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AbstrAct
Introduction Invasive pneumococcal disease (IPD), 
caused by Streptococcus pneumoniae, is a leading cause 
of pneumonia, meningitis and septicaemia worldwide, with 
increased morbidity and mortality in HIV-infected children.
Objectives We aimed to compare peripheral blood 
expression profiles between HIV-infected and uninfected 
children with pneumococcal meningitis and controls, and 
between survivors and non-survivors, in order to provide 
insight into the host inflammatory response leading to 
poorer outcomes.
Design and setting Prospective case–control 
observational study in a tertiary hospital in Malawi
Participants Children aged 2 months to 16 years with 
pneumococcal meningitis or pneumonia.
Methods We used the human genome HGU133A 
Affymetrix array to explore differences in gene expression 
between cases with pneumococcal meningitis (n=12) and 
controls, and between HIV-infected and uninfected cases, 
and validated gene expression profiles for 34 genes using 
real-time quantitative PCR (RT-qPCR) in an independent 
set of cases with IPD (n=229) and controls (n=13). 
Pathway analysis was used to explore genes differentially 
expressed.
results Irrespective of underlying HIV infection, 
cases showed significant upregulation compared with 
controls of the following: S100 calcium-binding protein 
A12 (S100A12); vanin-1 (VNN1); arginase, liver (ARG1); 
matrix metallopeptidase 9 (MMP9); annexin A3 (ANXA3); 
interleukin 1 receptor, type II (IL1R2); CD177 molecule 
(CD177); endocytic adaptor protein (NUMB) and S100 
calcium-binding protein A9 (S100A9), cytoskeleton-
associated protein 4 (CKAP4); and glycogenin 1 (GYG1). 
RT-qPCR confirmed differential expression in keeping 
with microarray results. There was no differential gene 
expression in HIV-infected compared with HIV-uninfected 
cases, but there was significant upregulation of folate 
receptor 3 (FOLR3), S100A12 in survivors compared with 
non-survivors.
conclusion Children with IPD demonstrated increased 
expression in genes regulating immune activation, 
oxidative stress, leucocyte adhesion and migration, 
arginine metabolism, and glucocorticoid receptor 
signalling.

IntrODuctIOn
Streptococcus pneumoniae infection is a leading 
cause of pneumonia, meningitis and 
septicaemia worldwide, and results in approx-
imately 1 million deaths in children under the 
age of 5 years annually.1 The overall burden 
of invasive pneumococcal disease (IPD) is 
increased 40-fold in HIV-infected compared 
with HIV-uninfected children.2 Pneumo-
coccal meningitis is a life-threatening disease 
with poor prognosis associated with neuro-
logic complications and a high case-fatality 
ratio in African children, which is further 
increased by HIV coinfection.3

What this study hopes to add?

 ► We demonstrate for the first time differences 
in transcriptional profiles between HIV-infected 
and HIV-uninfected children with pneumococcal 
meningitis (as a homogeneous disease entity 
of invasive pneumococcal disease and healthy 
controls).

 ► We demonstrate increased expression in cases 
of genes regulating the innate immune response, 
leucocyte migration, glucose homeostasis and 
endothelial cell migration.
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What is already known on this topic?

 ► Invasive pneumococcal disease (IPD) caused by 
Streptococcus pneumoniae is a leading cause of 
pneumonia, meningitis and septicaemia worldwide. 
Globally,  IPD is reported to cause about 11% (0.8 
million) of all deaths in children less than 5 years of 
age annually.

