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Abstract

Background: Atmospheric dispersion models (ADMs) may help to assess human exposure to airborne pathogens.
However, there is as yet limited quantified evidence that modelled concentrations are indeed associated to
observed human incidence.

Methods: We correlated human Q fever (caused by the bacterium Coxiella burnetii) incidence data in the Netherlands to
modelled concentrations from three spatial exposure models: 1) a NULL model with a uniform concentration distribution,
2) a DISTANCE model with concentrations proportional to the distance between the source and residential addresses of
patients, and 3) concentrations modelled by an ADM using three simple emission profiles. We used a generalized linear
model to correlate the observed incidences to modelled concentrations and validated it using cross-validation.

Results: ADM concentrations generally correlated the best to the incidence data. The DISTANCE model always
performed significantly better than the NULL model. ADM concentrations based on wind speeds exceeding threshold
values of 0 and 2 m/s performed better than those based on 4 or 6 m/s. This might indicate additional exposure to
bacteria originating from a contaminated environment.

Conclusions: By adding meteorological information the correlation between modelled concentration and observed
incidence improved, despite using three simple emission profiles. Although additional information is needed –
especially regarding emission data - these results provide a basis for the use of ADMs to predict and to visualize the
spread of airborne pathogens during livestock, industry and even bio-terroristic related outbreaks or releases to a
surrounding human population.

Keywords: Pathogens, Q fever, Atmospheric dispersion modelling, Airborne, Coxiella burnetii, Model comparison,
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Background
Airborne transmission of pathogens in the outdoor envir-
onment is characterized by dispersion by the wind (hori-
zontally and vertically). Such pathogens are either isolated
or clustered cells or spores, or cells or spores attached to
particulate matter or dust [1,2]. Well-known examples of
airborne pathogens include:
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– The foot-and-mouth disease virus (FMDV)
(livestock): major outbreaks have occurred in
countries including the UK and France (1981) [3],
Italy (1994) [4], The Netherlands (2001) [5], and the
UK (2001 and 2007) [6,7].

– Coxiella burnetii (livestock), a highly pathogenic
agent causing Q fever in humans and animals.
Major outbreaks have occurred in countries
including Switzerland (1983) with 415 human cases
[8], the UK (1989) with 137 human cases [9], France
(1998–1999) with 73 human cases [10], Germany
(2005) with 331 cases [11], and The Netherlands
(2007–2010) with >4,000 human cases [12];
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– Legionella pneumophila (cooling towers and
industrial sources). Major outbreaks have
occurred, for example, in France (2003–2004) with
86 human cases including 18 fatalities [13], Norway
(2005) with 56 human cases including 10 mortalities
[14], and the Netherlands (2006) with 31 human
cases [15].

– Avian influenza virus (livestock): outbreaks have
occurred world-wide [16];

– Bacillus anthracis (‘anthrax’): one described
outbreak occurred in the former Soviet
Union (1979) [17].

In the case of an early phase of a (future) pathogen
outbreak or release – generally related to (animal) indus-
tries or to bio-terrorism – it is, from a public and animal
health perspective and for economic reasons [18], neces-
sary to require insight in 1) the physical spatial spread of
the pathogen, 2) the population at risk, and 3) the con-
centrations (infectious dose) to which persons and/or
animals are exposed.
Traditional epidemiological spatial analysis techniques,

such as the attack rate analysis, are however only useful
for retrospective analyses and do not incorporate me-
teorological information [19]. Atmospheric dispersion
models (ADMs) – mechanistic models developed to
model the spread of particles and gasses spatially and
temporarily as a function of meteorological conditions
including wind speed and wind direction – may however
be instrumental to simulate the spatial spread of patho-
gens released from a known source. Currently, three
types of investigations using ADMs to simulate farm-to-
farm, human-to-human, farm-to-human, or industrial-
to-human airborne transmission may be distinguished:
(1) qualitative investigations, in which airborne spread
was modelled visually (e.g., [13,14,17,20]); (2) quantita-
tive investigations, in which modelled concentrations
were converted to doses and a quantitative microbial
risk assessment was elaborated using dose–response
models to calculate infection probabilities (e.g., [21,22]);
and (3) the development of emergency preparedness sys-
tems and decision-support systems to be used during fu-
ture outbreaks or releases (e.g., [23-25]). With respect to
points 1 and 2, airborne transmission was generally indi-
cated in case modelled concentrations near infected
farms or humans exceeded threshold values or if infec-
tion probabilities were non-zero.
However, to our knowledge no studies have been pub-

lished analysing the relationship between reported inci-
dence rates, and concentrations modelled by ADM,
using proper quantitative statistical measures. We wish
to answer the question: are meteorological models in-
deed useful to explain observed incidence rates or dis-
ease notifications, or could the observed data also be
explained by simpler models containing no meteoro-
logical information?
Therefore, we aimed at assessing quantitatively whether

ADMs improve the correlation between modelled concen-
trations and observed human disease incidence rates. We
used data from the large Q fever outbreaks in the
Netherlands [12], and correlated ADM concentration
levels to human disease incidence and compared these fits
to more simple concentration models that do not contain
meteorological information, namely 1) a model with a
spatially uniform concentration, and 2) a model with con-
centration levels proportional to distance from the source.
If the ADM concentration levels correlate better with

the human Q fever incidences than the concentration
levels of the simple models, we then conclude that ADMs
might be useful to predict and visualize the spatial and
temporal pathogenic spread in case of an outbreak or
release.

