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Summary 
To investigate early immune responses to the intracellular parasite Toxoplasma gondii, we examined 
the capacity of nonimmune splenocytes to respond in vitro to intact tachyzoites and soluble tachyzoite 
antigen (Ag). Both types of stimuli induced high levels of proliferation as well as interferon 
3' (IFN-3") secretion. Based on several key criteria, the response appeared to be driven by a 
superantigen present in the parasite. Thus, stimulation of C57BL/6 spleen cells with T. gondii 
resulted in a preferential threefold expansion of a T cell population expressing the V35 chain 
of the T cell receptor, and a survey of different inbred mouse strains revealed an inverse correlation 
between Ag-induced proliferation and genetic deletion of VB5. Moreover, proliferation was induced 
using irradiated Ag-pulsed and infected splenic adherent cells, and was blocked by a major 
histocompatibility complex class II-specific monoclonal antibody. Furthermore, paraformaldehyde- 
fixed IA b-, IA k-, and IEk-transfected fibroblast lines were able to specifically bind T gondii Ag 
and drive proliferation of T lymphocytes, demonstrating that the response can be mediated by 
allogeneic class II molecules, and that it does not require cellular Ag processing. It is interesting 
to note that after 1 wk of culture with Ag, up to 70% of the expanded V35-expressing cells 
were CD8 +. These results provide the first description of a superantigen activity in a protozoan 
pathogen. In the case of T. gondii, superantigen-driven expansion of IFN-3'-secreting CD8 § 
lymphocytes may play a role in the development of the dominant IFN-3' -dependent, cell-mediated 
immunity characteristic of infection with this parasite. 

T he obligate intracellular protozoan Toxoplasma gondii in- 
fects a wide range of host species and cell types. Infec- 

tion with this parasite is characterized by an acute phase during 
which tachyzoites rapidly proliferate, and a slow-growing 
chronic phase consisting of the formation of bradyzoite- 
containing cysts. 

A remarkable feature of the parasite is that it induces long- 
lasting immunity that renders the immunocompetent host 
strongly resistant to Toxoplasma reinfection. This immunity 
is striking in that it is characterized by production of high 
levels of IFN-y in both acute and chronic models of infec- 
tion (1-3). Indeed, IFN-3' is critical for immunity as deter- 
mined by in vivo depletion studies (2-4), and whereas Th-1 
type CD4 + cells play a role in this response (3), adoptive 
transfer experiments suggest that CD8 + cells may be the 
major source of IFN-3, in vivo (5). 

An issue of major importance in developing strategies of 
microbial vaccine development is to determine how immune 
responses becomes polarized towards a particular cytokine 
production phenotype such as a Thl (in the case of intracel- 
lular pathogens) or Th2 (during helminth infection) pattern. 
Biasing of the response should, by definition, be driven by 

events occuring during early contact with pathogen, before 
the development of acquired immunity. For this reason, we 
have recently examined T. gondii-driven responses that occur 
independently of those mediated by primed cells of the im- 
mune system. 

One potential means of inducing a vigorous early immune 
response which might influence the subsequent development 
of acquired immunity could be through stimulation by a su- 
perantigen. This class of Ags binds to Ia molecules outside 
of the conventional peptide-binding groove and activates T 
lymphocytes bearing specific TCR V3 chains (6, 7). Thus, 
in contrast to conventional Ags, which activate only the low 
frequency of T cells bearing the appropriate clonotypic 
receptor, superantigens stimulate large proportions of resting 
T cells based on V/~ chain expression, and this results in 
proliferation and in some cases secretion of cytokines such 
as IFN-3,, IL-2, and TNF-ot (8, 9). 