 ► The overall burden of IPD is increased 40-fold in HIV-
infected compared with HIV-uninfected children. 
However, mechanisms involved in host response 
during IPD are not yet fully understood.
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Gene expression profiling during sepsis provides 
new insights into the host response to invasive bacterial 
disease. Several sepsis studies have demonstrated upreg-
ulation of pathogen recognition receptors and signal 
transduction pathways, and a downregulation of zinc 
homeostasis.4–6 The intricate host inflammatory response 
is associated with neuronal and vascular injury, even after 
cerebrospinal fluid (CSF) sterilisation with antibiotics. 
Adjunctive new therapies for bacterial meningitis have 
to date not shown any conclusive benefit, prompting 
the need for an improved understanding of key mech-
anisms that might reveal potential new therapeutic 
targets.7 Chronic coinfection may impact gene expres-
sion, even among asymptomatic patients. HIV is a major 
risk factor for IPD, characterised by waning immunity 
and dysregulated physiology among infected individuals, 
greatly escalating disease susceptibility and mortality 
outcomes,8 9 thereby influencing the host’s gene expres-
sion. We examine differences in gene expression using 
blood samples from children with pneumococcal menin-
gitis and matched healthy controls, and also compare 
transcriptional profiles between children with pneu-
mococcal meningitis with and without underlying HIV 
infection.

MAterIAls AnD MethODs
Patients and controls
Children (n=377) were recruited as part of a larger study 
investigating host determinants of susceptibility to IPD 
conducted at Queen Elizabeth Central Hospital, Blantyre, 
Malawi, between April 2004 and October 2006.10 Ethical 
approval was granted from the College of Medicine 
Research Committee, Malawi and the Liverpool School 
of Tropical Medicine Local Research Ethics Committee. 
Written informed consent was given prior to recruitment.

We excluded children (n=135) infected with other 
commonly prevalent microbes (Salmonella typhimurium, 
Escherichia coli, Haemophilus influenzae b, Neisseria menin-
gitidis, Staphylococcus aureus, Streptococcus pyogenes) 
identified by positive laboratory culture of blood, CSF 
or lung aspirate. Cases for the microarray analysis were 
HIV treatment-naive children with confirmed pneumo-
coccal meningitis defined as abnormal CSF white cell 
count >10×109/L plus one or more of the following: CSF 
culture positive for pneumococci, CSF gram stain consis-
tent with pneumococci, CSF positive for pneumococcal 
polysaccharide antigen or pneumococcal DNA. Cases 
for the real-time quantitative PCR (RT-qPCR) were chil-
dren with confirmed IPD, which was defined as follows: 
pneumococcal pneumonia (n=40) or pneumococcal 
meningitis (n=189), confirmed by either culture, antigen 
test or PCR. Controls were healthy afebrile, malaria 
aparasitaemic children from the same villages as the 
index cases, and were as closely age matched as possible. 
Microarray analysis was conducted on 15 samples (12 
from cases with pneumococcal meningitis and 3 from 
controls), and RT-PCR was conducted on 242 samples 

(229 from cases with IPD and 13 from controls), which 
included all those used for microarray analysis.

There were no known coinfections apart from HIV, and 
we did not test for other viruses in the CSF, like cytomeg-
alovirus (CMV) or Epstein Barr Virus (EBV), which have 
been reported to be associated with increased mortality 
in Malawian adults with bacterial meningitis.11 12

samples
Whole blood was drawn at admission from consecutive 
children with IPD. The methodology for downstream 
transcriptome analysis from small blood samples has 
been previously described.13

rnA extraction, quantification and hybridisation
Total RNA was extracted from whole blood using an opti-
mised method for the PAXgene blood RNA kit (Qiagen, 
West Sussex, UK), as previously described.13 The total 
RNA concentration (ng/µL) and ratios (260/280 and 
260/230) were measured using a NanoDrop ND-100 
UV-vis spectrophotometer (NanoDrop Technologies, 
Delaware, USA) and the RNA integrity was assessed using 
the Agilent 2100 BioAnalyzer (Agilent Technologies, 
Edinburgh, UK) before and after concentration.

RNA (2 µg) was reverse transcribed into cDNA using 
the Superscript double-stranded cDNA synthesis kit 
(Invitrogen, Paisley, UK) according to the manufac-
turer’s instructions. The double-stranded cDNA was 
purified using a GeneChip sample clean-up module 
(Invitrogen). The purified cDNA was then biotin labelled 
with the ENZO BioArray high-yield RNA transcript label-
ling kit (Affymetrix, High Wycombe, UK) and cleaned 
with a cRNA clean-up module (Invitrogen). Aliquots 
of labelled cRNA (20 µg) were fragmented at 94°C for 
35 min and then hybridised to a Human Genome U133A 
GeneChip array for 16 hours rotating at 60 rpm at 45°C in 
a GeneChip Hybridization Oven 640 (Affymetrix). Each 
chip was washed and stained on a GeneChip Fluidics 
Station 450 (Affymetrix) and scanned using a GeneChip 
Scanner 3000 (Affymetrix) employing standard recom-
mended protocols (Affymetrix).

