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INTRODUCTION 
 

Colorectal cancer (CRC) is one of the most frequent 

cancers, with more than 1.2 million new cases and 

500,00 deaths annually around the world, the 

cornerstones of therapy are surgery, radiotherapy (for 

patients with rectal cancer), and chemotherapy [1]. 

Triptolide, the major active component of Triptergium 

wilfordii Hook. f, works against CRC by inhibiting 

colon cancer cell proliferation, colony formation, and 

organoid growth in vitro [2, 3]. The triptolide analog 

minnelide markedly inhibits the growth of CRC 

xenografts and the metastasis of CRC to liver, more 

than doubling the median survival of animals whose 

CRC has metastasized to the liver [4]. Triptolide  

also appears to inhibit the epithelial-mesenchymal 

transition and growth of colon cancer stem cells [5]. 

Thus, triptolide shows strong potential to treat CRC, 

but how it works is controversial. 

 

Here we explored protein expression and 

phosphorylation in CRC cells treated with triptolide  

in an effort to identify the molecules and pathways  

that may mediate the drug’s anticancer effects. We 

applied quantitative proteomics and phosphoproteomics 

based on tandem mass tagging and nanospray  

liquid chromatography-tandem mass spectrometry. 

Proteomics allows global analysis of complex  

changes in protein expression [6, 7], and tandem mass 

tagging allows high-throughput, high-resolution 

quantification of changes in protein levels and their 

phosphorylation [8–10]. Our analyses may help clarify 

the anticancer mechanism of triptolide and identify 

druggable targets. 
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ABSTRACT 
 

Triptolide is a potent anti-inflammatory agent that also possesses anticancer activity, including against 
colorectal cancer (CRC), one of the most frequent cancers around the world. In order to clarify how triptolide 
may be effective against CRC, we analyzed the proteome and phosphoproteome of CRC cell line HCT116 after 
incubation for 48 h with the drug (40 nM) or vehicle. Tandem mass tagging led to the identification of 403 
proteins whose levels increased and 559 whose levels decreased in the presence of triptolide. We also 
identified 3,110 sites in proteins that were phosphorylated at higher levels and 3,161 sites phosphorylated at 
lower levels in the presence of the drug. Analysis of these differentially expressed and/or phosphorylated 
proteins showed that they were enriched in pathways involving ribosome biogenesis, PI3K−Akt signaling, MAPK 
signaling, nucleic acid binding as well as other pathways. Protein–protein interactions were explored using the 
STRING database, and we identified nine protein modules and 15 hub proteins. Finally, we identified 57 motifs 
using motif analysis of phosphosites and found 16 motifs were experimentally verified for known protein 
kinases, while 41 appear to be novel. These findings may help clarify how triptolide works against CRC and may 
guide the development of novel treatments. 
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RESULTS 
 

Proteome and phosphoproteome in HCT-116 cells 

 

Using tandem mass tagging of total proteins as well as 

enrichment for phosphopeptides, followed by tandem 

mass spectrometry (Figure 1A), we identified 33,390 

unique peptides corresponding to 5,860 proteins, of 

which 5,710 proteins could be quantified in triptolide-

treated and control groups (Supplementary Table 1 and 

Supplementary Figures 1, 2A). Of these, 962 proteins 

were differentially expressed: 403 were present at 

higher levels and 559 proteins at lower levels in the 

presence of triptolide (Figure 1B). Triptolide was also 

associated with higher levels of phosphorylation at 

3,110 sites in proteins and lower phosphorylation at 

3,161 sites (Figure 1D). Most differentially expressed 

and/or phosphorylated proteins localized to the nucleus 

and cytoplasm (Figure 1C, 1E). 

