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There is a critical requirement for alternative strategies to provide the better treatment in
colorectal cancer (CRC). Hence, our goal was to propose novel biomarkers as well as
drug candidates for its treatment through differential interactome based drug
repositioning. Differentially interacting proteins and their modules were identified,
and their prognostic power were estimated through survival analyses. Drug
repositioning was carried out for significant target proteins, and candidate drugs
were analyzed via in silico molecular docking prior to in vitro cell viability assays in
CRC cell lines. Six modules (mAPEX1, mCCT7, mHSD17B10, mMYC, mPSMB5,
mRAN) were highlighted considering their prognostic performance. Drug
repositioning resulted in eight drugs (abacavir, ribociclib, exemestane, voriconazole,
nortriptyline hydrochloride, theophylline, bromocriptine mesylate, and tolcapone).
Moreover, significant in vitro inhibition profiles were obtained in abacavir,
nortriptyline hydrochloride, exemestane, tolcapone, and theophylline (positive
control). Our findings may provide new and complementary strategies for the
treatment of CRC.
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INTRODUCTION

Colorectal cancer (CRC) is the most commonly diagnosed cancer in women and men worldwide. It
occurs in the colon or rectum and affects the large intestine or large bowel. It is also known as bowel
cancer, rectal cancer and colon cancer. The predicted new cases are over 1, 9 million and the number
of deaths is 9,35,000 in 2020 (Sung et al., 2021). It is assumed to increase to 2.2 million new cases and
1.1 million deaths by 2030 (Douaiher et al., 2017). According to American Cancer Society, only 4 out
of 10 CRC patients are detected at an early stage. If detected at an early stage, the 5-years survival rate
can be as high as 90%. Otherwise, if metastases occur in all parts of the body, the 5-years survival rate
drops to 14% (Rahib et al., 2014).
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For many years, various drugs have been improved for the
treatment of CRC, 5-fluorouracil, bevacizumab, cetuximab
(Mauricio, 2019) also in combination with 5-fluorouracil/
leucovorin with either oxaliplatin (FOLFOX) or irinotecan
(FOLFIRI) (Neugut et al., 2019). However, patients with
advanced CRC are resistant to 5-fluorouracil (Douillard et al.,
2000). Therefore, new therapeutic agents may be needed for
treatment.

In the last decades, many systems biology approaches have
been used to overcome problems in the diagnosis, prognosis, or
therapy of many cancers including CRC (Turanli et al., 2017a).
For instance, five potential target genes (DUSP4, ETV5, GNB5,
NT5E, and PHLDA1 to overcome cetuximab resistance in CRC
utilizing gene expression profiling and mathematical modelling,
and the results were subsequently validated through wet-lab
studies (Park et al., 2019). Furthermore, several source genes
and target proteins were identified through the employment of
differential gene expression analysis, protein-protein interactions
(PPIs), and genome-scale metabolic modelling (Zhang et al.,
2019; Ilyas et al., 2020).

Physical interactions between proteins in all living organisms
are the basis for cellular signaling pathways that mediate essential
biological processes such as gene expression and metabolism
(Sevimoglu and Arga, 2014; Calimlioglu et al., 2015). By
integrating high-throughput genomic data with PPI networks
under the concept of network science, disease mechanisms and
genes associated with diseases or proteins can thus be discovered.
Clarification of disease mechanisms associated with biological
processes and identification of disease candidate genes or proteins
through the use of PPI networks may suggest potential
biomarkers and drug targets for these diseases (Safari-
Alighiarloo et al., 2014).

Biomarkers play a crucial role in the concept of personalized
medicine in identifying subtype phenotypes, identifying the
convenient therapeutic approach and estimating clinical course
and prognosis. Due to the limited efficiency of molecular
biomarkers in the diagnosis and treatment of complex diseases
such as cancer, researchers have recently focused on the detection
of biological clusters of molecules (mostly gene and/or protein
clusters) that have functional relationships with each other and
are referred to as systems biomarkers (Turanli et al., 2017a).
Accordingly, studies have shown that the identified systems
biomarkers play an active role in the diagnosis and prognosis
of diseases, as well as in the development of treatment strategies
(Gov and Arga, 2017; Kori and Arga, 2018; Sevimoglu et al.,
2018).

The differential interactome approach relies on important
alterations that appeared in protein-protein interactions (PPIs)
between phenotypes. The differential interactome algorithm
allows to predict the probability distributions for each possible
co-expression profile of gene pairs (encoding proteins that
interact with each other) across phenotypes and to determine
the uncertainty of whether a PPI matches the corresponding
phenotype (Ayyildiz et al., 2017). This approach has shown
success by being utilized effectively in various cancers and
subtypes. (Ayyildiz et al., 2017; Turanli et al., 2019a; Turanli
et al., 2019b; Gulfidan et al., 2020; Caliskan et al., 2021).