Method
Data
Human case data
Human case data have been made available by the
Municipal Health Services in the Netherlands at the six-
digit zip code level (PC6), i.e. street-level. Following [26],
we focused on three relatively isolated Q fever outbreak
areas where humans experienced exposure to C. burnetii
from a large dairy goat farm as unique source in 2009.
These areas include the Dutch provinces of Utrecht
(area A), Noord-Brabant (area B), and Limburg (area C)
[19,27] (Figure 1). The epidemic curves per week number
in 2009 are shown in Figure 2A, B and C. The specific
farms were classified as source in different investigations
based on bulk tank milk tests, reported abortion numbers,
epidemiological research, and a source detection method
[19,26-30].

Population density data
Population density data at the PC6-level (reference date
1 January 2010) have been made available by Statistics
Netherlands (CBS). The typical maximum distance be-
tween a C. burnetii infected farm and a case’s home
address is 5 – 10 km [19,26]. We therefore selected two
arrays of data: PC6’s up to 5000 m from the source, and
all PC6’s up to 10 km away (Table 1). Dutch legislation
allows using this case information for research purposes
if information is not traceable to individual patients. In
this case, consent of cases is not required. The case in-
formation can however not be made publicly available.

Farm data
Coordinates of the source farms have been made avail-
able by the Ministry of Economic Affairs (reference date
November 2009).



Figure 1 Q fever incidence map. Map of the Q fever incidence (per 100,000 inhabitants) in the Netherlands in 2009, and the location of the
three selected areas with their main source of exposure.
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Concentration data
Simple models
The simple concentration models include:

1) A NULL model with a homogeneous concentration
in space and time.

2) A DISTANCE based model with concentrations
proportional to the distance between residential
addresses of Q fever patients and the farms.
Atmospheric dispersion model
An atmospheric dispersion model (ADM) is a mecha-
nistic model that calculates the physical dispersion of
particles and gasses over space and time as a function of
emission data and meteorological conditions. We used
the Operational Priority Substances Short Term model
(version 10.3.2), developed by the Netherlands National
Institute for Public Health and the Environment (RIVM)
(e.g., [31-34]). We considered particulate matter (PM10) to
be a substitute for C. burnetii. The atmospheric dispersion
model takes into account both dry and wet deposition of
particles.
The OPS model requires hourly-based meteorological

data (temperature, relative humidity, wind speed, wind
direction, precipitation amounts, precipitation duration,
global/solar radiation, and snow cover status) as input
for the calculations. These data were retrieved from the
Royal Netherlands Meteorological Institute (KNMI) and
were determined at the meteorological stations. We
spatially interpolated these data to obtain values at farm lo-
cations (see Additional file 1: Text S1 and Additional file 2:
Figure S16, Additional file 3: Figure S17 and Additional
file 4: Figure S18 for a detailed description of the meteoro-
logical data preparation). Precipitation data was deduced
from precipitation radar images and was available at a 1
km resolution.
The output of the OPS-ST model consisted of hourly

averaged PM10-concentration matrices (250 m resolu-
tion), which we converted to period-specific (see next
section) averaged concentration maps. We normalized
the concentration values per PC6 to the maximum
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Figure 2 Epidemic curves and emission profiles. (A/B/C) Epidemic curves of the three selected areas in number of cases per week; (D)
lognormal emission profile of area C (lNormEpi), both as fit of the epidemic curve (dotted) and shifted 20.7 days back in time (solid); (E) steady-state
emission profile during 2009 (conYear, dotted) and steady-state emission profile during epidemic (conEpi, solid) in area C; (F) idem as emission profile
conEpi in subplot E, but with a threshold wind velocity of 4 m/s.

Table 1 Number of cases, number of inhabitants (including cases), incidence per 100,000 inhabitants, and number of
zip codes within 5 km and 10 km from the sources in areas A, B, and C

# Cases # Inhabitants Incidence per 100,000 # Zip codes

5 km 10 km 5 km 10 km 5 km 10 km 5 km 10 km

A 66 101 120,090 494,533 55 20 3,025 12,842

B 215 267 75,720 181,195 283 147 1,836 4,526

C 131 220 34,729 228,778 377 96 977 6,095
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concentration in the grid (i.e. the concentration at the
source).

Emission profiles (ADM)
No data were available on the emission strength of C. bur-
netii. Therefore we defined three simple emission profiles
(Table 2):

A) Emission profile “conYear”: steady-state emission
strength during the entire period (year 2009)
(Figure 2E).

B) Emission profile “lNormEpi”: a lognormal emission
profile based on the epidemic curve per area, which
corresponds well with the lambing season at the
farms (Figure 2D).

C) Emission profile “conEpi”: constant emission
strength starting at the day of the 2.5% percentile
and ending at the day of the 97.5% percentile of the
lagged profile “lNormEpi” (Figure 2E), that is from
27 March to 5 July (area A), 23 February to 8 June
(B), and 6 February to 4 October (C).