 

Functional analysis of differentially expressed 

proteins in CRC 

 

A total of 5710 quantitative proteins were identified in 

the proteome analysis (Supplementary Figure 2A). We 

defined proteins that were significantly different 

(Student’s t-test, p < 0.05) and used the criterion of 1.2-

fold or greater change as the criteria to screen candidate 

proteins, finally we identified 403 proteins with higher 

levels and 559 proteins with lower levels in the 

triptolide-treated group than in the control group 

(Figure 2A). Heatmaps were applied to indicate the 

expression levels of the differentially expressed proteins 

screened by the volcano map in three replicate samples 

of the triptolide-treated group and the control group 

(Figure 2B). The potential functions of these proteins 

were explored based on enrichment in GO terms (Figure 

2C and Supplementary Figure 3A–3C). They were 

enriched in the following GO biological processes: 

rRNA processing, ribosome biogenesis, keratinocyte 

proliferation, maturation of SSU−rRNA, regulation of 

keratinocyte proliferation, RNA phosphodiester bond 

hydrolysis, and endonucleolysis. The differentially 

expressed proteins were enriched in the following GO 

cellular components: preribosome, small−subunit 

processome, 90S preribosome, MCM complex, intrinsic 

components of the plasma membrane, intrinsic 

components of the membrane, integral components of 

the plasma membrane, and nucleolus. The differentially 

expressed proteins were enriched in the following GO 

molecular functions: peptidase inhibitor activity, 

endopeptidase inhibitor activity, peptidase regulator 

activity, translation repressor activity, olfactory receptor 

activity, metalloendopeptidase inhibitor activity, 

transcription corepressor activity, signaling receptor 

activity and transmembrane signaling receptor activity. 

Analysis of differentially expressed proteins for 

enrichment in domains and KEGG pathways, 

protein-protein interactions and modules 

 

Differentially expressed proteins were enriched with 

the following domains (Figure 3A and Supplementary 

Figure 3E): PHD−finger, leucine-rich repeat, 

N−terminal MCM, CHRromatin Organisation 

MOdifier (“Chromo”), MCM2/3/5 family, MCM OB, 

and EGF−like. We identified several KEGG pathways 

that were enriched in upregulated proteins: chemical 

carcinogenesis, bile secretion, complement and 

coagulation cascades, prostate cancer and drug 

metabolism-cytochrome P450 (Figure 3B and 

Supplementary Figure 3D). Several KEGG pathways 

were enriched in downregulated proteins: PPAR 

signaling, mucin type O-glycan biosynthesis, starch 

and sucrose metabolism, various types of N-glycan 

biosynthesis, hedgehog signaling, basal transcription 

factors and longevity-regulating pathway. 

 

We predicted interactions among differentially 

expressed proteins using STRING and Cytoscape 

(Figure 3C), and the protein-protein interaction network 

revealed four critical protein groups (Figure 3D–3G): 

MCODE 1 (MCODE score = 37.436), consisting of 40 

nodes and 730 edges; MCODE 2 (score = 7.5), 

consisting of 9 nodes and 306 edges; MCODE 3 (score = 

5.667), comprising 7 nodes and 17 edges; and MCODE 

4 (score = 3.333), consisting of 4 nodes and 5 edges. 

Four classification methods in CytoHubba were used to 

identify the top 10 proteins (Supplementary Table 1), 

which when combined with the analysis of MCODE 

modules identified seven proteins as hub proteins: IMP3, 

BYSL, PDCD11, PNO1, NSA2, RRS1 and RPF2 

(Supplementary Figure 6A). 

 

Functional analysis of differentially phosphorylated 

proteins in CRC 

 

A total of 3410 quantitative proteins were identified in 

the experimental group and the control group 

(Supplementary Figure 2B). Similarly, we identified 

3110 proteins with higher phosphorylation levels and 

3161 proteins with lower phosphorylation levels in 

triptolide-treated cells group than in the control group 

(Figure 4A). Besides, a total of 17,056 phosphosites were 

identified, of which 88.22% were serines, 11.33% were 

threonines, and 0.45% were tyrosines (Supplementary 

Figure 4). The R package “pheatmap” was used to draw a 

heatmap (Figure 4B), which shows the expression levels 

of the differentially expressed proteins at the 

phosphorylation site screened by the volcano map. 
 