Drug repositioning (DR), in which existing drugs are
repurposed for a new therapeutic indication is a promising
approach because it reduces time and cost in drug
development and circumvents problems due to safety and
efficacy issues (Shim and Liu, 2014; Würth et al., 2016; Xue
et al., 2018). Recently, a review paper pointed out repositioning in
drug-resistant CRC (Nowak-Sliwinska et al., 2019). Citalopram,
amantadine, and captopril are repurposed drugs for the
prevention or treatment of disease (Koh et al., 2014; Van
Noort et al., 2014; Diaz-Carballo et al., 2015). Also, there are
computerized efforts to reuse drugs such as GW-8510, etacrynic
acid, ginkgolide A, and 6-azathymin with the use of Functional
Module Connectivity Map for CRC (Chung et al., 2014).
Currently, the identification of candidate biological targets and
new potential drugs could be done by using in silico methods for
DR by collecting clinical data at different omics levels and
analyzing them in systematic and integrative pipelines (Turanli
et al., 2019a). As an instance, the well-established drug metformin
is used to treat Type 2 diabetes and was found to be a preventative
agent in CRC via in silico methods (Higurashi and Nakajima,
2018). In addition, signature-based DR is another strategy in the
DR approach to identify existing drugs for potential treatment or
to fulfill new indications. This method considers gene expression
signatures and compares drug-gene and disease-gene expression
profiles. (Yella et al., 2018). One of the earliest examples of
signature-based approaches is “Connectivity Map” and a
public resource used to find small molecules and mechanisms
of their action, chemicals or physiological processes, diseases, and
drugs (Lamb et al., 2006). Another category of DR is network-
based DR, which utilize to identify molecular mechanisms and
diagnostic/prognostic biomarkers in many diseases including
cancer. Besides, network modelling is an important approach
for computational drug repositioning, forming a triangle of
disease, genes, and drug (Yella et al., 2018).

Considering the urgent need for the development of new
therapeutic strategies in CRC, in this study, we applied a
network-based DR approach to propose novel drug candidates
for CRC treatment. For this purpose, taking into account the fact
that colorectal carcinomas arise predominantly from adenomas,
we evaluated comprehensive datasets for human colorectal
adenomas and carcinomas together, employed the differential
interactome algorithm and evaluated the potential of
differentially interacting proteins as drug targets. Then, we
repurposed candidate drugs which are later analyzed in silico
by molecular docking simulations and in vitro by using viability
assays to determine their potential in CRC treatment.

METHODS

Gene Expression Datasets
Two comprehensive transcriptome datasets were employed: 1)
the microarray dataset (GSE8671) (Sabates-Bellver et al., 2007)
which compiled on Affymetrix Human Genome U133 Plus 2.0
Array platform (Affymetrix Inc.,Santa Clara, CA, United States)
with 32 colorectal adenoma samples and 32 matched normal
tissue samples obtained from NCBI-Gene Expression Omnibus
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(GEO) (Barrett et al., 2013), and 2) the RNA-seq COAD and
READ datasets (normalized as FPKM) from The Cancer Genome
Atlas (TCGA) consisting of 644 tumor tissue samples, and 51
normal tissue samples (Tomczak et al., 2015). TCGA-COAD
consisted of 478 primary tissue samples and 41 normal colon
tissue samples. TCGA-READ consisted of 166 primary tissue
samples and 10 normal rectal tissue samples.

Protein-Protein Interactions Data
BioGRID database (v.3.5.167) (Chatr-aryamontri et al., 2017) was
used, which contains 35,688 physically and experimentally
detected PPIs among 8,570 human proteins for the human
protein interactome. Filtering the interactome dataset with
proteins encoded by the genes represented in the
transcriptome datasets resulted in a network of 34,603 PPIs
among 8,322 proteins considering the TCGA dataset and
32,259 PPIs among 7,951 proteins considering the GSE8671
dataset.

