was employed to verify differentially expressed microRNAs.

Results: MiRNA microarray analysis showed 96 significantly upregulated (eg, miR-146a-5p, miR-151a-3p, miR-125b-5p) and
198 significantly downregulated (eg, miR-181a-2-3p, miR-124-3p, miR-550a-3p) microRNAs in MDS compared with normal bone
marrow. The quantitative real-time polymerase chain reaction confirmed the microarray analysis: expression of six microRNAs
(miR-155-5p, miR-146a-5p, miR-151a-3p, miR-221-3p, miR-125b-5p, and miR-10a-5p) was significantly higher in MDS, while 3
microRNAs (miR-181a-2-3p, miR-124-3p, and miR-550a-3p) were significantly downregulated in MDS. Bioinformatics analysis
demonstrated that differentially expressed microRNAs might participate in MDS pathogenesis by regulating hematopoiesis,
leukocyte migration, leukocyte apoptotic process, and hematopoietic cell lineage.

Conclusions:Our study indicates that differentially expressedmicroRNAsmight play a key role in MDS pathogenesis by regulating
potential relevant functional and signaling pathways. Targeting these microRNAs may provide new treatment modalities for MDS.

Abbreviations: DEGs = differentially expressed genes, GEO = expression omnibus database, GO = gene ontology, GSE =GEO
Series, IPSS = International Prognostic Scoring System, KEGG = Kyoto Encyclopedia of Genes and Genomes, qRT-PCR =
quantitative real-time polymerase chain reaction.
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1. Introduction

Myelodysplastic syndromes (MDS) are a group of malignant
clonal diseases originating from hematopoietic stem cells,
characterized by an abnormal growth of hematopoietic cells,
ineffective hematopoiesis, and a high risk of transforming into
acute myeloid leukemia (AML).[1] MDS mainly occur in the
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elderly, as the incidence rate increases with age, and it has high
mortality and low cure rates. Gene mutation[2,3] and chromo-
some abnormality[4] have been reported to be involved in the
progression of MDS. However, its molecular pathogenesis and
the exact mechanism of transformation into AML have not yet
been fully elucidated.
MicroRNA is a type of endogenous non-coding RNA of 19 to

25 nucleotides in length, which is completely or incompletely
complementary to the 3’-UTR region of the target gene. Binding
of a microRNA regulates gene expression at the post-transcrip-
tional level by the degradation of its target mRNAor inhibition of
mRNA translation.[5] Strong evidence suggests that microRNAs
play crucial roles in the regulation of hematopoiesis.[6–8]

Furthermore, a variety of studies have reported that differentially
expressed microRNAs are associated with the transformation of
MDS into AML[9,10] and clinical outcomes.[11–13] Ekapun[14] et al
reported that DZNep (3-Deazaneplanocin A) could inhibit the
expression of let-7b, leading to a decrease in the proportion of
cells in the S phase in the MDS-L cell lineage. Recently, there has
been a growing interest in microRNA microarray technology
to profile microRNAs. MicroRNA expression profiling allows
the identification of novel microRNAs associated with MDS
pathogenesis.
In the present study, we screened differentially expressed

microRNAs in MDS and normal bone marrow using microRNA
microarray technology and verified selected microRNAs by
quantitative real-time polymerase chain reaction (qRT-PCR), to
evaluate novel microRNAs that might be relevant to MDS
pathogenesis.
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2. Materials and methods

2.1. Patient samples

Bone marrow (BM) was obtained in the department of
Hematology, at The First Affiliated Hospital of Guangxi Medical
University, Nanning, China, from 2012 to 2015. BM was
extracted from patients at the time of diagnosis. MDS was
diagnosed based on the WHO Recommended Criteria (2008),
and patients were stratified based on the International Prognostic
Scoring System. Patient characteristics are displayed in Table 1.
Twelve normal bone marrow samples were obtained from
healthy volunteers and donors who were free of any neoplastic
disease. All the participants had been given informed consent
according to the Declaration of Helsinki. The study was
approved by the Human Ethics Committees Review Board at
Guangxi Medical University, Nanning, China.
2.2. RNA extraction

We separated bone marrowmononuclear cells (BM-MNCs) using
density gradient centrifugation. Total RNAwas isolated fromBM-
MNCsof twenty patients and twelve controls usingTRIzol reagent
(Invitrogen) following the manufacturer’s instruction.
2.3. miRNA microarray and array data analysis