Analysis of differentially phosphorylated proteins 

showed enrichment of the following GO biological 
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Figure 1. Global proteomic and phosphoproteomic analysis of colorectal cancer cells. (A) Schematic of the experimental workflow; 

LC, liquid chromatography; MS, mass spectrometry; TMT, tandem mass tags. (B) Numbers of proteins whose levels were significantly higher 
(red) or lower (blue) in triptolide-treated cell cultures than in control cultures. (C) Numbers of differentially expressed proteins in different 
subcellular compartments. (D) Numbers of sites in proteins whose phosphorylation was significantly higher (red) or lower (blue) in triptolide-
treated cell cultures than in control cultures. (E) Numbers of differentially phosphorylated proteins in different subcellular compartments. 



www.aging-us.com 3087 AGING 

processes (Figure 4C and Supplementary Figure  

5A–5C): cellular processes, biological regulation  

of biological processes, regulation of cellular 

processes, response to stimulus, cellular response  

to stress, and nucleic acid metabolism. The proteins 

were enriched in the following GO cellular 

components: nucleus, organelles, intracellular space, 

membrane−enclosed lumen, and nuclear lumen. 

Differentially phosphorylated proteins were enriched 

in the following GO molecular functions: binding, 

catalytic activity, heterocyclic compound binding, 

organic cyclic compound binding, nucleic acid binding, 

protein binding, RNA binding and cytoskeletal protein 

binding. 

 

 
 

Figure 2. Differential expression levels of the quantitative proteome and their enrichment in Gene Ontology terms.  
(A) Heatmap of the quantitative proteome based on fold differences in expression. (B) Volcano plot of the differences in protein levels. The 
volcano map was drawn based on the expression of FC and P value (T-test). The significantly down-regulated proteins were blue (FC< 0.83 
and P <0.05), the significantly up-regulated proteins were red (FC>1.2 and P <0.05), and the proteins with no difference were gray.  
(C) Classification of differentially expressed proteins based on Gene Ontology biological processes, cellular components and molecular 
functions. 
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Analysis of differentially phosphorylated proteins 

for enrichment in domains and KEGG pathways, 

protein-protein interactions and modules 

 

Differentially phosphorylated proteins were enriched 

in several domains (Figure 5A and Supplementary 

Figure 5E): protein kinase, RNA recognition motif, 

WD, G−beta repeat, PDZ, LIM, PHD−finger, and KH. 

The proteins were enriched in the following  

KEGG pathways (Figure 5B and Supplementary 

Figure 5D): proteoglycans in cancer, human 

immunodeficiency virus 1 infection, regulation of 

actin cytoskeleton, tight junction, pathogenic 

Escherichia coli infection, animal autophagy, 

cGMP−PKG signaling, renal cell carcinoma, AMPK 

signaling, and axon guidance. 

 

 
 

Figure 3. Analysis of predicted interactions among differentially expressed proteins. The four most significant modules were 

identified by the molecular complex detection (MCODE) algorithm. (A) Enrichment of domains in differentially expressed proteins.  
(B) Enrichment of KEGG pathways in differentially expressed proteins. (C) Interaction network of differentially expressed proteins. (D–G) The 
four most significant MCODE modules. 
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A network of potential interactions among differentially 

phosphorylated proteins (Figure 5C) led to the 

identification of five critical groups (Figure 5D–5H): 

MCODE 1 (MCODE score = 19.778), consisting of 28 

nodes and 267 edges; MCODE 2 (score = 9.81), 

consisting of 22 nodes and 103 edges; MCODE 3 (score 

= 7.459), comprising 38 nodes and 138 edges; MCODE 

4 (score = 4.286), comprising 8 nodes and 15 edges; and 

MCODE 5 (score = 4), comprising 4 nodes and 6 edges. 

The four classification methods in CytoHubba 

(Supplementary Table 2) converged on the following 

eight proteins as hub phosphorylated proteins: SRSF1, 

HNRNPC, NCBP1, HNRNPA1, DHX9, DDX5, 

RBM25 and SF3B1 (Supplementary Figure 6B). 