Identification of Differential Interactome
and Differentially Interacting Proteins
The differential interactome algorithm was recruited to identify
the differential PPIs (dPPIs) between the tumor (or adenoma)
phenotype and the normal phenotype, considering the relative
observation frequencies (q-value) of each PPI as previously
described (Ayyildiz et al., 2017; Gulfidan et al., 2020). Briefly,
genes were grouped into three different levels as −1, 0, 1 according
to their expression levels within each sample. When the
expression level of a gene was lower than the average
expression value, it was labeled as “−1’; when the expression
level of a gene was higher than the average, it was labeled as “1”;
otherwise, it was labeled as “0”. The false discovery rate was 0.05.
According to the three-level expression categorization, there were
nine possible gene expression states (i.e., [0 0], [0 1], [0 −1], [1 0],
[1 1], [1 −1], [−1 0], [−1 1], [−1 −1]) for each interacting protein
pair. The number of times the conditions occurred in the normal
group (N0) and the number of times they occurred in the tumor
group (N1) were calculated. Taking into account the imbalance
between the sample sizes of the groups, the count parameters
were normalized considering the total sizes of the normal (NN)
and tumor (NT) groups (the maximum possible numbers of N0

andN1, respectively), and the normalized observation frequencies
in each group were obtained. The q value (the estimate of the
probability of that state occurring in the tumor state) was
calculated as follows:

q �
N1
NT

N0
NN

+ N1
NT

PPIs with a normalized observation frequency in either the
normal or tumor phenotype greater than 20% and q-values of less
than 0.10 (significantly repressed in the tumor phenotype) or
greater than 0.90 (significantly activated in the tumor phenotype)
were considered dPPIs. Differential interacting proteins (DIPs)
were defined as proteins that exhibit significant alterations in
their interaction patterns during the transition from normal

phenotype to tumor state (Gulfidan et al., 2020), and
categorized into two groups depending on their interaction
patterns: 1) DIPs with repressed interactions under tumor
conditions, and 2) DIPs with activated interactions under
tumor conditions. Modules were constructed around DIPs
using their dPPIs and visualized using Cytoscape 3.7.2
(Shannon et al., 2003).

Gene Set Over-Representation Analysis
Gene set over-representation analyses were carried out using the
ConsensusPathDB (ver.34) (Kamburov et al., 2013). Preferred
data sources for metabolic and signalling pathways were KEGG
(ver.88.0) (Kanehisa et al., 2017), Reactome (ver.64) (Fabregat
et al., 2017), and Biocarta (ver.2009_05_12) (Nishimura, 2001),
and Gene Ontology annotations (Ashburner et al., 2000) were
employed to represent associated biological processes. Statistical
significance was defined by a p-value cut-off < 0.05 for all
functional enrichment analyses. Each p-value was subsequently
converted to a z-score by using the inverse normal cumulative
distribution.

Prognostic Power Analysis
The prognostic analyses were performed using two datasets,
GSE17536 (Smith et al., 2010) and TCGA-COADREAD
containing patient survival data. The dataset of GSE17536
consists of 177 samples (24 patients with stage I, 57 patients
with stage II, 57 patients with stage III, and 39 patients with stage
IV) obtained from a patient cohort having the average age of
65.5 ± 13.1, whereas the dataset of TCGA COADREAD consists
of 466 samples (89 patients with stage I, 170 patients with stage II,
130 patients with stage III, 62 patients with stage IV, and 15
patients with no stage information) acquired from a patient
cohort having average age of 66.9 ± 12.5.

Survival analyses were performed by stratifying patients into
high- and low-risk groups based on their prognostic index (PI),
which is the linear component of the Cox model (PI � β1x1 + β2x2
+ . . . + βpxp, where βp is the coefficient obtained from the Cox fit,
xp is the expression value of each gene) to investigate the
prognostic performance of each DIP module. Analyses were
performed with the web server SurvExpress (Aguirre-Gamboa
et al., 2013) using datasets with clinical data. Signatures of
survival in each risk group were estimated by Kaplan–Meier
curves and Hazard Ratios (HR). The statistical significance of each
curve was assessed by the cut-off for the log-rank p-value < 0.05.
The hazard ratio (HR � (O1/E1)/(O2/E2)) was calculated to
discover the significance of the survival curves based on the
ratio between the relative death rate in group 1 (O1/E1) and the
relative death rate in group 2 (O2/E2), where O denotes the
observed number of deaths, and E denotes the expected number
of deaths.

Drug Repositioning
GeneXpharma (Turanli et al., 2017b), which is a publicly available
platform presenting 50,304 gene-drug interactions among 4,344
genes and 11,939 drugs and employing statistical tests for the
disease-gene-drug triad, was used for the network-based DR
considering protein targets CDKN2A, GSK3B, HDAC2, and
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PML. A hypergeometric probability test was used to associate
drugs with target proteins, and simulation results with p < 10−3

were accepted as statistically significant.