Although the actual emission profiles will have been
much more complex, there is some biological justifica-
tion for the simple profiles. If one ignores wind direction
and meteorological conditions, then a steady-state emis-
sion profile is related to a steady-state exposure level.
A steady-state exposure seems plausible if goats were
shedding bacteria successively during a certain period
and/or the farm’s surrounding environment was con-
taminated as well – the inactivation rate of C. burnetii
is very low [35] - therefore leading to multiple sources.
A lognormal emission profile could be related to a

combination of processes: (1) a (very) short period of
high shedding occurred, leading to a normal epidemic
curve since the incubation period is distributed normal,
or to a lognormal epidemic curve as a result of the
normal-distributed incubation period in combination
with a contaminated environment; (2) the shedding rate
was time-dependent and followed a (log)normal curve,
Table 2 Characteristics of the three simple emission profiles a

Name Type Period

conYear Constant [1-Jan-2009; 3

lNormEpi Lognormal: lagged 20.7 days back
in time (mean incubation period)

[1-Jan-2009; 3

conEpi Constant Area A: [21-Ma

Area B: [19-Fe

Area C: [11-Fe
potentially leading to a lognormal epidemic curve if a
contaminated environment is considered as well.
In addition we considered four threshold wind speeds

for emission of C. burnetii, namely 0, 2, 4 and 6 m.s−1

(profiles V0, V2, V4, and V6 respectively). In the case
where the hourly wind speed at the farm was lower than
the threshold value, we assumed that bacteria would ac-
cumulate in the stable and would be released during the
next hour that the wind speed threshold was exceeded
(Figure 2F). The reason for this choice is that stables of
large dairy goat farms are very open to the outdoor en-
vironment; thus, pathogens deposited on stable floors
and surfaces can easily be aerosolized by strong enough
winds, and then be dispersed to the farm’s surrounding
environment.

Statistical analysis
Incidence versus concentration
The dose–response relationship for infectious micro-
organisms like C. burnetii is given by (e.g., [36]):

pi ¼ 1− exp −κλið Þ ð1Þ
with pi being the probability of infection at PC6 i, κ be-
ing the single-hit probability of initiating infection, and
λi being the dose at PC6 i [number of pathogens]. Since
the observed overall incidence of Q fever during the
Dutch epidemic is relatively small (Table 1), we can
assume that the doses λ were relatively small too. Since
exp(λ) ≅ 1 + λ for small values of λ, equation [1] ap-
proaches a linear equation:

pi≅κ⋅λi ð2Þ
For each PC6 i we determined the number of cases ki

and inhabitants ni. Assuming that the probability of
infection p is equal to the incidence I, and that the
log-dose λ is proportional to the log-concentration,
one could test which concentration model (NULL,
DISTANCE, or ADM with the emission and wind speed
threshold configurations) gives the best fit to the incidence
s input for the ADM model

Comments

1-Dec-2009]

1-Dec-2009] Area A: μ = 3.1 weeks, σ = 0.20 weeks

Area B: μ = 2.9 weeks, σ = 0.25 weeks

Area C: μ = 2.9 weeks, σ = 0.29 weeks

Calculated with R function MASS∷fitdistr().

r-2009; 31-Jul-2009] Based on the 2.5% and 97.5% percentile of
profile ‘lNormEpi’.

b-2009; 25-Jun-2009]

b-2009; 28-Jun-2009]
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by means of a Poisson generalized linear model (R version
3.0.3):
ki ~ Poisson(μi)

log μ
→
� �

¼ log n→
� �

þ β0 þ β1⋅ log f x→
� �h i

ð3Þ

where μ is the expected outcome, β0 and β1 are the
intercept and slope of the log-linear fit, and f(x) is the
concentration function. In order to fulfil the linear con-
ditions of equation [2], the slope should approximate 1
(i.e. β1 ≈ 1):

exp log μ
→
� �h i

¼ exp log n
→
� �

þ β0 þ β1 log f x
→
� �h ih i

ð4Þ
which equals

μ
→

n
→ ¼ exp β0

� �
⋅ f xð Þβ1 ð5Þ

and thus exp[β0] ~ κ.
For the NULL model, we defined f(x) = 1, for the

DISTANCE model f xð Þ ¼ r
→−2, and for the ADM-models

f(x) is a function of a large set of meteorological equations.

Model comparison
To compare the performance of the NULL, DISTANCE
and ADM models we applied a cross validation test [37].
That is, for each of these models we randomly selected
2/3 of the number of PC6’s (training data) and estimated
the intercept (β0) and the slope (β1) of equation [3]. Sub-
sequently, we applied that linear model to the remaining
1/3 of the data (test data), predicted their outcome, and
calculated the residual deviances (δc) for each cross
validation test c. Finally, we calculated the total residual
deviance (dc), being the sum of the residual deviances.
We repeated this cross validation test 10,000 times, and
calculated the mean total residual deviance D per con-
centration model:

D ¼ 1
v
⋅
X
p

dp ¼ 1
v
⋅
X
c

X
q

δq

 !
c

ð6Þ

with v = 10,000 and c = 1…v.
Finally, we compared the D-values of the different

concentration models by means of a two-sample t-test
with 5% significance.

Results
Mean total residual deviance (D)
Figure 3 and Table 3 show that in area A the ADM’s
with profiles conEpi-V0 and conEpi-V2 have the lowest
D (±7.8% lower than the NULL model). The DISTANCE
model has a 4.5% lower D than the NULL model. The
ADMs with an annual constant emission profile (con-
Year) always performed worse than the DISTANCE
model; this corresponds well with the observed short
duration of the epidemic in this area (Figure 2A). The
ADMs with profile V6 performed approximately equal
to the NULL model. Increase of the selection radius to
10 km (Figure 4, Table 4) did not lead to major changes,
although the indexed D’s are lower. Note that D for the
conEpi-V0 model is significantly lower than that of the
conEpi-V2 model.
In area B, the results differ considerably compared to

area A. The D-values of all models, except for the ADM-
models with V6, are approximately 10% lower than that
of the NULL model. The differences in D between the
DISTANCE model and the ADM’s with V0,V2 and V4 are
small, but the model with conYear-V4 still performs sig-
nificantly better than the DISTANCE model (p < 0.05).
For the 10 km selection radius (Figure 4), the D-values