Total RNA samples were analyzed by the miRCURY LNA
Array (v.18.0) (Exiqon).[15] We imported scanned images into
GenePix Pro 6.0 soft (Axon) for grid alignment and data
extraction. Replicated microRNAs were averaged, and we
choose microRNAs with intensities ≥ 30 to calculate the
normalization factor. The expressed data were normalized using
Table 1

Patient characteristics.
Number of patients 20
Sex (male/female) 12/8

Median (range)

Age (yr) 55.5 (38–74)
WBC (10^9/L) 2.02 (0.9–10.1)
Neut (10^9/L) 0.81 (0.1–7.79)
Hb (g/L) 72.85 (33–113.3)
Plt (10^9/L) 54.10 (5–530.8)
BM blast (%) 3.35 (0–17.5)

N (%)

WHO type
RCMD 11 (55)
REAB1 3 (15)
REAB2 6 (30)

IPSS type
Intermediate risk I 10 (50)
Intermediate risk II 5 (25)
High risk 5 (25)

Karyotype
Del(5q)/�5 2
Del(7q)/�7 6
+8 1
Complex karyotype 2
normal 9

IPSS = International Prognostic Scoring System, RCMD = refractory cytopenia with multi-lineage
dysplasia, WBC = white blood cell, WHO = World Health Organization.
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the median normalization analysis, after which a volcano plot
was used to identify significantly differentially expressed
microRNAs. A heatmap was created to display microRNA
expression profiles of the samples. Statistically significant
differentially expressed microRNAs were defined as P< .05
and jlogFCj> 1.
2.4. qRT-PCR validation

The identified differentially expressed miRNAs were validated
using the SYBR-based qRT-PCR for twelve MDS and six normal
bone marrow samples. Tot-al RNA was reverse transcribed to
cDNA. qRT-PCR was performed with SYBR-Green (Invitrogen)
in a Rotor-Gene 3000 Real-Time PCR machine (Corbett
Research, Australia). The levels of microRNAs were normalized
using U6 as an endogenous control. Relative microRNA
expression levels were calculated by the 2�△△ct method. The
primers were as follows: U6 forward: 5’GCTTCGGCAGCA-
CATATACTAAAAT3’ and reverse: 5’CGCTTCACGAATTT-
GCGTGTCAT3’; miR-10a-5p forward: 5’GGGTACCCTGTA-
GATCCGA3’and reverse: 5’CAGTGCGTGTCGTGGAGT3’;
miR-146a-5p forward: 5’GGGTGAGAACTGAATTCC3’ and
reverse: 5’TGCGTGTCGTGGAGTC3’; miR-125b-5p forward:
5’GCTCCCTGAGACCCTAAC3’ and reverse: 5’GTGCGTGT-
CGTGGAGTCG3’; miR-221-3p forward: 5’GGGAAGCTA-
CATTGTCTGC3’ and reverse: 5’CAGTGCGTGTCGTG-
GAGT3’; miR-155-5p forward: 5’GGGGTAATGCTAAT-
CGTGA3’ and reverse: 5’CAGTGCGTGTCGTGGAG3’; miR-
151a-3p forward: 5’GGGGCACTAGACTGAAGCTCC3’ and
reverse: 5’GTGCGTGTCGTGGAGTCG3’; miR-222-3p for-
ward: 5’GGGGAGCTACATCTGGCT3’ and reverse: 5’TGCG-
TGTCGTGGAGTC3’; miR-124-3p forward: 5’GGGTAAGG-
CACGCGGT3’ and reverse: 5’GTGCGTGTCGTGGAGTCG3’;
miR-181a-2-3p forward: 5’GGACCACTGACCGTTGAC3’ and
reverse: 5’CAGTGCGTGTCGTGGAG3’; miR-550-3p forward:
5’ GGGGTGTCTTACTCCCTCAG3’ and reverse: 5’CAGTGC-
GTGTCGTGGAGT3’.