Microarray data analysis
Microarray experiment data were analysed using R and 
Bioconductor packages.14 Briefly, the human genome 
HGU133A array (Affymetrix) scans output was prepro-
cessed using the affy package.15 The limma package was 
used to evaluate differential expressed genes.16 17 Gene 
annotations were performed using  hgu133a. db,  KEGG. 
db database packages.18–21 Genes were considered differ-
entially expressed if they had a Benjamini and Hochberg 
(BH)-adjusted p value <1.5e-3 and >±2-fold change in 
gene expression. Bonferroni p value adjustments were 
also performed for comparison. Canonical pathways and 
functional networks that involve the differently expressed 
genes play were determined using the Ingenuity Pathway 
Analysis (IPA) catalogue of well-characterised metabolic 
and cell signalling cascades. Expression data can be 
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Figure 1 Distribution plot of the differentially expressed genes. The significantly differentially expressed genes are shown in 
red colour. The significance threshold (p<1.5e-3) is indicated by a dashed red line, and a fold change threshold of more than 2 
is shown by the dashed vertical lines. The green line shows p<0.05. (A) Shows results for unadjusted p values, (B) results for 
BH-adjusted p values and (C) stringent Bonferroni-adjusted p values, which represent an overcorrection. BH, Benjamini and 
Hochberg.

accessed using accession number GSE47172 at the NCBI 
GEO database.

reverse transcription for qPcr
RNA samples were DNAse (Ambion, Warrington, UK) 
treated to remove any contaminating genomic DNA. RNA 
(1 µg) was reverse transcribed with SuperScript II RNase 
H- Reverse Transcriptase and oligo (dT)12–18 (0.5 µg/
µL) following the manufacturer’s guidelines. The cDNA 
was stored at −40°C until required.

rt-qPcr measurement of target genes
The Human Universal ProbeLibrary (UPL, Roche, Swit-
zerland) employing proprietary locked nucleic acid 
analogues was used to design qPCR assays to measure 
expression levels in genes of interest. Using the Roche 
Online Assay Design Centre, specific primers and an 
associated probe were selected for the reference and 
target transcripts. Gene expression was determined using 
RT-qPCR on a Roche LightCycler 480 (online supple-
mentary table 2).

The following 34 genes were identified from litera-
ture and prioritised for RT-qPCR differential expression 
analysis between cases and controls: ACSL1, ANXA3, 
ATP, BAG1, BPGM, C3AR1, CA4, CD177, CD55, CD59, 
CEACAM, CFLAR, FOLR3, GNAI3, GNLY, GYG1, IL1R2, 
IL1RN, ITGAM, KLRF1, LCK, LCN2, LTF, MAPK14, 
MMP9, NUMB, OLAH, PSEN1, RETN, S100A12, 
SAMSN, SERPINA1, SUB1 and VNN1. We used a previ-
ously described RT-qPCR data normalisation method.22

statistical analysis of genes prioritised for rt-qPcr 
differential expression analysis
First, we derived the relative gene expression in cases 
compared with controls for the 34 genes under assess-
ment. We used a previously described RT-qPCR data 
normalisation method.22 Briefly, the amounts of target 
genes expressed in a sample were normalised to the 
average of the three endogenous controls. This is given by 
ΔC

q
, where ΔC

q
 is determined by subtracting the average 

endogenous gene C
q
 value from the average target gene 

C
q
 value:
C

q
 target gene – C

q
 average endogenous gene = ΔC

q
.

The calculation of relative expression, ΔΔC
q
, involves 

subtraction of ΔC
q
 value for the controls from the ΔC

q
 

value for the cases:
ΔC

q
 target gene

(case)
 – ΔC

q
 target gene

(control)
 = ΔΔC

q
.