 

 
 

Figure 4. Differential phosphorylation of the quantitative proteome and enrichment in Gene Ontology terms. (A) Heatmap 

based on differential phosphorylation levels. (B) Volcano plot of the differences in phosphorylation levels. (C) Classification of differentially 
phosphorylated proteins based on Gene Ontology biological processes, cellular components and molecular functions. 
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Figure 5. Protein-protein interaction (PPI) network analyses of PDEPs were performed, and the four most significant 
modules were identified by the molecular complex detection (MCODE) algorithm. (A) Enrichment of domains in differentially 

expressed proteins. (B) Enrichment of KEGG pathways in differentially expressed proteins. (C) Interaction network of differentially expressed 
proteins. (D–H) The five most significant MCODE modules. 
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Motif analysis of the phosphosites 

 

Among the protein sequences differentially 

phosphorylated between triptolide and control CRC 

cultures, we identified 50 conserved motifs in which a 

serine was phosphorylated and 7 conserved motifs in 

which a threonine was phosphorylated (Supplementary 

Table 2). Several of the motifs were upregulated by 

triptolide (Figure 6A), while other motifs were 

downregulated (Figure 6B). Based on motif score, we 

identified the top six hub motifs that were down- or 

upregulated (Figure 6C, 6D). 

 

According to the Human Protein Reference Database 

(HPRD), 16 phosphorylation motifs have previously been 

verified as substrates of certain protein kinases,  

while 41 have not yet been linked to kinases 

(Supplementary Table 2). Particularly conserved  

motifs were [xpSxxxx_pS_PxxxxK] (motif 1), 

[xxpSxxx_pS_PxxxK] (motif 3), [xxpSxxx_pS_PpTxxx] 

(motif 5), [xxxRpSx_pS_xpSxxx] (motif 15) and 

[xxxxSx_pS_ExExxx] (motif 24). All these motifs scored 

> 40.00. Several motifs have previously been shown to 

be phosphorylated by casein kinase II [11–14]: 

[xxxxxx_S_xExxxx] (motif 8), [xxxxxx_S_DxExxx] 

(motif 16), [xxxxxx_S_EEExxx] (motif 25), 

[xxxxxx_S_xDxxxx] (motif 40), [xxxSxx_S_xxxxxx] 

(motif 50), [xxxxxx_T_xxExxx] (motif 55), and 

[xxxxSx_T_xxxxxx] (motif 56). Casein kinase II is 

upregulated in numerous cancers, and it has been 

proposed as a therapeutic target in CRC [15–17]. 

Meanwhile, elevated Casein kinase II activity play a role 

in transcriptional regulator of cell cycle and PI3K-

promoting genes [18]. The motifs [xxxxxx_S_Pxxxxx] 

(motif 26) and [xxxxxx_T_Pxxxxx] (motif 54) are 

known to be phosphorylated by kinases containing a WW 

domain [19–21]. The motif [xLxRxx_S_xxxxxx] (motif 

29), for its part, is phosphorylated by calmodulin-

dependent protein kinase II [22], which may be a 

therapeutic target in cancer [23]. In this way, our findings 

identify several kinases that may help mediate the effects 

of triptolide against CRC. 

 

Verification with molecular docking 

 

To further validate potential targets in triptolide, we 

performed molecular docking with hub genes. Docking 

analysis successfully predicted binding energy (ΔGb), 

which were all negative and less than −5, between 

quercetin and the hub genes. The scores of triptolide-

AMD1, -IMP3, -HNRNPC, -DHX9 was −5.7634, 

−6.1944, −5.5740 and −5.4239 kcal/ mol, respectively 

(Supplementary Table 3). Docked compounds showed 
hydrogen bonds in the active site. These selected 

compounds bind to the hub genes protein by interacting 

with different amino acid residues, such as Arg20, Lys 

3, Asn146, Arg17 and Thr 216. Overall, molecular 

docking results indicated that triptolide had good 

binding activities to AMP1, IMP3, HNRNPC and 

DHX9, as shown in Figure 7. 