2.5. Screening for differentially expressed genes (DEGs)

We downloaded the GEO Series (GSE) 114869 and GSE107400
datasets from the expression omnibus database (GEO) database.
The platform for GSE114869 is GPL17586, [HTA-2_0] Affyme-
trix Human Transcriptome Array 2.0 [transcript (gene) version],
which includes 300MDS BM-MNC samples and 20 normal BM-
MNCsamples.TheplatformforGSE107400 isGPL17585, [HTA-
2_0] Affymetrix Human Transcriptome Array 2.0 [probe set
(exon) version], which includes 176MDS BM-MNC samples and
20 normal BM-MNC samples. Analysis Power Tools (APT)-
Release 2.10.2.2 (http://www.affymetrix.com/support/developer/
powertools/changelog/) was employed to assess GSE114869 and
GSE107400 RAW datasets. We used background correction,
quantile normalization, probe summarization, and log2-transfor-
mation to create a robust multi-array average (RMA), a log-
transformed method. We adjusted the original p-values using the
Benjamini-Hochberg method. Statistically significant DEGs were
indicated as P< .05 and jlogFCj> 1. Additionally, commonDEGs
of the 2 datasets were screened using Venny 2.0.2.

2.6. Bioinformatics analysis

The TargetScan database, miRandan database, and miRDB
database were assessed to predict target genes of differently
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expressed microRNAs. Subsequently, these predicted target
genes were integrated with the identified common DEGs of the
GSE114869 and GSE107400 datasets to obtain potential target
genes of validated microRNAs. Then these identified potential
targets underwent gene ontology (GO) classification and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis for
functional and signaling pathway analysis. P<0.05 indicated
statistical significance. Additionally, the String database (Avail-
able at: http://string-db.org), an online tool used for the structural
and functional analysis of protein interactions, was designed to
construct a PPI network of potential microRNA target genes.

2.7. Statistical analysis

The SPSS version 17.0 (SPSS lnc., Chicago, IL) was employed for
statistical analysis. The Student t test (2-sided) was employed for
comparison of 2-group parameters. P< .05 was considered
statistically significant.

3. Results

3.1. Study design and analysis

TwentyMDSpatients and twelvehealthy controlswere included in
the study. From these samples, 8 patients (aged 47 to 73 years, 5
males and 3 females) and 6 healthy controls (aged 46 to 61 years, 3
males, and 3 females) were used for the microarray study. Another
twelveMDS patients (aged 38 to 67 years, 7 males and 5 females)
and 6 normal controls (aged 41 to 52 years, 4males and 2 females)
were used for qRT-PCR validation. Identified differentially
expressed microRNAs were validated by qRT-PCR. Differentially
expressed mRNAs were discovered using the GEO dataset.
Potential microRNA target genes were identified by a prediction
algorithm analysis and exhibited differential expression in the
GEO dataset. Subsequently, the potential microRNA target genes
were subjected to bioinformatics analysis (Fig. 1).

3.2. Identification of differentially expressed microRNAs

Compared with normal bone marrow, a total of 96 statistically
upregulated (eg, miR-146a-5p, miR-151a-3p, miR-125b-5p),
Figure 1. Predicted target gene of differentially expressed microRNAs between M
dataset. Bioinformatics analysis was conducted to identify which pathways were
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and 198 statistically downregulated (eg, miR-181a-2-3p, miR-
124-3p, and miR-550a-3p) microRNAs were screened based on
having a 2-fold change. Differentially expressed microRNAs
were presented in a volcano plot and heatmap diagram (Fig. 2A
and Fig. 2B), and were used in a scatter plot analysis (Fig. 2C).

3.3. qRT-PCR validation for differentially-expressed
microRNAs

To confirm the microarray results, we selected the most
significantly differentially expressed microRNAs (fold-change>5
and P< .05) for qRT-PCR validation, including 7 upregulated
microRNAs (miR-155-5p, miR-146a-5p, miR-151a-3p, miR-
221-3p, miR-125b-5p, miR-10a-5p, miR-136-5p) and 3 down-
regulated microRNAs (miR-181a-2-3p, miR-124-3p, miR-550a-
3p). 12 MDS patients were divided into a lower risk (low
+intermediate I) and a higher risk group (intermediate II+high)
based on the International Prognostic Scoring System. Compared
to the normal controls, miR-155-5p, miR-146a-5p, miR-151a-
3p, miR-221-3p, miR-125b-5p, and miR-10a-5p were signifi-
cantly elevated andmiR-181a-2-3p was significantly decreased in
each subgroup of MDS. miR-124-3p and miR-550a-3p were
significantly downregulated in the higher risk group of MDS
while having an decreased trend in the lower risk group (P= .08
and P= .10, respectively). Compared to the lower risk group,
miR-155-5p, miR-146a-5p, miR-151a-3p, miR-221-3p, miR-
125b-5p, and miR-10a-5p were significantly higher and miR-
124-3p, miR-181a-2-3p were significantly lower expressed in the
higher risk group. However, miR-136-5p had an increased trend
in the lower risk group and a decreased trend in the higher risk
group (P= .10 and P= .10, respectively), and the expression of
miR-136-5p was significantly lower in the higher risk than in the
lower risk group (Fig. 3).