2-ΔΔCq is the relative expression of the target gene in 
cases compared with controls.

Next, we examined statistically significant differences 
in relative gene expression between cases and controls 
using the Welch two-sample t-test implemented in the 
R package. We generate boxplots to visualise the mean 
and media relative expression in cases and controls sepa-
rately, and the Welch two-sample t-test p value to show 
statistically significant differences in relative gene expres-
sion between these two groups.

results
transcriptional profiles among the cases and controls
In the microarray discovery cohort, there were 12 chil-
dren with pneumococcal meningitis (six male, six 
female, median age 1.1 years) and 3 controls (two male, 
one female, median age 7 years). The breakdown was 
as follows: HIV-infected survivors (n=3), HIV-infected 
non-survivors (n=3), HIV-uninfected survivors (n=3) and 
HIV-uninfected non-survivors (n=3) (online supplemen-
tary table 1). The RT-PCR validation cohort had a median 
age of 3.09 years.

We examined whether global transcriptional profiles 
of peripheral blood from children with pneumococcal 
meningitis (n=12) were distinct from those of healthy 
controls (n=3) randomly selected from a larger data set 
by microarray expression profile analysis.10 In general, 
there was a marked distinction in differential expression 
between cases and controls (online supplementary figure 
1). We identified 10 significantly differentially expressed 
genes (BH-adjusted p value <1.5e-3 and >±2-fold change) 
(figure 1). We observed significant upregulation of the 

https://dx.doi.org/10.1136/bmjpo-2017-000092
https://dx.doi.org/10.1136/bmjpo-2017-000092
https://dx.doi.org/10.1136/bmjpo-2017-000092
https://dx.doi.org/10.1136/bmjpo-2017-000092
https://dx.doi.org/10.1136/bmjpo-2017-000092
https://dx.doi.org/10.1136/bmjpo-2017-000092
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Figure 2 Validation of RNA transcription profile differential expression using real-time quantitative PCR. Relative gene 
expression in cases compared with controls for 34 genes assessed. The black line shows the boxplot median. The red dot 
shows the mean, and the Welch two-sample t-test p value is shown on the top right corner.

following: S100 calcium-binding protein A12 (S100A12); 
vanin-1 (VNN1); arginase, liver (ARG1); matrix metal-
lopeptidase 9 (gelatinase B, 92 kDa gelatinase, 92 kDa 
type IV collagenase) (MMP9); annexin A3 (ANXA3); 
interleukin 1 receptor, type II (IL1R2); CD177 molecule 
(CD177); S100 calcium-binding protein A9 (S100A9), 
cytoskeleton-associated protein 4 (CKAP4); and glyco-
genin 1 (GYG1).

Differential expression, underlying hIV infection and disease 
outcomes
In the microarray discovery cohort, we did not find any 
significantly differentially expressed genes for compar-
isons between HIV-infected cases and HIV-uninfected 
cases or between survivors and non-survivors (online 
supplementary figure 2).

rt-qPcr validation
RT-qPCR validation was performed for a set of 34 prior-
itised genes selected from literature for cases (n=229) 
and controls (n=13). The RT-PCR results are in agree-
ment with our microarray analysis findings. All the 
genes are significantly differentially expressed between 

the two groups with the exception of guanine nucleo-
tide-binding protein subunit alpha-13 (GNA13), protein 
numb (NUMB) and presenilin-1 (PSEN1) (figure 2). 
There was no significantly increased gene expression 
in HIV-infected compared with HIV-uninfected cases 
(online supplementary figure 3). Interestingly, there was 
significant upregulation of folate receptor 3 (FOLR3), 
NUMB and S100A12 in survivors compared with non-sur-
vivors (online supplementary figure 4). There was wide 
variability in relative gene expression in cases, but not 
controls.