are ± 17% lower than that of the NULL model (ADM
V6-models not included). In this case, conEpi-V0 gives
the best performance, but the differences in D with
respect to the DISTANCE and ADMs with V0, V2 and
V4 remain small.
In area C the difference in D between the DISTANCE

and the NULL model is 11.5%, and all ADM’s (except
for lNormEpi-V6) performed better with a D of ± 16-23%
lower than that of the NULL model. The best perform-
ance is given by conYear-V2 (seeming to correspond
with the longer duration of the epidemic as depicted in
Figure 2C). Note that in general the ADM’s with
lNormEpi have the highest D, and that the ADMs
with conYear all result in relatively low D-values, even
with V4 and V6.
For the 10 km selection radius (Figure 4) the D-

values of all models improves compared to the NULL
model, but all ADM’s with V4 and V6 have a significantly
higher D than the DISTANCE model. The ADM’s with
profiles conEpi-V0 and conYear-V2 have the lowest
D-values.
Additional file 5: Figure S1, Additional file 6: Figure S2

and Additional file 7: Figure S3 show the ADM concen-
tration plots for all emission curves and threshold
wind velocities of areas A, B and C. Additional file 8:
Figure S4, Additional file 9: Figure S5, Additional file
10: Figure S6, Additional file 11: Figure S7, Additional
file 12: Figure S8 and Additional file 13: Figure S9
show the predicted versus observed incidence rates per
PC6 of areas A, B and C as a function of the selection
radii of 5 and 10 km. Additional file 14: Figure S10,
Additional file 15: Figure S11, Additional file 16: Figure
S12, Additional file 17: Figure S13, Additional file 18:
Figure S14 and Additional file 19: Figure S15 show the
geographical plots of the observed and predicted inci-
dence rates.
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Figure 3 D-values (5 km). D-values of the NULL, DISTANCE and ADM-models, relative to the D-value of the NULL model, based on all PC6’s
within 5 km of the source. The vertical black line represents the D-value of the DISTANCE model. The Roman numerals refer to groups of models
with a significantly equal D value (I = significantly lowest D-value; II = D significantly lower than those of I, etc.).
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Validation of the dose–response linearity
From equation [2] and [5] we inferred that ideally the
slope of the log-linear fits (β1 ) would approximate 1 if
the overall doses were relatively low. In area A, this
boundary condition is met for the four best models (con-
sidering the 95% confidence interval) (Tables 3 and 4). In



Table 3 Five km results with mean total residual deviances (D) and each model’s ranked position

Area Model Emission V β0 (intercept) β1 (slope) D Position

μ 95% CI p* μ 95% CI p*

A ADM conEpi 0 −2.48 [−4.03;-0.94] 4.5E-03 0.99 [0.67;1.31] 9.9E-06 150.9 I

A ADM conEpi 2 −2.64 [−4.22;-1.07] 2.6E-03 0.90 [0.59;1.20] 1.8E-05 151.3 I

A ADM lNormEpi 0 −2.98 [−4.58;-1.37] 6.5E-04 0.91 [0.58;1.24] 1.0E-04 154.0 II

A ADM lNormEpi 2 −3.16 [−4.78;-1.54] 3.5E-04 0.81 [0.50;1.12] 1.6E-04 154.5 II

A ADM conEpi 4 −3.74 [−5.30;-2.17] 2.4E-05 0.58 [0.33;0.83] 2.0E-04 155.1 III

A DISTANCE - - −2.33 [−4.30;-0.35] 5.4E-02 0.59 [0.36;0.81] 8.8E-04 156.5 IV

A ADM lNormEpi 4 −4.37 [−5.93;-2.82] 6.2E-07 0.49 [0.24;0.74] 1.9E-03 157.8 V

A ADM conYear 0 −4.45 [−6.24;-2.66] 2.4E-06 0.60 [0.24;0.96] 1.2E-02 161.0 VI

A ADM conYear 4 −5.54 [−7.29;-3.79] 8.3E-09 0.31 [0.03;0.59] 7.6E-02 162.8 VII

A ADM conEpi 6 −5.74 [−7.19;-4.29] 3.6E-09 0.27 [0.05;0.49] 5.3E-02 162.9 VII

A ADM conYear 2 −5.33 [−7.28;-3.39] 2.4E-07 0.39 [0.04;0.75] 8.5E-02 163.8 VIII

A NULL - - −7.51 [−7.80;-7.21] 0 - - - 163.9 VIII

A ADM lNormEpi 6 −6.19 [−7.67;-4.70] 1.4E-11 0.19 [−0.02;0.40] 1.5E-01 164.0 VIII