 

DISCUSSION 
 

Globally CRC is the third most frequent cancer and the 

second most frequent cause of cancer-related deaths 

[24]. Triptolide has been reported to affect CRC in 

various ways, such as by arresting the cell cycle [4, 25] 

and decreasing vascular endothelial growth factor 

expression to inhibit migration [26]. Since CRC onset 

and progression likely involve complex interactions 

among many genes and proteins [27, 28], we did not 

focus here on specific proteins but instead examined the 

entire (phospho)proteomic landscape using liquid 

chromatography-tandem mass spectrometry [29].  

We identified 559 proteins whose expression was 

downregulated and 403 proteins whose expression was 

upregulated by triptolide. 

 

For example, we found that triptolide downregulated 

ZFP36L2, consistent with previous studies [30, 31]. In 

the case of pancreatic ductal adenocarcinoma, high 

expression of ZFP36L2 predicts shorter survival, and 

silencing it inhibits cancer cell aggressiveness [31]. We 

also found that triptolide downregulated AMD1, which is 

upregulated in many cancers and is associated with 

patient prognosis [32, 33]. Similarly, triptolide 

downregulated the RNA helicase DHX9, which is highly 

expressed in several cancers and is involved mainly in 

RNA splicing and processing, ribosome synthesis, as 

well as translation and transcription [34]. Triptolide 

downregulated the RNA-binding protein HNRNPC. This 

protein is upregulated in various cancers, and its 

inhibition slows cancer cell proliferation and tumor 

growth [35]. Our research highlights that triptolide can 

directly or indirectly phosphorylate HNRNPC and it is 

down regulated in triptolide treated group. Therefore, we 

attribute that triptolide may mediate the proliferation of 

tumor by HNRNPC. These indicates that triptolide plays 

a critical role in a variety of cellular processes, especially 

in cell growth, cell migration and immunoreactivity. 
 

Many of the GO terms enriched in the proteins whose 

expression was altered by triptolide localized to the 

nucleus and were related to the ribosome. An important 

feature of cancer cells is increased ribosomal production 

and strong disruption of ribosome biogenesis [36, 37]. 

The production of functional ribosomes begins in the 

nucleolus [38–40], so this may be an important site of 

triptolide anticancer activity. 

 

Triptolide downregulated hedgehog signaling, and it 

altered the phosphorylation of proteins involved in 
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Figure 6. Analysis of motifs differentially phosphorylated between CRC cultures treated with triptolide or vehicle. (A) Motifs 

whose phosphorylation is upregulated by triptolide. (B) Motifs whose phosphorylation is downregulated by triptolide. (C) Ranking of the top 
six motifs upregulated by triptolide. (D) Ranking of the top six motifs downregulated by triptolide. 
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Figure 7. Shows the binding interactions of triptolide with the CRC-related hub genes protein. Triptolide binds to AMD1(A), 

IMP3(B), HNRNP(C) and DHX9(D). Ball and stick represent triptolide; cartoon represents a hub target. 
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PI3K−Akt signaling and MAPK signaling. Hedgehog 

signaling has been linked to cancer, in particular for 

maintaining tumor-initiating/stem cells [41]. The 

pathway contributes to tumorigenesis and tumor growth 

through several mechanisms [42, 43], including 

processes affecting cell proliferation, survival and 

angiogenesis [44]. The pathway can be activated by 

TNF-α, KRAS–MAPK/ERK, and PI3K–Akt [45–47]. 

In fact, PI3K activates Akt to regulate hedgehog 

signaling during the specification of neuronal fate [48]. 

Our results suggest that triptolide acts partly through 

hedgehog and associated signaling pathways. 

 

We found that triptolide downregulated the RNA-

binding protein IMP3, which is required for ribosomal 

RNA processing and may predict prognosis in many 

cancers [49–51]. In breast cancer, IMP3 activates TAZ, 

a transcriptional co-activator of Hippo signaling that 

helps drive breast cancer stem cell function [49].  

In prostate cancer, IMP3 is overexpressed, and it 

accelerates the cancer’s progression by increasing 

SMURF1-mediated PTEN ubiquitination, which in turn 

activates PI3K/AKT/mTOR signaling [50]. In CRC, 

IMP3 regulates MEKK1 to activate MEK1/ERK 

signaling, driving cancer progression [52]. Our results 

suggest that triptolide acts in part through IMP3 and 

associated pathways. Clinical therapeutic effect need to 

be further validated in controlled clinical trials. 