Two classes of superantigen have been described: those that 
are encoded within the host genome by viruses (e.g., Mtv 
proviruses) and bacterial products such as the staphylococcal 
enterotoxins. In this paper, we show that live T. gondii 
tachyzoites as well as parasite extracts have stimulatory ac- 
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tivities consistent with the presence of  a superantigen. Thus, 
exposure of resting mouse splenocytes to these stimuli results 
in selective proliferation of T C R  V35-bearing cells and re- 
lease of IFN-'y. The effect is mediated through interaction 
with M H C  class II molecules, and is distinguished from other 
VB-specific mitogens in that CD8 + lymphocytes are pref- 
erentially expanded. Furthermore, inbred mice differ in their 
response based on expression of the V35 chain. To our knowl- 
edge, this is the first example of a superantigen expressed by 
a protozoan pathogen. The ability of T. gondii to stimulate 
a strong IFN-'y response from unprimed splenocytes may pro- 
vide a basis for understanding the mechanisms by which this 
parasite induces a dominant cell-mediated immune response 
after infection. 

Materials and Methods 

Mice and Parasites, Female mice of strains C57BL/6, C3H/HeN, 
A.BY, DBA/2, B10.D2, and BALB/c were obtained from The 
Jackson Laboratory (Bar Harbor, ME). Mouse strains BALB.B, 
B10.A, B10.A(2R), and B10.A(4II) were bred and maintained under 
specific pathogen-free conditions at Bioqual Inc. (ilockville, MD). 
Outbred, germ-free N:NIH-blk mice were bred and maintained 
by the National Institutes of Health (NIH) animal facility. Tachy- 
zoites of the strains I lH and ts-4 (a temperature-sensitive mutant 
that does not survive at 37~ (10) were maintained by weekly 
passage on human foreskin fibroblasts at 37 ~ and 34~ respectively. 

T.gondiiAg Preparation. Soluble tachyzoite Ag (STAg) was pre- 
pared as described (11) by sonicating RH parasites in the presence 
of protease inhibitors and centrifugation at 10,000 g followed by 
extensive dialysis of the supernatant fraction against PBS. 

Abs. For cell cytometric analysis, the following mAbs were used 
(Pharrningen, San Diego, CA): B20.6 (anti-V32), KJ-25 (anti-V33), 
MR9-4 (anti-V/~5), RR4-7 (anti-V36), TR310 (anti-V37), Mil5-2 
(anti-V/~8), MR10-2 (anti-VB9), B21.5 (anti-V310), RR3-15 (anti- 
V311), MR11-1 (anti-V312), MR12-3 (anti-V313), 14-2 (anti-V314), 
RM4-5 (anti-CD4), and 53-6.7 (anti-CD8). The V3 chain-, and 
the CD4- and CD8-specific Abs were directly labeled with FITC 
(V3 specific) and PE (CD4 and CD8 specific). Expression of Ia 
molecules on fibroblast lines was determined with Y-3P (anti-IA; 
mouse IgG2a) and 14-4-4 (anti-IE; mouse IgG2a) (American Type 
Culture Collection, Ilockville, MD) and goat anti-mouse IgG- 
FITC (Jackson Immunoresearch Laboratories, West Grove, PA). 
For in vitro depletions, hybridoma supernatants containing mAb 
RL172.4 (anti-CD4), 3-155 (anti-CD8), RA3-3A1 (anti-B220), 
J l lD (anti-B cell marker), and SW3A4 (anti-NKl.1) were used. 
In vitro blocking experiments used mAbs Y-3P, M5/114 (anti-IA 
plus IE; rat IgG2b), 14-4-4, KH9 (anti-H-2Db; mouse IgG2b), 
GK1.5 (anti-CD4; rat IgG2b), and 2.43 (anti-CD8; rat IgG2b). 

Fibroblast Transfectants. Fibroblast cell lines transfected with ex- 
pression plasmids encoding 1A b (FT7.1C6), IA k (RT7.3H3 B4.5), 
and IE k (DCEK Hi7) la molecules (kindly provided by Dr. R. N. 
Germain, Laboratory of Immunology, National Institute of Al- 
lergy and Infectious Diseases, NIH) were produced as described (12). 