3.4. Identification of DEGs in MDS

A total of 67,528 probes corresponding to 25,875 genes were
identified in the GSE114869 and GSE107400 datasets. Statisti-
cally significant DEGs were indicated as P< .05 and jlogFCj > 1.
Using Venny 2.0.2, we found 490 common DEGs between MDS
DS and healthy controls were integrated with the DEGs identified from the GEO
regulated by differentially expressed microRNAs.

http://string-db.org/
http://www.md-journal.com


Figure 2. A. Volcano plots of the microarray analysis. Plots show differences between MDS and normal bone marrow. Differentially expressed microRNAs with
logjFCj> 1 and P<0.05 are shown in red. B. MicroRNA expression patterns in MDS compared with normal bonemarrow. Each row represents a miRNA and each
column represents a sample. C1-C6 represent controls (n=6), P1-P4 represent MDS patients with intermediate I (n=4), P5-P8 represent MDS patients with
intermediate II and high-risk (n=4). Red color indicates up-regulation and green color indicates down-regulation. C. Differentially expressed microRNAs between
MDS and normal bone marrow in a scatter plot analysis.
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Figure 2. (Continued).

Wan et al. Medicine (2020) 99:27 www.md-journal.com
and normal bone marrow in the GSE114869 and GSE107400
datasets (Fig. 4). The 490 common DEGs were used as
identification criteria for potential microRNA target genes.

3.5. Bioinformatics analysis

We used the TargetScan, miRandan, and miRDB databases to
predict the target genes of the 9 validated microRNAs. To
improve the reliability of the predicted target genes, we
intersected the predicted target genes with the identified DEGs
to obtain the potential microRNA target genes. As a result, 96
potential microRNA target genes were identified (Table 2). To
further evaluate the potential implications for these validated
microRNAs, GO analysis was conducted to estimate the function
of the identified target genes, including biological processes,
molecular functions, and cellular components. When assessing
biological processes, target genes were classified into 73
categories, including involvement in positive regulation of cell
adhesion, inflammatory response, and hemopoiesis. For molecu-
lar functions, the results included receptor activity, protein
homodimerization activity, and ATP binding. Finally, the cellular
components mainly involved the external side of the plasma
membrane, the integral component of the plasmamembrane, and
the cytoplasm (Fig. 5). KEGG pathway analysis revealed that
potential microRNA target genes might play roles in hematopoi-
etic cell lineage and cytokine-cytokine receptor interaction
(Fig. 5). Additionally, we employed the STRING database
(Available at: http://string-db.org) to create PPI networks for the
96 identified potential microRNA target genes. After removing
the isolated and partially connected nodes, a complicated
network of potential microRNA target genes was constructed
(Fig. 6)

4. Discussion

In this study, we evaluated differentially expressed microRNAs
between MDS and normal bone marrow samples using micro-
array analysis, a powerful technology widely employed to
discover genome-wide expression variability of microRNAs. A
total of 96 upregulated and 198 downregulatedmicroRNAswere
identified in MDS. Among the differentially expressed micro-
5

RNAs in microarray results, ten selected microRNAs were also
detected using qRT-PCR. The expression of 9 microRNAs (eg,
miR-146a-5p, miR-151a-3p, miR-125b-5p) was consistent with
microarray results, indicating these 9 micro
RNAs might provide a significant contribution to MDS

pathogenesis. The disaccord of miR-136-5p expression between
microarray identification and qRT-PCR verification might be
attributed to the false-positive results of the microarray.
Moreover, we will conduct a large sample size for further study.
miR-155 has been demonstrated to be dysregulated in different

types of malignancies, such as cervical cancer,[16] breast
cancer,[17] colon cancer,[18] gastric cancer,[19] as well as
AML.[20] In cervical cancer, miR-155 promotes malignant tumor
cell phenotypes through direct targeting of TP53INP1.[21]