 

Altogether, our analysis identifies several pathways 

through which triptolide may suppress CRC proliferation, 

including pathways involving IMP3/ PI3K/AKT/mTOR, 

Hedgehog/ PI3K/AKT and ZFP36L2, AMD1, DHX9  

and HNRNPC. These results may help optimize the 

anticancer efficacy of triptolide as well as develop new 

druggable targets against CRC. 

 

MATERIALS AND METHODS 
 

Cell culture and treatment 
 

The human colon carcinoma cell line HCT 116 was 

obtained from National Infrastructure of Cell Line 

Resource (Beijing, China). Cells were treated for 48 h 

with triptolide (40 ng/ml) dissolved in DMSO or DMSO 

vehicle. The medium for all cell culture was RPMI 1640 

(Life Technologies, Shanghai, China) supplemented 

with 10% fetal bovine serum (FBS; Thermo Scientific, 

Shanghai, China). Cultures were incubated at 37° C in 

an atmosphere of 5% CO2. 

 

Protein extraction and preparation 
 

HCT116 cells were cultured to 70% confluence, then 

lysed using a buffer containing 100 mM Tris-HCl (pH 

7.6), 4% SDS, 1 mM DTT. Protein concentration were 

quantified using the BCA assay (Bio-Rad, Hercules, 

California, USA). The protein solution was sequentially 

diluted (5 mmol/L dithiothreitol for 30 min at 56° C) 

and alkylated with 11 mmol/L iodoacetamide for 15 

min. These procedures were performed in darkness at 

room temperature. Then, the assembled protein sample 

was diluted to a urea concentration of less than 2 mol/L. 

Finally, trypsin was added to initiate overnight digestion 

(the ratio of trypsin to the protein mass ratio was 1:50) 

at 37° C and a subsequent 4 h digestion (the ratio of 

trypsin to protein mass was 1:100). The resulting 

peptides were desalted on a Empore™ SPE C18 

cartridge (standard density, 7 mm inner bed diameter, 3 

ml volume; Sigma, Shanghai, China). The eluted 

peptides were concentrated by vacuum centrifugation 

and reconstituted in 40 µl of 0.1% (v/v) formic acid. 

 

Tandem mass tagging and enrichment of 

phosphopeptides 

 

Tryptic peptide mixtures were labeled with TMT 

Reagent (Thermo Fisher Scientific) according to the 

manufacturer’s instructions. Three independent cultures 

of untreated HCT116 were tagged (tags 126, 127 and 

128), as well as three independent cultures of triptolide-

treated HCT116 cells (tags 129, 130 and 131). Peptide 

mixtures were enriched for phosphorylated peptides 

using the High-Select™ Fe-NTA Kit (Thermo 

Scientific) according to the manufacturer’s instructions. 

The resulting phosphopeptide mixtures were lyophi-

lized, then resuspended in 20 µL of 0.1% (v/v) formic 

acid. 

 

Liquid chromatography-tandem mass spectrometry 

 

Total peptide and phosphopeptide-enriched samples 

were loaded onto an Acclaim PepMap100 nanoViper 

C18 reverse-phase trap column (Thermo Scientific; 

dimensions, 100 μm x 2 cm) connected to an Easy C18 

reverse-phase analytical column (Thermo Scientific; 

inner diameter, 75 μm; length, 10 cm; resin diameter, 3 

μm) in buffer A (0.1% formic acid). Peptides were 

separated using a linear gradient of buffer B (84% 

acetonitrile, 0.1% formic acid) at a flow rate of 300 

nl/min. 