Purification of T Lymphocytes. T cells were purified by passing 
splenocytes over an anti-mouse Ig column according to the manufac- 
turer's instructions (R&D Systems, Inc., Minneapolis, MN). The 
resulting populations were typically >90% CD3 § as determined 
by cytometric analysis. To purify CD8 § lymphocytes, splenocytes 
(10 s) were incubated (45 rain, 0~ in 2.5 ml medium containing 
mAb specific for CD4 +, NKI.I+, B220 +, and J11D + cells. After 

washing, cells were incubated (45 min, 37~ in 5 ml of a 1:10 
dilution of rabbit serum as a source of complement (Accurate Chem- 
ical & Scientific Corp., Westbury, NY). Cells were rewashed and 
the cycle repeated. The resulting cells were then applied to an 
anti-mouse Ig column (R&D Systems, Inc.) and those not binding 
were collected. Purity of the resulting CD8 § cells, determined by 
flow cytometric analysis, was routinely 1>90%. 

Cell Depletions. In vitro depletion of NK and T cells was car- 
ried out with mAb and complement as previously described (13). 

Collection of Splenic Adherent Cells. Splenic adherent cells 
(SAC) 1 were obtained by incubating 10 s spleen cells in DMEM 
(GIBCO BRL, Gaithersburg, MD) with 5% FCS (Hyclone Labora- 
tories, Logan, UT) on a 100 x 20-ram tissue culture dish (Becton 
Dickinson Labware, Lincoln Park, NJ) for 1 h at 37~ Nonad- 
herent cells were removed by washing, then medium containing 
50 gtg/ml STAg or 2 x 107 15 kilorad (kR) irradiated ts-4 
tachyzoites were added and cells incubated overnight at 37~ After 
washing five times by low speed centrifugation (100 g) to remove 
soluble Ag and free parasites, cells were irradiated (3,300 rad) and 
used to stimulate T lymphocyte proliferation. 

Cell Proliferation Assays. Splenocytes (4 x 10S/well) were 
stimulated with parasite Ag diluted in culture medium consisting 
of DMEM (GIBCO BILL) with 10% FCS (Hyclone Laboratories), 
penicillin (100 U/ml), streptomycin (100 #g/ml), t-glutamine 
(2 raM), nonessential amino acids (0.1 raM), sodium pyruvate 
(1 raM), Hepes (30 raM), and 2-ME (5 x 10 -s M). After 96 h 
at 37~ 1 gCi/well of [3H]thymidine (Amersham Chemical Corp., 
Arlington Heights, IL) was added for 16 h. In the cases indicated, 
purified T cells (2 x 10S/well) were added to SAC (2 x 10S/well) 
and pulsed after 72 h. Alternatively, CD8 + T cells (2 x 10S/well) 
were added to SAC (4 x 10S/well) and were pulsed after 72 h. 
Stimulation of cells with anti-CD3 mAb (145-2Cll) was carried 
out as described (14). For experiments employing fibroblast lines 
as APC, the cells were grown to confluency on a 96-well tissue 
culture plate (Costar Corp., Cambridge, MA), fixed by incubation 
in 1% paraformaldehyde (10 rain, 37~ followed by quenching 
of the reaction with 0.15 M Tris, pH 7.2, and washed four times 
in PBS. Before addition of T lymphocytes (2 x 10 s per well), the 
fibroblasts were incubated overnight at 4~ with STAg diluted in 
PBS, then washed three times to remove unbound Ag. Cells were 
pulsed with [3H]TdIL after 72 h. Radiolabeled cells were collected 
onto a glass fiber filter pad (LKB Wallac, Turku, Finland) using 
a 96-well harvestor (Tomtec, Orange, CT), scintillation cocktail 
(XSC/9200; LKB Wallac) added, and radioactivity determined on 
a liquid scintillation counter (Betaplate model 1205, LKB Wallac). 
Each sample was set up in triplicate, and mean + standard devia- 
tion was calculated. 