A ADM conYear 6 −6.75 [−8.44;-5.06] 4.6E-12 0.11 [−0.13;0.36] 4.1E-01 165.1 IX

B ADM conYear 4 −1.24 [−2.25;-0.24] 4.7E-02 0.74 [0.57;0.90] 2.6E-11 264.1 I

B DISTANCE - - −2.00 [−2.79;-1.20] 2.1E-03 0.72 [0.57;0.88] 2.6E-12 265.0 II

B ADM conEpi 0 −1.89 [−2.72;-1.05] 4.8E-03 0.85 [0.67;1.04] 3.1E-12 265.5 II

B ADM lNormEpi 0 −2.01 [−2.83;-1.19] 3.0E-03 0.84 [0.65;1.02] 5.5E-12 266.1 III

B ADM conEpi 2 −1.88 [−2.78;-0.98] 3.9E-03 0.78 [0.60;0.96] 5.7E-11 267.0 IV

B ADM lNormEpi 2 −1.94 [−2.82;-1.05] 4.2E-03 0.77 [0.59;0.95] 3.7E-10 267.3 IV

B ADM conYear 0 −1.62 [−2.51;-0.73] 2.9E-02 0.84 [0.66;1.02] 2.9E-11 268.4 V

B ADM lNormEpi 4 −2.14 [−3.09;-1.18] 3.7E-04 0.64 [0.47;0.81] 5.9E-10 268.4 V

B ADM conEpi 4 −2.36 [−3.31;-1.42] 6.0E-05 0.59 [0.43;0.76] 5.9E-09 270.6 VI

B ADM conYear 2 −1.56 [−2.51;-0.61] 4.4E-02 0.77 [0.59;0.94] 7.1E-11 270.8 VI

B ADM conYear 6 −3.01 [−4.05;-1.98] 7.6E-06 0.40 [0.25;0.55] 2.8E-05 281.9 VII

B ADM conEpi 6 −4.52 [−5.22;-3.82] 5.4E-23 0.18 [0.09;0.28] 1.7E-03 288.2 VIII

B ADM lNormEpi 6 −4.52 [−5.28;-3.75] 1.1E-22 0.18 [0.08;0.28] 4.5E-03 289.2 IX

B NULL - - −5.86 [−6.03;-5.70] 0 - - - 294.1 X

C ADM conYear 2 1.17 [−0.01;2.35] 0.11 1.27 [1.03;1.51] 1.7E-15 156.2 I

C ADM conEpi 2 0.99 [−0.24;2.21] 0.18 1.22 [0.97;1.46] 1.7E-15 159.8 II

C ADM conYear 6 −0.25 [−1.36;0.86] 0.54 0.86 [0.66;1.05] 6.6E-13 160.0 II

C ADM conYear 4 0.00 [−1.19;1.19] 0.61 0.94 [0.73;1.16] 1.4E-12 160.4 III

C ADM conEpi 0 1.21 [0.17;2.26] 0.10 1.35 [1.13;1.57] 3.9E-19 161.0 III

C ADM conYear 0 1.13 [0.07;2.18] 0.15 1.34 [1.11;1.56] 4.7E-18 162.8 IV

C ADM lNormEpi 4 0.20 [−1.15;1.55] 0.58 0.97 [0.73;1.21] 2.7E-11 167.1 V

C ADM conEpi 4 −0.06 [−1.42;1.29] 0.57 0.91 [0.67;1.15] 1.1E-10 168.6 VI

C ADM lNormEpi 0 0.97 [−0.11;2.05] 0.22 1.31 [1.08;1.53] 2.5E-17 169.0 VI

C ADM lNormEpi 2 0.55 [−0.74;1.84] 0.45 1.13 [0.88;1.39] 2.7E-13 169.0 VI

C ADM conEpi 6 −0.52 [−1.72;0.69] 0.42 0.78 [0.58;0.98] 1.8E-10 170.5 VII

C DISTANCE - −0.28 [−1.39;0.82] 0.39 0.98 [0.77;1.20] 1.2E-11 180.3 VIII

C ADM lNormEpi 6 −1.81 [−3.08;-0.54] 0.02 0.57 [0.37;0.76] 1.7E-06 187.9 IX

C NULL - −5.58 [−5.79;-5.37] 0.00 - - 203.8 X

*Italic p-values for β0 and β1 indicate p ≥ 0.05.
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areas B and C, the condition is (almost) met for the
majority of the models. These results support a linear
dose response relation.
Discussion
In the current study, we correlated observed Q fever in-
cidence numbers to modelled averaged concentrations



Table 4 Ten km results with mean total residual deviances (D) and each model’s ranked position