Additionally, miR-155 is overexpressed in AML and was
identified as a potential biomarker for detecting AML.[22]

Wang[23] et al. demonstrated that miR-146a can promote cell
proliferation and suppresses cell apoptosis via the down-
regulation of CNTFR in AML and ALL. In another study,
Spinello[24] et al found that miR-146a was remarkably elevated in
AML and promoted leukemogenesis through targeting of
CXCR4. In our study, miR-146a was upregulated with an
approximately 2.79-fold change in MDS compared with normal,
indicating that miR-146a may have a similar effect in MDS.
Additionally, Lee[25] et al demonstrated that miR-221 was
markedly overexpressed in AML. In an earlier study, Georgian-
tas[26] et al reported that miR-221 might serve as a myelopoiesis
suppressor by inhibiting molecules involved in myeloid develop-
ment. Similar to AML, MDS is characterized by myeloid
development abnormalities. Therefore, we inferred that the
overexpression of miR-221 might promote MDS progression via
the inhibition of myeloid development. It has been suggested that
miR-125b is also overexpressed and can inhibit myeloid cell
differentiation in AML and MDS.[27] Consistent with the
previous study, our study found that miR-125b was upregulated
with an approximate 2.89-fold change in MDS compared with
normal control. A variety of studies have demonstrated that miR-
10a is overexpressed and correlates with an adverse prognosis in
AML.[28,29] In addition, mir-10a also plays a key role in myeloid
differentiation.[29] In our study, microarray results and qRT-PCR
validation both revealed that miR-10a was significantly elevated
in MDS compared with normal control, suggesting that miR-10a
may have a similar effect in MDS. It has been reported that a
higher level of miR-181a-2 is correlated with better clinical
outcome in patients with AML.[30] Considering the prognostic
role of miR-181a-2 in AML, we inferred that the downregulation
of miR-181a-2 might contribute to the progression of MDS.
Additionally, Wang[11] et al demonstrated that miR-124 is
hypermethylated in MDS, and its hypermethylation is signifi-
cantly correlated with an adverse prognosis. Likewise, we found
that the miR-124 expression inMDSwas significantly lower than
normal control in our study.
In this study, GO analysis showed that differentially expressed

microRNAs were involved in biological processes, such as
hematopoiesis, leukocyte migration, and negative regulation of
leukocyte apoptotic processes, which have been reported to be
major contributor toMDS pathogenesis,[31–33] indicating that the
differentially expressed microRNAs may participate in the
progression of MDS. The KEGG pathway analysis displayed
an involvement of the hematopoietic cell lineage. Previous studies
have shown that MDS is characterized by the abnormal
development of 1 or more hematopoietic cell lineages.[34–36]

http://string-db.org/
http://www.md-journal.com


Figure 3. qRT-PCR validation for differentially-expressed microRNAs in each group. a: For miR-155-5p; b: FormiR-146a-5p; c: For miR-151a-3p; d: For miR-221-
3p; e: For miR-181a-2-3p; f: For miR-125b-5p; g: For miR-124-3p; h: For miR-550a-3p; I: For miR-10a-5p; J: For miR-136-5p. qRT-PCR = quantitative real-time
polymerase chain reaction.
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This may explain how the differentially expressed microRNAs
contribute to the progression of MDS. We created a PPI network
of the potential miRNA target genes and discovered 45 closely
related genes.
Of the microRNAs verified in this study, miR-151a-3p and

miR-550–3p have not been evaluated before in hematopoietic
malignancies, but they have been demonstrated to play a critical
role in other cancers. Latchana[37] et al reported that the
6

expression of miR-151a-3p was significantly decreased in the
plasma of metastatic melanoma patients after surgical resection,
indicating miR-151a-3p may serve as an oncogene in metastatic
melanoma. Similarly, Zhu[38] et al confirmed that miR-151a-3p
was markedly elevated in metastatic renal cell carcinoma and
might promote carcinogenesis by targeting MCL1. In our study,
miR-151a-3p was also markedly elevated in MDS. Further
experiments are required to explore the effect of miR-151a-3p in



Figure 3. (Continued).
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MDS. One study reported that miR-550a-3p was reduced in
breast cancer and was associated with inhibition of disease
development.[39] In this study, ERK1 and ERK2 were confirmed
to be the target genes of miR-550a-3p. Downregulation of miR-
Figure 4. Venn diagram of DEGs. 490 common DEGs were screened out from
the two GEO datasets (GSE114869,GSE107400).