Extended In Vitro Culture. Spleen cells (4 x 105/well) were in- 
cubated in culture medium with 50/~g/ml STAg or a 1:1 ratio 
of 15 kR irradiated ts-4 tachyzoites on 96-well plates (model 3596, 
Costar Corp.). After 5 d, cells were collected, an equal volume 
of fresh medium and recombinant human IL-2 (Cetus Corp., 
Emeryville, CA) to a final concentration of 25 U/ml was added, 
and the cells were replated (1 ml/well) on 48-well plates (model 
3548, Costar Corp.). In the case of cytokine assays, cell superna- 
tants were assayed at day 7 without addition of exogenous IL-2. 

Flow Cytometric Analysis. Cells (106/sample) were incubated 
with Ab (diluted in 50 #1 HBSS supplemented with 1% FCS and 

1 Abbreviations used in this paper: kR, kilorad; SAC, splenic adherent cell; 
SEA, Staphylococcal enterotoxin A. 
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0.1% sodium azide) for 30 rain at 0~ and then washed. Nonspecific 
Fc receptor binding was blocked by the addition of saturating levels 
of the Fc receptor-specific mAb 2.4G2. Cells were analyzed 
(10,000/sample) on an Epics 753 flow cytometer (Coulter Corp., 
Hialeah, FL) excluding dead cells by propidium iodide gating. 

Cytokine Assays. IFN-3, and IL-5 were quantitated in cell su- 
pernatants by means of two-site ELISA as previously described (3). 
The cytokines IL-2 and IL-4 were measured using CTLL prolifera- 
tion assays (3). Results are expressed as means _+ standard devia- 
tions of triplicate points. 

Statistical Analysis. The statistical significance of the associa- 
tion of cell proliferation and expression of V/~5 was assessed using 
Spearman's rank correlation test. 

Results 
Live Tachyzoites and Soluble Tachyzoite Extract Induce Prolifer- 

ation ofNormalMurine Splenocytes. Resting spleen cells from 
normal, uninfected C57BL/6 mice proliferated strongly when 
cultured with irradiated ts-4 strain tachyzoites and this re- 
sponse was abolished by heat inactivating the parasites (56~ 
30 min) before addition to the cultures (Fig. 1 A). Moreover, 
a high level of cell proliferation was induced using a soluble 
fraction (STAg) obtained by sonication and centrifugation 
of tachyzoites (Fig. 1 B). Unlike the response to intact para- 
sites, the response to STAg was resistant to identical heat treat- 
ment. The above observations suggest that metabolically ac- 
tive tachyzoites are required to deliver the stimulatory parasite 
molecules to the cell, either through infection or active secre- 
tion into the culture supernatant, but that the active mole- 
cules themselves are resistant to mild heat treatment. 

The proliferation obtained after stimulation with tachyzoites 
and soluble Ag is not attributable to endotoxin contamina- 
tion because the response could not be inhibited by poly- 
myxin (5 ~g/ml). Furthermore, the biological activity was 
lost after incubation at 100~ for 10 min, as well as with 

proteinase K incubation, evidence that the active molecules 
themselves are protein rather than LPS (data not shown). In 
addition, tachyzoites passed three times through C57BL/6 
mice continued to stimulate proliferation of C57BL/6 cells 
demonstrating that the response is triggered by T. gondii rather 
than contaminating host allogeneic tissue (data not shown). 
Finally, highly significant parasite-driven proliferation was 
observed using spleen cells from germ-free (N:NIH-blk) mice 
(see Table 3) arguing that the response is not due to preinfec- 
tion with a cross-reacting microbial agent. 

To further characterize the mechanism by which T. gondii 
stimulates proliferation of normal splenocytes, we examined 
whether T lymphocytes respond to SAC bearing parasite Ags. 
When SAC were cultured overnight with tachyzoites, washed 
to remove free parasites, irradiated, and added to purified T 
cells, the latter proliferated strongly (Fig. 1, C). As expected, 
uninfected SAC failed to evoke a response. Similarly, SAC 
preincubated with STAg also stimulated T cells to proliferate 
(Fig. 1 D). 