Area Model Emission V β0 β1 D Position

μ 95% CI p* μ 95% CI p*

A ADM conEpi 0 −1.97 [−3.04;-0.89] 2.0E-03 1.11 [0.91;1.30] 2.0E-14 273.4 I

A ADM conEpi 2 −2.04 [−3.15;-0.93] 1.5E-03 1.03 [0.84;1.22] 3.3E-14 276.8 II

A ADM lNormEpi 0 −2.27 [−3.36;-1.18] 2.8E-04 1.07 [0.87;1.28] 9.7E-14 278.2 III

A ADM lNormEpi 2 −2.32 [−3.45;-1.20] 2.1E-04 1.00 [0.80;1.19] 8.5E-14 280.1 IV

A ADM conEpi 4 −2.77 [−4.01;-1.52] 7.0E-05 0.79 [0.60;0.97] 1.3E-10 288.0 V

A DISTANCE - - −1.18 [−2.48;0.12] 2.2E-01 0.75 [0.61;0.89] 1.1E-11 291.6 VI

A ADM conYear 0 −3.19 [−4.37;-2.01] 4.7E-07 0.91 [0.69;1.12] 5.3E-10 292.0 VI

A ADM lNormEpi 4 −3.33 [−4.58;-2.09] 1.6E-06 0.72 [0.53;0.90] 4.9E-09 292.3 VI

A ADM conYear 2 −3.97 [−5.30;-2.63] 3.2E-08 0.72 [0.50;0.94] 1.3E-06 301.8 VII

A ADM conYear 4 −4.44 [−5.83;-3.06] 3.9E-09 0.57 [0.37;0.77] 3.0E-05 304.6 VIII

A ADM conEpi 6 −5.45 [−6.81;-4.09] 2.3E-10 0.41 [0.22;0.60] 1.0E-03 309.1 IX

A ADM lNormEpi 6 −5.90 [−7.28;-4.52] 1.8E-12 0.34 [0.15;0.52] 4.5E-03 312.5 X

A ADM conYear 6 −6.02 [−7.51;-4.54] 3.5E-13 0.33 [0.13;0.52] 1.4E-02 313.5 X

A NULL - - −8.50 [−8.74;-8.26] 0 - - - 316.2 XI

B ADM conEpi 0 −1.48 [−2.10;-0.86] 3.1E-03 0.96 [0.83;1.08] 1.4E-32 391.7 I

B DISTANCE - - −1.63 [−2.23;-1.04] 8.1E-04 0.81 [0.70;0.91] 8.0E-33 393.1 II

B ADM lNormEpi 0 −1.57 [−2.18;-0.97] 2.4E-03 0.95 [0.82;1.07] 9.4E-34 393.5 II

B ADM conEpi 2 −1.29 [−1.95;-0.64] 8.7E-03 0.92 [0.79;1.04] 4.5E-30 395.1 III

B ADM lNormEpi 2 −1.34 [−1.99;-0.69] 9.3E-03 0.91 [0.79;1.03] 2.2E-31 395.5 III

B ADM conYear 4 −0.86 [−1.63;-0.09] 7.4E-02 0.82 [0.70;0.93] 1.7E-27 397.4 IV

B ADM conYear 0 −1.13 [−1.78;-0.47] 4.3E-02 0.96 [0.83;1.08] 1.5E-32 398.0 IV

B ADM lNormEpi 4 −1.55 [−2.26;-0.84] 6.3E-04 0.77 [0.65;0.88] 2.9E-27 399.3 V

B ADM conEpi 4 −1.62 [−2.33;-0.91] 2.6E-04 0.75 [0.63;0.87] 3.7E-27 401.6 VI

B ADM conYear 2 −0.95 [−1.65;-0.24] 9.7E-02 0.91 [0.79;1.03] 1.2E-28 406.7 VII

B ADM conYear 6 −2.40 [−3.20;-1.59] 2.0E-05 0.53 [0.42;0.64] 1.0E-14 433.2 VIII

B ADM conEpi 6 −3.74 [−4.43;-3.04] 3.2E-19 0.36 [0.26;0.45] 6.5E-10 449.3 IX

B ADM lNormEpi 6 −3.74 [−4.49;-2.99] 3.4E-15 0.35 [0.25;0.44] 1.4E-08 455.0 X

B NULL - - −6.52 [−6.67;-6.37] 0 - - - 479.0 XI

C ADM conEpi 0 1.36 [0.61;2.11] 8.5E-03 1.39 [1.26;1.53] 8.7E-49 386.5 I

C ADM conYear 2 1.63 [0.80;2.46] 3.0E-03 1.39 [1.25;1.54] 2.0E-48 387.1 I

C ADM conYear 0 1.35 [0.61;2.10] 9.4E-03 1.40 [1.26;1.54] 6.6E-49 388.0 II

C ADM conEpi 2 1.54 [0.68;2.40] 6.5E-03 1.36 [1.21;1.51] 1.1E-42 392.6 III

C ADM lNormEpi 0 1.23 [0.47;1.98] 1.8E-02 1.38 [1.24;1.52] 8.7E-45 395.2 IV

C ADM lNormEpi 2 1.34 [0.46;2.23] 1.9E-02 1.33 [1.18;1.48] 1.1E-39 403.3 V

C DISTANCE - - 0.36 [−0.35;1.07] 4.4E-01 1.13 [1.01;1.25] 9.1E-45 411.0 VI

C ADM conYear 4 0.36 [−0.58;1.29] 4.3E-01 1.08 [0.93;1.23] 1.3E-24 415.1 VII

C ADM conYear 6 −0.17 [−1.08;0.74] 5.2E-01 0.95 [0.81;1.09] 1.8E-23 416.4 VIII

C ADM lNormEpi 4 0.71 [−0.29;1.71] 2.7E-01 1.12 [0.96;1.28] 3.8E-21 418.6 IX

C ADM conEpi 6 −0.05 [−1.01;0.91] 5.6E-01 0.93 [0.79;1.07] 7.3E-25 420.9 X

C ADM conEpi 4 0.43 [−0.59;1.46] 4.1E-01 1.07 [0.91;1.23] 7.2E-23 422.6 XI

C ADM lNormEpi 6 −0.68 [−1.66;0.30] 2.6E-01 0.83 [0.69;0.97] 1.4E-21 439.3 XII

C NULL - - −6.95 [−7.11;-6.79] 0 - - - 512.8 XIII

*Italic p-values for β0 and β1 indicate p ≥ 0.05.
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of C. burnetii from two simple concentration models
(NULL and DISTANCE) and of an atmospheric disper-
sion model with varying emission profiles and threshold
wind speed. If all cases were uniformly distributed over
the outbreak area, the model with the spatially homoge-
neous concentration (NULL model) should have had the
best fit.
Instead, the DISTANCE model always performed better

than the NULL model, which is possibly due to clustering
of cases around the infected farms (a similar pattern was
observed in previous study [26]). In addition, the observed
incidence numbers correlated significantly better to the
concentrations of some ADM models in all areas (but
with small differences compared to the DISTANCE model
in one of the three areas), indicating that meteorological
conditions might have played a role during the Dutch Q
fever epidemic.
The best fitting ADM models all had a slope in

the log-linear fit (β1) approximately equal to 1 or
with the same order of magnitude. This might be an
indication for relatively low doses, as is supported by
C. burnetii measurements that were performed in
2009 [38].
In this study we applied a threshold wind speed for