Pathway analysis
Networks were reconstructed using IPA software for the 
genes differentially expressed between cases and controls 
in the microarray experiment, and the combined 
microarray and RT-qPCR experiments (figure 3A,B). 
For the genes defined by the microarray experiments, 
the networks were predominantly related to granulocyte 
function, and including antimicrobial and endothelial 
activation responses (figure 3A). The merged set demon-
strated wider networks involving immune cell activation 

https://dx.doi.org/10.1136/bmjpo-2017-000092
https://dx.doi.org/10.1136/bmjpo-2017-000092
https://dx.doi.org/10.1136/bmjpo-2017-000092
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Figure 3 The gene network for significantly differentially expressed genes in the cases. Networks reconstructed to support 
the most direct connectivity between genes differentially expressed between cases and controls. IPA (Qiagen) software's 
Core analysis application has been used to perform an automatic graphical reconstruction of the network via utilisation of 
IPA's Knowledge Base database of protein interactions. The meaning of links and shapes is explained in the inserted legend. 
Functional connections are presented in blue, information connections to the associated categories in pink and grey. (A) 
Network reconstructed only for the DE genes identified by microarray analysis. (B) Network reconstructed for the merged 
data sets of DE genes identified via microarray (red) and PCR analysis (green). White blocks correspond to nodes added by 
IPA's network editor automatically to ensure network connectivity. DE, differential expression; IPA, Ingenuity Pathway Analysis.

as well as leucocyte migration and adhesion (figure 3B). 
The canonical pathways mapped by genes defined in the 
microarray experiment demonstrated greatest changes 
in the arginine and granulocyte pathways. Canonical 
pathways in the combined microarray and RT-qPCR 
experiments demonstrated greatest change in leuco-
cytes, and especially neutrophil activation and migration, 
Notch and glucocorticoid receptor signalling pathways 
(online supplementary tables 3 and 4).

DIscussIOn AnD cOnclusIOn
We have shown significant differences in RNA transcrip-
tional profiles in children with pneumococcal meningitis 
compared with controls. Children with pneumococcal 
meningitis demonstrated increased expression in genes 
involved in the inflammatory response, and glucose and 
L-arginine metabolic pathways. Dysregulation of these 
pathways can lead to an impaired adaptive host response 
to pneumococcal infection, thereby contributing to the 

https://dx.doi.org/10.1136/bmjpo-2017-000092
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increased morbidity and mortality. Our findings in the 
initial cohort of pneumococcal meningitis were vali-
dated in the larger cohort of all children with IPD, which 
includes presentations with pneumonia as well as menin-
gitis. These findings add validity to the initial results from 
the microarray experiments, and suggest that the host 
response observed is systemic, and not simply localised 
to the process of blood–brain barrier disruption per se. 
We observe wide variability in relative gene expression in 
cases, which perhaps reflects differences in disease onset 
and robustness of host response within this group.

Elevation of S100A12, VNN, ARG1, MMP9, ANXA3, 
IL1R2, CD177, S100A9, CKAP4 and GYG1 in pneumo-
coccal meningitis supports previous findings that have 
highlighted the important roles of some of these genes 
during host pathogen response. These genes have 
important interconnected functions for cellular inter-
actions and response to infection (figure 3A and online 
supplementary file 7), and play crucial roles during host 
immune response; cell regulatory processes such as apop-
tosis and differentiation; and metabolic processes such as 
amino acid and glucose metabolism.

Vanin-1 (VNN1) protein is expressed by human phago-
cytes, and involved in leucocyte adhesion and migration.23 
The VNN1 knockout mice model has provided clear 
evidence that VNN1 modulates redox and immune 
pathways.24 Exposure of human mononuclear cells to 
oxidative stress results in upregulation of human VNN1 
and downregulation of peroxisome proliferator-activated 
receptor (PPAR).25 IL1R2 and IL1RN were upregulated 
in cases, which is consistent with our previous report of 
the IL-1Ra single-nucleotide polymorphism rs4251961 
playing a key role in the pathophysiology of IPD and in 
other human infections.10 Recent reports also demon-
strate IL1R2 expression upregulation in sepsis, being 
more pronounced in Gram-negative than Gram-positive 
infections.26