CD8 + Lymphocytes Expressing Vfl5 TCR Are the Major 
Cell Population Expanded in Response to Parasite Stimulation. By 
7 d of culture, up to 70% of the spleen cells stimulated with 
either live tachyzoites or STAg were CD8 + in contrast to 
cultures stimulated with Staphyloccal enterotoxin A (SEA) 
where CD4 § and CD8 + cells were equally stimulated (Fig. 
2). However, prior removal of CD4 § lymphocytes by treat- 
ment with mAb and complement rendered the remaining 
cells nonresponsive to parasite Ag (data not shown). This 
observation suggested that CD8 § lymphocyte proliferation 
was, at least initially, dependent upon CD4 § helper activity, 
most probably provided by IL-2. In support of the latter hy- 
pothesis, it was shown that CD8 + cells (purified by nega- 
tive selection with mAB and complement) proliferate in re- 
sponse to STAg-pulsed irradiated SAC, but only in the presence 
of exogenous IL-2 (see Fig. 5 A). 
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Figure 1. T. gondii tachyzoites and 
soluble Ag induce proliferation of nonim- 
mune C57BL/6 splenocytes. Cells (4 x 
10S/well) were cultured with (-4) irradi- 
ated ts-4 tachyzoites or (B) STAg. (O) Non- 
treated parasites and Ag; (O) the same 
samples treated 30 rain at 56~ In addi- 
tion, purified T cells (4 x 10S/well) were 
incubated with irradiated SAC that were 
(C) preinfected or (D) preloaded with STAg. 
(C and D, O) Infected and Ag-pulsed SAC; 
(O) normal SAC. Cultures that were 
directly stimulated with Ag and parasites 
and those that were stimulated with 
preloaded and preinfected SAC were pulsed 
with [3H]TdR at 96 and 72 h respectively, 
times predetermined to be optimal for low 
background and maximum proliferation. 
Indistinguishable results were obtained 
using tachyzoites of the tLH strain from 
which the ts-4 mutant was derived (not 
shown). 
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Figure 3. T cell receptor Vj8 chain usage in T. gondii-stimulated spleno- 
cyte cultures. Two-color FACS | analysis was used to examine V~/expres- 
sion by (A) CD8 + and (B) CD4 + cells from fleshly isolated splenocytes 
and day 7 splenocyte cultures stimulated with a 1:1 ratio of ts-4 tachyzoites 
or 50 #g/m1 STAg. The data show mean + SEM from three independent 
experiments. 

Figure 2. T. gondii induces preferential expansion of CD8 + lympho- 
cytes. Spleen cells (4 x 10 s) were stimulated with a 1:1 ratio of (A) ir- 
radiated tachyzoites, (B) 50 #g/ml STAg, or (C) 3 ng/ml SEA. At the 
indicated days, the percentage of total cells expressing (shaded bars) CD4 
and (solid bars) CD8 was examined by flow cytometric analysis. This ex- 
periment is representative of three performed. 

When TCR V3 chain usage by parasite-stimulated lympho- 
cytes was examined, we found a striking threefold expansion 
in CD8 + lymphocytes expressing the V~5.1/5.2 chain after 
stimulation with live tachyzoites and soluble Ag as deter- 
mined by two-color flow cytometric analysis (Fig. 3 A). When 
recalculated for absolute number of cells, culture with para- 
site Ag induced a 16-fold increase in CD8+V35 + cells but 
only a minor increase in CD8 + lymphocytes bearing other 
V3 chains (for example, 3.5-fold for CD8 +V~6 + cells). We 
do not presently know the reason for the small increase in 
CD8 + cells bearing V3s other than V35, but possibilities 
include presence of a conventional mitogen or nonspecific 
cytokine-induced proliferation. The small number of CD4 § 
cells in these cultures were also enriched for V35 expression, 
although less dramatically so than the CD8 § lymphocytes 
(Fig. 3 B). The observed preferential V35 + expansion in 
these cultures was not an in vitro artifact since SEA stimula- 
tion of spleen cells under the same conditions induced the 