emission for two reasons. First, turbulent movements
of the air are required to aerosolize the bacteria de-
posited on stable surfaces by dairy goats. Secondly,
introduction of a threshold wind speed caused the annu-
ally averaged concentrations to be direction dependent
(Figures S1-S3).
We conclude that, in general, the ADMs with a

threshold wind speed of 0 or 2 m/s performed best.
However, for aerosolization higher threshold wind
speeds are required generally [39], especially in case of
rough terrain such as a farm environment. We think
two physical explanations exist for the relatively better
performance of V0 and V2 profiles. Firstly, a sufficient
amount of bacteria may have been aerosolized in the
stable not only by the wind, but also by physical ac-
tivity within the stable (e.g., feeding operations and
movements of goats). Secondly, the surrounding en-
vironment of the goat stables may have been contami-
nated during the epidemic – given the high persistence
of C. burnetii in the environment [35] – and thus a lar-
ger surface source may have developed. Thus, cases
could have been infected from a wider range of wind
directions.
Additional file 8: Figure S4, Additional file 9: Figure

S5, Additional file 10: Figure S6, Additional file 11:
Figure S7, Additional file 12: Figure S8 and Additional
file 13: Figure S9 show the scatterplots of the predicted
versus observed incidence rates in the three areas;
Additional file 14: Figure S10, Additional file 15: Figure S11,
Additional file 16: Figure S12, Additional file 17: Figure S13,
Additional file 18: Figure S14, Additional file 19: Figure
S15 and Additional file 2: Figure S16 show the geo-
graphical prediction plots. These plots make clear
that the statistical Q fever incidence prediction (in a
statistical sense) should be improved further. In general,
the data are rather scattered and not close to the 1×1
line. We think several causes may explain the moderate
predictability:

1) Lack of actual emission data, as a result
of which actual concentrations might have
deviated significantly from modelled
concentrations.

2) Timing of concentration values (linked to point
1). Since time-dependent emission curves were
unknown, we correlated observed incidence
rates to cumulative concentration values.
However, in reality, cases might have been
infected after exposure to a particular dose or
particular cumulative dose.

3) Presence of a contaminated environment. The
total Q fever epidemic in the Netherlands lasted
four years with seasonal outbreaks. Although we
specifically focused on 2009, infections also
occurred in other years in the selected areas.
Results from both bulk tank milk sampling [28]
and goat vaginal swab sampling [38,40,41]
indicated that the source farms had already
been positive in 2008. Indeed, the farm in
area B had already caused a human outbreak
in 2008 [19]. This may have resulted in an
already contaminated environment prior to
2009 [42,43], favoured by the relatively low
decay rate of C. burnetii [35]. A combination
of emission from infected farms as well as
emission from contaminated surrounding
environments could have resulted in the
clear absence of a (wind) direction dependent
incidence pattern in area B.

4) Complex human mobility patterns: the health
outcome of exposure to an infectious agent is
generally dependent on the type and virulence of the
pathogen, its concentration (or infectious dose), the
exposure (both frequency and duration) and the
immune status and general health status of the
susceptible host. In that perspective, actual exposure
is more difficult to assess in the case of humans
than in the case of animals, since humans are very
mobile. Although Dutch people spend approximately
70% of their time at home [44], it is very well
possible that cases might have been infected on
other locations than their own PC6, or non-cases
might have ‘missed’ out on days with high exposure
on their PC6. In this study we did not have
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information on case activity patterns, although
this might be important for a better risk analysis
as a very small number of bacteria are able to
cause infection [45,46]. Nevertheless, since the
ADM correlation results were best for area C
and since the results in our previous
distance-based study showed much more
contrast in area C compared to the other
areas [26], we think that either the fraction
of infected persons in area C that were indeed
infected within their PC6 was higher than
in the other areas, or other sources of
C. burnetii were not present in this area
(or a combination of both).

5) Spatially heterogeneous awareness of Q fever among
the population, resulting in a bias in the observed
incidence.

6) Protective immunity from childhood [30] or
immunity caused by infections in 2007 or 2008. A
recent study confirmed that in humans with acute Q
fever the level of antibodies remains high for several
years [47].

7) Infection by other sources, either by a (small)
unknown source in the areas themselves, or by a
source in another part of the country.

Nevertheless, we showed that concentrations based on
meteorological conditions correlated better to observed
incidences than the NULL and DISTANCE based models,
despite the fact that (1) actual emission data was lacking
(thus simple emission profiles were useful), (2) the total
exposure time was quite long, and (3) probable transmis-
sion by a contaminated environment could have influ-
enced the observations.
We recommend repeating this study using similar data

sets, and to repeat it for outbreaks or releases with air-
borne transmission during a relatively short period. That
way, airborne pathogenic transmission to humans could
be separated easier from transmission from a contami-
nated surrounding environment. In addition, it would be
necessary to determine realistic emission strengths for
C. burnetii to calculate exposure levels and infection prob-
abilities using dose–response models [46].
To our knowledge this is the first study that attempts

to quantify applicability of an atmospheric dispersion
model for a pathogen outbreak considering human in-
fections during an outbreak. Our results indicated that
ADMs yield some promising results and that they can
be used for livestock related outbreaks although more
extensive validation work is needed, under different cir-
cumstances. This may make ADMs to serve as tools for
environmental planning purposes to visualize and pre-
dict the spread of microbes from farms and industries to
surrounding human populations.
Additional files

Additional file 1: Text S1. Meteorological data processing.

Additional file 2: Figure S16. Interpolation maps (1). Measurements
and interpolated data of global radiation, relative humidity, temperature
and snow cover status for randomly selected hours in 2009.