Molecular Docking
The 3-D structures of target proteins were obtained from Protein
Data Bank (PDB) (Berman et al., 2002). The PDB identifiers were
1DC2 (CDKN2A) (Yuan et al., 2000), 6Y9R (GSK3B) (Buonfiglio
et al., 2020), 6WBZ (HDAC2) (Yu et al., 2020), and 5YUF (PML)
(Wang et al., 2018). Ligand binding sites of proteins were
determined by PDBe (Velankar et al., 2016) and BIOVIA
Discovery Studio (ver.20.1) (BIOVIA, 2016). The structures of
candidate drugs were taken from PubChem (Kim et al., 2019).
Autodock Vina software (ver.1.1.2) (Trott and Olson, 2019) was
used for molecular docking analyses. All water molecules were
deleted, and all polar hydrogens were added to the structure of a
protein in the preparation of macromolecules. Molecular docking
was performed five times for each ligand and each simulation
yielded twenty poses. Exhaustiveness was set to eight for all
docking calculations. Binding affinities were estimated to
determine the importance of binding between protein targets
and drug candidates. The top-scoring pose (with the lowest
binding free energy) was selected for further analysis.

Drugs
Abacavir (Selleckchem, S5215), Ribociclib (Selleckchem, S7440),
Exemestane (Selleckchem, S1196), Voriconazole (Selleckchem,
S1442), Bromocriptine mesylate (R&D systems, 0427/50),
Tolcapone (Selleckchem, S4021) were dissolved in dimethyl
sulfoxide (DMSO) and then diluted in 1x PBS. For each
treatment step, 100 mM stock solution was diluted to a final
concentration. Total DMSO concentration did not exceed 0.1%
and control groups (CTRL) were also treated with the same
concentration of DMSO. Nortriptyline hydrochloride
(Selleckchem, S3698) and Theophylline (Sigma, T1633) were
dissolved in 1x PBS.

In Vitro Cell Viability Assay
CCD-841-Con cells (ATCC, CRL-1790, human healthy colon
epithelial cell line) and HCT-116 cells (ATCC-CCL-247, human
colorectal carcinoma cell line) were cultured in Dulbecco’s
modified Eagle’s medium and Eagle’s Minimum Essential
Medium, both supplemented with penicillin (100 units/ml),
streptomycin (100 g/ml), and 10% fetal calf serum in a
humidified atmosphere of 5% CO2 and 95% air at 37°C. Later,
cells were treated with varying abacavir, voriconazole,
nortriptyline hydrochloride, tolcapone, and theophylline
concentrations (10, 50, 100, 150, and 200 µM) in the first
phase. Another wide exposure dose was used as 10, 50, 100,
and 200 nM and 200–500 µM for bromocriptine mesylate,
budesonide, exemestane, voriconazole, and theophylline. Also,
nortriptyline hydrochloride concentration in the range of
10–50 µM was used to identify IC50. Cell viability was
determined using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyl-2H-tetrazolium bromide) reduction by viable cells
following the exposure durations of 24, 48, and 72 h 2 µl of
MTT solution was mixed with 100 μL medium and incubated for

3 h at 37°C and 5% CO2. At the end of this incubation period, the
medium with MTT was discarded and 100 μL DMSO was added.
The formazan crystals were dissolved by shaking at 150 rpm for
10 min. The intensity (OD) of the color formed was measured
with a spectrophotometer with a microplate reader at a
wavelength of 590 nm (Reference filter; 660 nm). Calculations
were performed related to the absorbance of control samples
which was equaled to 100%.

RESULTS

Differentially Interacting Proteins, Their
Modules, and Biological Interpretation
Two comprehensive transcriptome datasets associated with
colorectal adenomas and tumors were recruited to apply
differential interactome methodology for predicting high
probability PPIs in tumor states and identifying differential
PPIs. Two datasets were analyzed independently, and common
dPPI signatures were considered in further analyzes. In the
current formulation, upper and lower bounds (0.90 and 0.10,
respectively) were used for q-values which represent the
probability estimates. PPIs that had a normalized frequency of
observation in either the normal or tumor phenotype greater than
20% were considered as significant. As a result, a total of 2,214
differential PPIs (dPPIs) were identified in the GEO dataset and
1,625 dPPIs were identified in the TCGA dataset. dPPIs were
further classified as “significantly repressed in tumor phenotype”
(if q < 0.10) or “significantly activated in tumor phenotype” (if q >
0.90). To this end, among the dPPIs, 718 interactions were
repressed and 1707 interactions were activated in the GEO
dataset, while 81 interactions were repressed and 1,557
interactions were activated in the TCGA dataset (Figure 1A).