7

550a-3p leads to the upregulation of ERK1 and ERK2. In a
previous study, ERK1/2 has been demonstrated to contribute to
the transformation of MDS into AML.[40] Therefore, we inferred
that the downregulation of miR-550a-3p might promote the
progression of MDS by upregulating ERK1/2. The potential
mechanisms by which miR-550a-3p is involved with should be
evaluated in MDS cell culture models in future studies.
In conclusion, our study revealed 96 significantly upregulated

(eg, miR-146a-5p, miR-151a-3p, miR-125b-5p) and 198
significantly downregulated (eg, miR-181a-2-3p, miR-124-3p,
miR-550a-3p) microRNAs in MDS compared with normal bone
marrow. The PCR results confirmed the microarray analysis: 6
microRNAs (miR-155-5p, miR-146a-5p, miR-151a-3p, miR-
221-3p, miR-125b-5p, miR-10a-5p) expressed significantly
higher while 3 microRNAs (miR-181a-2-3p,miR-124-3p,miR-
550a-3p) exhibited an obviously lower expression in MDS
compared with control. The GO classification and KEGG
analysis demonstrated that differentially expressed micoRNAs
may participate in MDS pathogenesis by regulating hematopoie-
sis, leukocyte migration, leukocyte apoptotic process, and
hematopoietic cell lineage. Further researches are required to
explore the exact mechanism for the differentially expressed
microRNAs in MDS pathogenesis. Hopefully, our study might
provide new strategies for the diagnosis and therapy of MDS.

http://www.md-journal.com


Figure 5. GO classification and KEGG pathway of potential miRNA target genes. KEGG = Kyoto Encyclopedia of Genes and Genomes.

Table 2

Genes were predicted by the 3 prediction algorithms and showed a differential expression in the 2 GEO datasets.

MiRNA Target Gene

miR-155-5p DCLRE1A, RBM47, MBNL3, TDRD9, CSF1R, KIAA0825, MS4A3
miR-146a-5p TFDP2, PM20D2, CHST15, CDC42BPA, MOB1B, STEAP4, HSPA1A, ARHGAP26, CPPED1, SLC11A1, TSPAN5, PECAM1, TBCEL, SBF2, STIL, NUMB,

MBNL3, AQP1, FAXDC2, CDKN3
miR-151a-3p HLTF, SLC8A1, SLC6A6, SERPINA1, AFF2, ANPEP, ACP1, CPOX, KIAA0825
miR-221-3p CHORDC1, FNBP1L, HLTF, SSH2, GPR137B, TNFSF10, CDCA7L, CDK6, TNF, SNCA, TFRC, FIGN, AP3B2, DEPDC1, SMC2, AFF2, DCLRE1A, CXCL12,

LRRCC1, MARCHF8, BMI1, ZNF385A, NUDT21, CYP1B1
miR-125b-5p RNF217, SLC6A6, SNAI1, HCAR2, ARHGAP26, SLC11A1, CCR7, MS4A3, CCDC125, C15orf39, P2RX1, ITGAX, MBNL3, P2RX7, FLVCR2, TFDP2, ACAT1,

HCAR3, LRRC25, CD180, SGOL1, TLR8, ZSWIM6, CD34, MOB3A, CXCL12, SPTB, CD300LB, ANK1, ANPEP, MARCHF8, ZNF385A, CD300E, AHSP
miR-10a-5p FNBP1L, GIMAP8, ANK1, FIGN, ZNF850
miR-181a-2-3p ABCG2, GPR137B, MXI1, MBNL3, SOX6, DISC1, TXNDC5
miR-124-3p TFDP2, FAM129A, ZFP36L1, RBM47, RAD51AP1, IL10RA, CDK6, TMOD1, SGK1, MYH10, NRG1, CPPED1
miR-550a-3p THBD, DISC1, MYH10, TMEM5

GEO = expression omnibus database.

Wan et al. Medicine (2020) 99:27 Medicine
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Figure 6. PPI network. Dots represent genes, and lines represent the interactions. PPI = protein protein interaction.
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