Additional file 3: Figure S17. Interpolation maps (2). Measured and
interpolated wind speed and wind direction for a randomly selected
hour in 2009.

Additional file 4: Figure S18. Precipitation radar image. A semi-random
selected precipitation radar image with the converted precipitation intensity
at several locations in the Netherlands.

Additional file 5: Figure S1. Concentration maps (area A).
Log-transformed ADM concentration maps (relative to the maximum
concentration in the grid) with emission profiles conYear, conEpi, and
lNormEpi, and threshold wind speed profiles V0, V2, V4 and V6 (area A).

Additional file 6: Figure S2. Concentration maps (area B).
Log-transformed ADM concentration maps (relative to the maximum
concentration in the grid) with emission profiles conYear, conEpi, and
lNormEpi, and threshold wind speed profiles V0, V2, V4 and V6 (area B).

Additional file 7: Figure S3. Concentration maps (area C).
Log-transformed ADM concentration maps (relative to the maximum
concentration in the grid) with emission profiles conYear, conEpi, and
lNormEpi, and threshold wind speed profiles V0, V2, V4 and V6 (area C).

Additional file 8: Figure S4. Predicted versus observed incidence rates
(area A, 5 km). Area A, selection radius 5 km: Predicted (y) versus observed (x)
incidence rates per PC6 for the NULL, DISTANCE and ADM models. The solid
line displays the 1×1 curve. PC6’s with no observed cases are not included.

Additional file 9: Figure S5. Predicted versus observed incidence rates
(area B, 5 km). Area B, selection radius 5 km: Predicted (y) versus observed (x)
incidence rates per PC6 for the NULL, DISTANCE and ADM models. The solid
line displays the 1×1 curve. PC6’s with no observed cases are not included.

Additional file 10: Figure S6. Predicted versus observed incidence rates
(area C, 5 km). Area C, selection radius 5 km: Predicted (y) versus observed (x)
incidence rates per PC6 for the NULL, DISTANCE and ADM models. The solid
line displays the 1×1 curve. PC6’s with no observed cases are not included.

Additional file 11: Figure S7. Predicted versus observed incidence
rates (area A, 10 km). Area A, selection radius 10 km: Predicted (y) versus
observed (x) incidence rates per PC6 for the NULL, DISTANCE and ADM
models. The solid line displays the 1×1 curve. PC6’s with no observed
cases are not included.

Additional file 12: Figure S8. Predicted versus observed incidence
rates (area B, 10 km). Area B, selection radius 10 km: Predicted (y) versus
observed (x) incidence rates per PC6 for the NULL, DISTANCE and ADM
models. The solid line displays the 1×1 curve. PC6’s with no observed
cases are not included.

Additional file 13: Figure S9. Predicted versus observed incidence rates
(area C, 10 km). Area C, selection radius 10 km: Predicted (y) versus observed (x)
incidence rates per PC6 for the NULL, DISTANCE and ADM models. The solid
line displays the 1×1 curve. PC6’s with no observed cases are not included.

Additional file 14: Figure S10. Geographical observed and predicted
incidence map (area A, 5 km). Area A, selection radius 5 km: Geographical
observed and predicted incidence rates per 100,000 inhabitants
aggregated to a raster at the 250 m level (log10-scale). Grey pixels
represent incidence rates of 0.

Additional file 15: Figure S11. Geographical observed and predicted
incidence map (area B, 5 km). Area B, selection radius 5 km: Geographical
observed and predicted incidence rates per 100,000 inhabitants
aggregated to a raster at the 250 m level (log10-scale). Grey pixels
represent incidence rates of 0.

Additional file 16: Figure S12. Geographical observed and predicted
incidence map (area C, 5 km). Area C, selection radius 5 km: Geographical
observed and predicted incidence rates per 100,000 inhabitants
aggregated to a raster at the 250 m level (log10-scale). Grey pixels
represent incidence rates of 0.
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http://www.ij-healthgeographics.com/content/supplementary/s12942-015-0003-y-s10.pdf
http://www.ij-healthgeographics.com/content/supplementary/s12942-015-0003-y-s11.pdf
http://www.ij-healthgeographics.com/content/supplementary/s12942-015-0003-y-s12.pdf
http://www.ij-healthgeographics.com/content/supplementary/s12942-015-0003-y-s13.pdf
http://www.ij-healthgeographics.com/content/supplementary/s12942-015-0003-y-s14.pdf
http://www.ij-healthgeographics.com/content/supplementary/s12942-015-0003-y-s15.pdf
http://www.ij-healthgeographics.com/content/supplementary/s12942-015-0003-y-s16.pdf


van Leuken et al. International Journal of Health Geographics  (2015) 14:14 Page 13 of 14
Additional file 17: Figure S13. Geographical observed and predicted
incidence map (area A, 10 km). Area A, selection radius 10 km:
Geographical observed and predicted incidence rates per 100,000
inhabitants aggregated to a raster at the 250 m level (log10-scale).
Grey pixels represent incidence rates of 0.

Additional file 18: Figure S14. Geographical observed and predicted
incidence map (area B, 10 km). Area B, selection radius 10 km:
Geographical observed and predicted incidence rates per 100,000
inhabitants aggregated to a raster at the 250 m level (log10-scale).
Grey pixels represent incidence rates of 0.

Additional file 19: Figure S15. Geographical observed and predicted
incidence map (area C, 10 km). Area C, selection radius 10 km:
Geographical observed and predicted incidence rates per 100,000
inhabitants aggregated to a raster at the 250 m level (log10-scale).
Grey pixels represent incidence rates of 0.
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