During infection, host production of the cytokine 
nitric oxide (NO) after non-opsonic phagocytosis exerts 
microbicidal effects.27 28 ARG1 expression is inducible 
in the lungs of mice in response to pneumococcal infec-
tion.29 Phagocytosis of pneumococci by macrophages 
also results in increased production of nitric oxide 
synthase 2-dependent production of NO and reactive 
nitrogen species.30 Increased plasma arginase activity 
depletes L-arginine concentrations, the substrate for NO 
synthesis, leading to vascular dysfunction during severe 
sepsis and supressed NO-mediated microbicidal effects.31 
Increased ARG1 activity may also be a bacterial survival 
strategy to escape the NO-dependent host antimicrobial 
immune response.30

Neutrophil-specific glycoprotein CD177 is expressed on 
a subset of human neutrophils, and is involved in neutro-
phil transendothelial migration. A previous microarray 
study of purified neutrophils from patients with septic 
shock revealed CD177 mRNA has the highest differen-
tial expression between cases and controls.32 Consistent 
with our data, the study also demonstrated increased 

expression of ARG1, ANXA3, CKAP4, IL1R2, MMP9 and 
VNN1. ANXA3 promotes endothelial cell junction integ-
rity in animal models, and endothelial cell motility in 
vitro. ANXA3 is upregulated following neuronal injury, 
which may explain the finding in pneumococcal menin-
gitis.33

S100A12 plays a prominent role in the regulation of 
proinflammatory processes and immune response by 
recruiting leucocytes, promoting cytokine and chemo-
kine production, and regulating leucocyte adhesion and 
migration.34 The S100A8/A9 heterodimer is expressed by 
myeloid cells, especially neutrophils, and has a protective 
effect in the host response to pneumococcal infection 
by increasing circulating neutrophils through increased 
granulocyte colony-stimulating factor production.35 It is an 
antimicrobial peptide, but plays an important role in leuco-
cyte migration.36 During infection, S100 proteins stimulate 
the proinflammatory immune response through interac-
tion with the immunoglobulin family transmembrane 
pattern recognition receptors: receptor for advanced 
glycation end-products and Toll-like receptor 4. This leads 
to nuclear factor kappa B-mediated proinflammatory 
response with production of proinflammatory cytokines. 
This inflammatory response in turn leads to increased 
expression of S100 proteins, and the start of a positive feed-
back loop. Although as antimicrobial proteins they protect 
against infection, they can also have a negative detrimental 
effect on the host by amplifying the destructive proinflam-
matory responses. The increased expression in survivors 
may be explained by this positive feedback loop.37

Glucocorticoids also play a significant role in immune 
response regulation by supressing immune and inflam-
matory responses, and modulating cytokines that 
promote host immune responses.38 We speculate that 
these responses are important in regulating immune 
responses to avoid host tissue damage. NUMB negatively 
regulates Notch, which in turn attenuates proinflamma-
tory cytokines and increases anti-inflammatory cytokines, 
which may explain the increase in NUMB expression in 
survivors.39 40

Our results are consistent with previous studies on tran-
scription profiling in other bacterial diseases, suggesting 
that some of the mechanisms are not specific to IPD. 
Although it could be argued that the lack of age matching 
in cases versus controls could cause differential expres-
sion due to maturation of the immune system in older 
children, the consistency of our results with other studies 
makes this unlikely.41 42 A limitation of our study is that 
the microarray analysis was performed using the Affyme-
trix Human Genome U133A array, and sample number 
was constrained at the time by cost. The microarray 
data set was not large enough to allow all possible multi-
factorial models of comorbidity and disease outcomes 
to be exhaustively examined, but sought to validate our 
findings using RT-qPCR in a larger cohort of children. 
Further evaluation is in a larger cohort using whole 
genome sequencing would provide more insights on the 
mechanisms of host response.

https://dx.doi.org/10.1136/bmjpo-2017-000092
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In conclusion, this comparative study of gene expres-
sion provides mechanistic insight for IPD in children, 
and demonstrates significant and widespread immune 
activation, with oxidative stress, recruitment of neutro-
phils, leucocyte adhesion and migration, activation of 
antimicrobial peptides and preservation of endothelial 
cell junction integrity.
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