 

The separated peptides were then subjected to tandem 

mass spectrometry on a Q Exactive mass spectrometer 

(Thermo Scientific) for 60-90 min, operated in positive 

ion mode. Data were acquired using a data-dependent 

top10 method that dynamically selected the most 

abundant precursor ions from the survey scan (300–

1800 m/z) for Higher energy Collision Induced 
Dissociation (HCD) fragmentation. The system was 

operated in peptide recognition mode, and the following 

device parameters were used: automatic gain control 
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target, 3e6; maximum injection time, 10 ms; dynamic 

exclusion duration, 40.0 s; survey scan resolution, 

70,000 at m/z 200; HCD spectrum resolution, 17,500 at 

m/z 200; isolation width, 2 m/z; normalized collision 

energy, 30 eV; and underfill ratio (minimum percentage 

of the target value likely to be reached at maximum fill 

time), 0.1%. 

 

Database search 

 

The resulting MS/MS data were processed using the 

MASCOT engine (Matrix Science, London, UK; 

version 2.2) embedded into Proteome Discoverer 2.4. 

The data were searched against the database 

“Homo_sapiens_194324” and against a library of 

common protein contaminants (for filtering out 

contaminant proteins), and an anti-database was added 

to assess the false discovery rate (FDR) due to random 

matches. The following system parameters were 

applied: restriction enzyme digestion method, trypsin/P; 

number of missed cleavage sites, 2; peptide mass 

tolerance, ± 20.0 ppm; fragment mass tolerance, 0.1 Da; 

fixed modification, carbamidomethyl (C); variable 

modifications, “Oxidation (M)”, “Phospho(ST)”, 

“Phosp (Y)”; and FDR, 1%. 

 

Only proteins whose levels differed > 2-fold or < 0.83-

fold between cultures treated with triptolide or vehicle (in 

association with p < 0.05) were considered in subsequent 

bioinformatics analyses. A similar criterion was applied 

to select phosphorylation sites in the proteome. 

 

Bioinformatic analyses 

 

Differentially expressed proteins were searched against 

the NCBI BLAST+ database (ncbi-blast-2.2.28+-

win32.exe) and homologous sequences were identified 

using InterProScan. Potential functions of the proteins 

were explored using Gene Ontology (GO) terms and 

annotated using Blast2GO (https://www.blast2go.com/) 

according to GO biological processes, cellular 

components and molecular functions. 

 

After annotation, proteins were mapped to Kyoto 

Encyclopedia of Genes and Genomes (KEGG) 

pathways (http://www.genome.jp/kegg/). Their 

subcellular localizations were predicted using CELLO 

(http://cello.life.nctu.edu.tw). In addition, the InterPro 

(providing resources for functional analysis of protein 

sequence family classification, prediction of structural 

domains and special sites) database was used to analyze 

the enrichment of functional domains of differentially 

expressed proteins. Enrichment of a given differentially 
expressed protein or protein domain was defined as p < 

0.05 in a two-tailed Fisher’s exact test. We examined 

enrichment in terms of GO terms, KEGG and domains. 

Categories that contained at least one enriched cluster 

and that were associated with p < 0.05 were considered 

significant. 
 

The STRING database (version 10.5) was used to create 

a protein-protein interaction network, and interactions 

with a confidence score > 0.7 were considered probable. 

Finally, we integrated databases and protein-protein 

interaction network, then explored densely connected 

regions using MCODE and Cytohubba. 
 

Phosphorylation motifs were analyzed using MeMe 

(http://meme-suite.org/index.htm). We extracted amino 

acid sequences containing the phosphorylated residue as 

well as six residues upstream and six downstream. Only 

when the minimum number of occurrences was set to 

20 and the statistical test P value is less than 0.000001, 

the characteristic sequence form is considered to be a 

motif of the modified peptide. Finally, we estimate the 

molecular binding capacities of the compounds with the 

target proteins. The structures of triptolide were 

downloaded from the TCMSP database. Then, the 

downloaded structures were converted to three 

dimensional (3D) structures, and the energy of them 

was minimized through the Molecular Operating 

Environment (MOE) 2019.10 software. Molecular 

docking analysis was conducted for comparing the 

combined action between the compounds and the 

crystal structures of AMD1 (PDB ID: 3DZ7), IMP3 

(PDB ID:6FQR), HNRNPC (PDB ID: 2MZ1), DHX9 

(PDB ID: 3VYX) using MOE. For each molecular 

compounds, a number of placements called poses. 