The scale-free topology of the differential interactome network
highlights the presence of hubs termed differentially interacting
proteins (DIPs), indicating major changes in their interaction
patterns during tumorigenesis (i.e., transition from “normal” to
“tumor” phenotypes) (Ayyildiz et al., 2017). In this study, we
identified DIPs and constructed a module around each DIP with
its interaction partners, and the corresponding module was
named adding the letter “m” to the beginning of the central
DIPs (e.g., mMYC). The number of modules with more than 5
PPIs was 86 in TCGA and 177 in the GEO dataset. In both
datasets, modules with at least 5 PPIs were considered and filtered
based on their common interactions only. The number of
common modules in two datasets (GEO and TCGA) were 24
(Figure 1B, Supplementary Table S1).

Among these modules, mMYC was the largest module with
116 members. Besides, the MYC protein was the most common
protein observed in other modules. Moreover, mPSMB5,
mCCT7, mRAN, mAPEX1, mHSD17B10, and mHDGF were
also modules with more than 10 interactions. mPSMB5 had 33
interactions, as well as 30 interactions for the mCCT7, and
mRAN had 29 interactions. For others, the number of
interactions was 15 and 11, respectively.

Considering the members of the modules, gene set over-
representation analyses were performed to identify biological
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processes, molecular pathways, and cancer hallmarks associated
with the DIPs (Figure 2, Supplementary Table S1). The
members of the modules were significantly enriched with
several biological processes such as deubiquitination, protein
modifications, cell cycle, neddylation, and transcription;
signaling pathways such as PI3K-Akt, NOTCH, and Wnt
signaling; cancer pathways such as transcriptional
misregulation of cancer and microRNAs in cancer; and cancer
pathways associated with oncogenic viruses such as Hepatitis B,

Human papillomavirus (HPV), Epstein-Barr virus, and Human
T-cell leukemia virus 1 (Figure 2A, Supplementary Tables S2,
S3). Furthermore, the members of the modules were significantly
associated with all cancer hallmarks (Senga and Grose, 2021),
i.e., sustaining proliferative signaling, inducing angiogenesis,
resisting cell death, deregulating cellular energetics, evading
growth suppressors, activating invasion and metastasis,
enabling replicative immortality, avoiding immune destruction,
and genome instability and mutation (Figure 2B).

FIGURE 1 | (A) Interaction networks of both datasets and common interactions. GEO-specific edges were shown in blue, TCGA-specific edges were shown in red
and common interactions were shown in green. (B)Commonmodules in both datasets. Node size increases with the size of eachmodule, edge thickness increases with
the number of shared interactions between modules. The color scale of nodes changes according to the presence of each hub protein in other modules.

FIGURE 2 | (A) Heatmap indicating top-scored 30 pathways enriched with the modules. Cells were colored depending on statistical significance (i.e., z-score). (B)
Circos plot linking cancer hallmarks to modules via the number of module members associated with the cancer hallmarks.
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Evaluation of DIP Centered Modules as
Potential Prognostic Systems Biomarkers
The evaluation of prognostic performances of DIP-centered
modules was performed via Kaplan-Meier survival analyses
through partitioning low- and high-risk groups regarding the
expression levels of module genes. To cross-validate the results,
the survival analyses were independently evaluated using two
different datasets. As a result, prognostic performances of six
modules (namely, mAPEX1, mCCT7, mHSD17B10, mMYC,
mPSMB5, and mRAN) were found significant in both CRC
datasets considering log-rank test p-values (p < 0.01) and
hazard ratios (HR > 2) (Figure 3).

Identification of Candidate Drugs for CRC
Treatment Through Drug Repositioning
To identify potential drug targets, modules were further evaluated
considering their sizes, members, prognostic performances, and
enriched processes, pathways, and cancer hallmarks. Considering
its relevance, we focused on the interactions of MYC in the
module and filtered the proteins according to available 3-D
structure information in PDB (Berman et al., 2002), and drug-
gene interaction information in geneXpharma (Turanli et al.,
2017b). The structures of 60 proteins out of 116 proteins were
found in PDB, and drug interactions were identified for 39
proteins with available structural information. Durg

FIGURE 3 | Kaplan–Meier plots estimating survival probabilities of patients considering GEO and TCGA datasets. Patients were stratified considering their
prognostic index determined through gene expression profiles. The low-risk group was shown in green, and the high-risk group was shown in red.

Frontiers in Bioinformatics | www.frontiersin.org September 2021 | Volume 1 | Article 7105916

Beklen et al. Differential Interactome Based Drug Repositioning

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


repositioning simulation through geneXpharma resulted in 651
drugs associated with 39 target proteins. Then, these drugs were
filtered according to FDA-approval, association with CRC in
literature, and having the 3-D structures on PubChem (Kim et al.,
2019). Finally, we identified eight drugs (abacavir, voriconazole,
exemestane, nortriptyline hydrochloride, tolcapone,
bromocriptine mesylate, ribociclib, and theophylline) targeting
4 proteins (PML, GSK3B, CDKN2A, HDAC2) (Figure 4).

In silico Investigation of Potential
Drug-Target Interactions by Molecular
Docking Simulations
In silico validation studies were carried out to evaluate the
potential candidate drugs for the therapeutic strategies in CRC
prior to in vitro viability assays. For this purpose, the 3-D
structures of target proteins, i.e., 1DC2 (CDKN2A), 6Y9R
(GSK3B), 6WBZ (HDAC2), and 5YUF (PML), and candidate
drugs were retrieved from PDB (Berman et al., 2002) and
PubChem (Kim et al., 2019), respectively, and the binding
affinities of the drugs to their targets were estimated via
protein-ligand molecular docking simulations using Autodock
Vina (Trott and Olson, 2019) (Figure 5).

The binding affinity of the positive control case (theophylline)
was predicted to be −5.1 kcal/mol. The most significant binding
affinities were obtained for bromocriptine mesylate, nortriptyline
hydrochloride, tolcapone, and exemestane, which were predicted
as −9.7, −8.2, −7.3, and −7 kcal/mol, respectively. Similarly, the
binding affinities of ribociclib, abacavir, and voriconazole were

−6.9, −5.9, −5.7 kcal/mol, respectively. Besides, the binding
affinity of nortriptyline hydrochloride which targets PML
protein was -6.1 kcal/mol. According to the molecular docking
simulations, all potential drugs (bromocriptine mesylate,
tolcapone, nortriptyline hydrochloride, ribociclib, exemestane,
voriconazole, and abacavir) display significantly higher binding
affinities when docked to their target proteins, compared to the
positive control case (Figure 5). The details of the top-scoring
pose of five docking simulations for each ligand are displayed in
Supplementary Figure S1.

In vitro Cell Viability Assay of Repurposed
Drugs
To have an insight into the antitumor potential of drugs for CRC
treatment, in vitro cell viability assay was performed in HCT-116
(carcinoma) cell line. Concentration ranges as 10–200 uM for
abacavir and tolcapone, 5–100 uM for ribociclib, 200–500 uM for
exemestane, voriconazole, and bromocriptine mesylate,
10–50 µM for nortriptyline hydrochloride, and 20–500 µM for
theophylline were tested to find out the IC50 values in HCT-
116 cells.

After 24, 48, and 72 h drug treatments, IC50 values were
determined as 100 μM at 72 h for abacavir, 100 μM at 72 h for
ribociclib, 500 μM at 48 h for exemestane, 40 μM at 48 h for
nortriptyline hydrochloride, 500 μM at 72 h for theophylline and
10 μM at 72 h for tolcapone (Figure 6). Bromocriptine mesylate
and voriconazole did not decrease viability at tested
concentrations and time points.

FIGURE 4 | The network between drug targets and drugs obtained from geneXpharma. Edge thickness varies according to the hypergeometric probability (p)
describing the significance of the drug-target association.
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In addition, the toxicity of the drugs was tested in and CCD-
841-Con healthy epithelial cells in the obtained IC50 values.
Ribociclib was the only drug that caused death in healthy cells
when compared to control (Figure 7).

DISCUSSION

In the present study, we aimed to identify potential systems
biomarkers and drug candidates for the treatment of CRC. To this
end, we considered the transcriptome profiles of colorectal
adenomas and carcinomas together, as colorectal carcinomas
predominantly arise from adenomas, and applied the
differential interactome approach for the first time in CRC to
identify prognostic system biomarkers and drug repositioning
candidates. The potential of drug candidates was demonstrated
by in silico molecular docking simulations and in vitro
cytotoxicity assays on CRC and healthy cell lines. In summary,
24 modules were found in both GEO and TCGA datasets, six of
which showed tumor prognosis. As a result of the detailed

evaluation of modules within the relevant literature, MYC, a
transcription factor that coordinates many biological processes,
came to the fore in all aspects. The MYC-centered module
(mMYC) showed high prognostic performance in both
datasets; MYC was significantly overexpressed in human
cancers (Dang et al., 2009), and it promotes cell proliferation,
sensitizes to apoptosis, and induces cells to undergo apoptosis
(Massó-Vallés and Soucek, 2020). Therefore, it was promising to
target MYC and its interacting partners as therapeutic targets in
cancer therapy. On the other hand, previous studies reported that
targeting MYC was problematic (Wolf and Eilers, 2020) and
direct targeting of MYC for cancer therapy has not been proposed
as a rational strategy (Chen et al., 2018); therefore, we
hypothesized that breaking the bond between MYC and its
interacting partners would be a promising strategy for the
treatment of CRC. For this reason, we focused on four MYC-
interacting proteins, i.e., Promyelocytic leukemia protein (PML),
Glycogen synthase kinase-3 beta (GSK3B), Cyclin-Dependent
Kinase Inhibitor 2A (CDKN2A), and Histone deacetylase 2
(HDAC2), which were reported to be mis-regulated in cancer