Among the placement of the compounds, the best pose 

with the lowest binding energy (ΔGb) was selected as 

the output result. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. (A) Distribution of peptide lengths identified by mass spectrometry. (B) Distribution of molecular weights of all 

proteins identified. 
 

 
 

Supplementary Figure 2. (A) Results of proteome quantitation. (B) Results of phosphoproteome quantitation. 
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Supplementary Figure 3. (A) Clustering of differentially expressed proteins based on enrichment in Gene Ontology (GO) cellular 

components. (B) Clustering of differentially expressed proteins based on enrichment in GO molecular functions. (C) Clustering of differentially 
expressed proteins based on enrichment in GO biological processes. (D) Clustering of differentially expressed proteins based on enrichment 
in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. (E) Clustering of differentially expressed proteins based on protein domains. 

 

 
 

Supplementary Figure 4. (A) Distribution of serine (S), threonine (T) and tyrosine (Y) phosphorylation among all phosphoproteins 
identified by mass spectrometry. (B) Distribution of phosphoproteins based on number of phosphorylation sites per protein. 



www.aging-us.com 3102 AGING 

 
 

Supplementary Figure 5. (A) Clustering of differentially phosphorylated proteins based on enrichment in Gene Ontology (GO) cellular 
components. (B) Clustering of differentially phosphorylated proteins based on enrichment in Gene Ontology (GO) biological processes.  
(C) Clustering of differentially phosphorylated proteins based on enrichment in Gene Ontology (GO) molecular functions. (D) Clustering of 
differentially phosphorylated proteins based on enrichment in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. (E) Clustering of 
differentially phosphorylated proteins based on enrichment in protein domains. 
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Supplementary Figure 6. (A) Venn diagram of differentially expressed proteins screened by four classification methods in order to identify 

hub proteins. (B) Venn diagram of differentially phosphorylated proteins screened by four classification methods in order to identify hub 
phosphorylated proteins. 
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Supplementary Tables 
 

Supplementary Table 1. The top ten proteins screened by four classification methods. 

Degree Closeness EPC MNC 

IMP3 IMP3 IMP3 IMP3 

BYSL PDCD11 BYSL BYSL 

PDCD11 BYSL PDCD11 PDCD11 

PNO1 PNO1 RRS1 PNO1 

NSA2 NSA2 RPF2 NSA2 

MPHOSPH10 MPHOSPH10 BMS1 MPHOSPH10 

RPF2 RPF2 NOC4L RPF2 

RSL1D1 RRS1 NSA2 RSL1D1 

RBM28 NOC4L PNO1 RBM28 

RRS1 RSL1D1 KIAA0020 RRS1 

 

Supplementary Table 2. The top ten phosphorylation modified proteins screened by four 
classification methods. 

Degree Closeness EPC MNC 

SRSF1 SRSF1 SRSF1 SRSF1 

NCBP1 HNRNPC HNRNPC NCBP1 

HNRNPC NCBP1 HNRNPA1 HNRNPC 

HNRNPA1 HNRNPA1 NCBP1 HNRNPA1 

DHX9 DHX9 DHX9 DHX9 

SF3B1 SF3B1 SF3B1 SF3B1 

DDX5 DDX5 RBM25 DDX5 

RBM25 HIST1H4F SRSF9 RBM25 

SNRNP70 RBM25 DDX5 SNRNP70 

HIST1H4F SRSF9 SF3B3 HIST1H4F 

 

Supplementary Table 3. Interaction of hub genes with triptolide. 

Gene name PDB ID Herbs ΔGb 
H-Bonds 

Type amino acid 

AMD1 3DZ7 Triptolide -5.2803--5.7650 H-donor Arg A-20 

IMP3 6FQR Triptolide -5.6453--6.1944 H-donor Lys A-3 

    H-donor Asn B-146 

    H-acceptor Asn B-146 

HNRNPC 2MZ1 Triptolide -5.0554--5.8036 H-donor Arg 17 

DHX9 3VYX Triptolide -5.3092--5.4239 H-donor Thr 216 

 