FIGURE 5 | The structures of the bound protein-ligand complexes for each drug target and their binding affinities (mean ± standard deviation (S.D).
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in previous studies (Guan and Kao, 2015; Domoto et al., 2016;
Zhao et al., 2016; Shan et al., 2017).

According to the GeneCards database (Stelzer et al., 2016), the
PML protein is a member of the triple motif family (TRIM). This
phosphoprotein localizes in nuclear bodies where it functions as a
transcription factor and tumor suppressor by preventing cells
from growing and dividing in an uncontrolled manner. The
tumor suppressor PML regulates cell cycle, apoptosis,
senescence, migration, angiogenesis, and DNA repair pathways
as well as the p53 response to oncogenic signals (Guan and Kao,
2015). GSK3B protein is a serine-threonine kinase that belongs to
the glycogen synthase kinase subfamily. It is a regulator of glucose
homeostasis and plays tumor promoting roles in cell survival,
evasion of apoptosis and proliferation (Domoto et al., 2016).
CDKN2A has two different promoters, which are involved in the
retinoblastoma protein (Rb) and p53 pathways, and acts as an
inhibitor of CDK4/6 kinase. CDKN2A contributes to the
regulation of cell cycle progression by inhibiting the S phase.

It binds to CDK4/6, inhibiting cyclin D-CDK4/6 complex
formation and phosphorylation of Rb family members so
preventing exit from G1 phase of the cell cycle (Romagosa
et al., 2011). HDAC2 protein plays role in gene transcription,
DNA repair, immune stability, and related signaling pathways
(Shan et al., 2017). Moreover, the PML protein showed a high
expression pattern in endothelial cells and peripheral nerves/
ganglia, and similarly, CDKN2A protein showed a high
expression pattern in glandular cells and peripheral nerve/
ganglion. When HDAC2 protein was examined in Human
Protein Atlas, it showed a high expression pattern in glandular
cells and an intermediate expression pattern in endothelial cells
and peripheral nerve/ganglion. GSK3B protein also showed an
intermediate expression pattern in glandular cells and peripheral
nerve/ganglion and was detected in plasma (Uhlen et al., 2015).

Among the proposed drugs, abacavir, voriconazole,
exemestane, and nortriptyline hydrochloride targeted the PML
protein; whereas tolcapone, bromocriptine mesylate, and

FIGURE 6 | Effects on viability in HCT116 cells following 24, 48 and 72 h of drug treatments. Data denote mean ± S.D. *p < 0.05 vs. CTRL (n � 3); **p < 0.01 vs.
CTRL (n � 3); ***p < 0.001 vs. CTRL (n � 3). Viability following of Abacavir (A), Ribociclib (B), Exemestane (C), Nortriptyline (D), Theophylline (E), Tolcapone (F) treatment
in HCT116 cells.
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nortriptyline hydrochloride targeted GSK3B. CDKN2A was the
target protein for ribociclib. Additionally, theophylline targeted
the HDAC2 protein. Recently, researchers investigated the
antitumor effects of the reverse transcription inhibitor abacavir
in several studies. Carlini and coworkers (Carlini et al., 2010)
investigated the effect of abacavir in prostate cancer cell lines and
observed that abacavir reduced cell growth, migration, and
invasion processes. Another study investigated the effect of
abacavir and its combination with other reverse transcriptase
inhibitors in breast cancer cells and found an increase in
apoptosis and a decrease in migration in treated cells
(Sekeroglu et al., 2021). On the other hand, Exemestane is
already used in breast cancer, but Koutras and colleagues
(Koutras et al., 2009) observed the antiplatelet effect of
Exemestane also in lung cancer cells. Moreover, nortriptyline,
a tricyclic antidepressant used to treat depression, however, has
antineoplastic activity in various cancers such as bladder,
prostate, myeloma (Pan et al., 2010; Mao et al., 2011; Yuan
et al., 2015). In addition, recent studies have shown that
tolcapone, a catechol-O-methyltransferase inhibitor used in
Parkinson’s disease, decreases cell viability in lung cancer and
neuroblastoma cell lines (Forester and Lambert, 2014; Maser
et al., 2017).

According to DrugBank (Wishart et al., 2006), abacavir was a
reverse transcriptase inhibitor and was used against Human
Immunodeficiency Virus Type 1 (HIV-1). It targets HIV
reverse transcriptase by forming the pharmacologically active

compound carbovir 5′-triphosphate, which is an analogue of
guanosine. Voriconazole is used to treat severe fungal infections.
It binds to 14-alpha-sterol demethylase, which is known as
CYP51, and inhibits the demethylation of lanosterol as part of
the ergosterol synthesis pathway in yeast and other fungi.
Exemestane is an irreversible steroidal aromatase inactivator
structurally related to the natural substrate androstenedione
that has been used to treat estrogen receptor-positive breast
cancer. It acts as a false substrate for the aromatase enzyme
and is processed into an intermediate that irreversibly binds to
the active site of the enzyme and causes its inactivation.
Nortriptyline hydrochloride is a tricyclic antidepressant and is
used to treat depression by inhibiting serotonin and
norepinephrine reuptake in neuronal cell membranes. It also
exerts antimuscarinic effects through its action on the
acetylcholine receptor. Tolcapone is a selective and reversible
inhibitor of catechol-O-methyltransferase (COMT). It is used for
the symptomatic treatment of Parkinson’s Disease besides
levodopa/carbidopa therapy. Bromocriptine mesylate is a
dopamine D2 receptor that stimulates centrally located
dopaminergic receptors, resulting in a number of
pharmacological effects. It is used for signs and symptoms of
Parkinsonian syndrome. Ribociclib is a cyclin-dependent kinase
inhibitor and helps slow the growth of cancer cells by inhibiting
CDK4/6 by arresting cells at the G1 checkpoint, preventing tumor
cells from proliferating. Theophylline is used to treat lung
diseases such as asthma. It has two distinct effects in the

FIGURE 7 | Effects on viability in CCD 841 CoN cells following drug treatments in IC50 conditions. Data denote mean ± S.D. ***p < 0.001 vs. CTRL (n � 3). Abacavir,
100 uM and 72 h; Ribociclib, 100 uM and 24 h; Exemestane, 500 uM and 48 h; Nortriptyline, 40 uM and 72 h; Theophylline 500 uM and 72 h; Tolcapone, 10 uM, and
72 h treatment in CCD 841 CON cells.
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airways of patients with reversible obstruction; smooth muscle
relaxation and suppression of airway response to stimuli. Besides,
it was investigated whether these drugs had been used previously
in CRC. With the exception of theophylline, the drugs were novel
in CRC. Theophylline was used as a positive control in this study.

Drugs that are candidates for the targets (PML, CDKN2A,
GSK3B, and HDAC2) were further evaluated using the current
literature and screened for association with CRC. Theophylline
was used in SW480 cell lines and the IC50 value of theophylline
was found to be 10−4M at 48 h in rectal cancer (Peng et al., 2018). In
our study, theophylline showed its IC50 effect at 500 µM
concentration at 72 h after viability assay in the carcinoma cell
line. The difference in cell lines might have caused the difference in
inhibitory concentrations. It was also observed that ribociclib, a
cyclin-dependent kinase inhibitor that slows cancer cell growth by
inhibiting CDK4/6 proteins, significantly decreased viability in the
healthy cell line in addition to its effect in the carcinoma cell line.We
speculate that the possible reason for the selectivity between healthy
and CRC cells may be that CRC cells are less dependent on the
CDK4/6 axis for proliferation and survival than healthy cells.

CONCLUSION

This study aimed to find new therapeutic targets and drugs for the
treatment of CRC. There were 24 common protein modules,
whose Kaplan-Meier plots showed that six modules were
prognostically important. In addition, functional enrichment
analysis of the modules revealed that they were involved in
signaling pathways related to cancer and metabolism.
Molecular docking results showed that each potential drug and
respective protein has significantly higher binding affinities
compared to the positive control. Four of the drug candidates
(abacavir, exemestane, nortriptyline hydrochloride, tolcapone)
showed statistically significant inhibition profiles on the CRC cell
line. The efficacy of four of these drugs on CRC cell lines was
demonstrated in this study for the first time in the literature.
Therefore, they can be used for further studies. The positive
control (theophylline) showed that our methods can be used as
new therapeutics in cancer therapy. Our results may provide new
and complementary strategies for the treatment of CRC. On the
other hand, these results should be supported by further
experiments to elucidate the mechanisms of drug action in

colorectal cancer cells. Moreover, our results highlight the
value of studying DIPs to propose potential therapeutics.
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