expected increases in VBll-bearing CD4 + and CD8 + lym- 
phocytes with no evidence of V35 expansion (data not shown). 
In addition to the V35 response, T. gondii also induced a vari- 
able and less dramatic increase in CD8 + V314-bearing cells 
(Fig. 3 A). 

Proliferative Response Is Dependent on MHC Class II IA Mol- 
ecules. To determine if the proliferative response was medi- 
ated through MHC class II molecules, purified T lympho- 
cytes were added to parasite-exposed SAC in the presence of 
class II-specific mAb. The response to both infected (Fig. 
4 A) and Ag-pulsed (Fig. 4 B) SAC was reduced to levels 
found in the presence of normal SAC by culture with 1/~g/ml 
anti-IA mAb. The same concentration of an isotype-matched 
anti-IE mAb failed to effect the response, consistent with the 
fact that C57BL/6 strain mice do not express functional Ec~E3 
molecules. In addition, a mAb to the MHC class I D b mol- 
ecule failed to block the response. 

We next performed mAb blocking experiments on purified 
CD8 + cells in the presence of infected SAC. Since in this 
system exogenous IL-2 is required (Fig. 5 A), the studies were 
performed in the presence of recombinant cytokine (40 U/ml). 
Responder cell proliferation was blocked by mAb specific for 
the CD8 or MHC class II molecules, but not by an isotype- 
matched anti-CD4 mAb nor by a mAb specific for H-2D b 
(Fig. 5 B). These results confirm that CD8 + lymphocytes, 
and not a contaminating cell type, proliferate in response to 
parasite Ag presented by SAC. Furthermore, they show that 
the MHC class II IA protein is directly involved in the 
CD8 + cell response. 

Lack of a Requirement for MHC Class II Haplotype Matching 
Between Responder and Stimulator Cells. We used MHC class 
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Figure 4. Proliferation of T cells is blocked by 
anti-IA mAb. SAC were preinfected or pre-pulsed 
with STAg, irradiated, and cultured (2 x 
105/well) with purified T lymphocytes (2 x 
10S/well) in the presence or absence of 1/zg/ml 
of the indicated mAb. This experiment is repre- 
sentative of two performed. 

II-transfected fibroblast lines to examine if the response was 
mediated solely by IA b, or whether IE as well as IA of 
different haplotypes could present T. gondii Ag to T lympho- 
cytes. Fig. 6 shows the IA and IE binding profiles of the fibro- 
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Figure 5. I1-2- and IA-dependent response of purified CD8 + lympho- 
cytes to T. gondii. CD8 + cells (2 x 10s), purified by Ab and complement- 
mediated depletion of non-CD8 + cells, were incubated with 2 x 10 s ir- 
radiated normal and STAg-pulsed SAC and increasing amounts of Ib2 (A). 
(B) CD8 § lymphocytes were added to SAC in the presence of 40 U/ml 
IL-2 and 0.5 #g/ml of the indicated mAb. These experiments were per- 
formed three times with essentially identical results. 
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blasts used in these experiments. Whereas DAP.3, the parent 
line, expresses neither IA or IE (Fig. 6, A and B), RT7.1C6 
staining demonstrates the presence of IA b but not IE (Fig. 
6, C and D). Similarly, RT7.3H3 B4 expresses IA k and no 
IE (Fig. 6, E and F). Lastly, the fibroblast line DCEK. Hi7 
was transfected with the IE k and not the IA molecule (Fig. 
6, G and H). When the cell lines were fixed with 1% parafor- 

.Q 
E 

Z 

O 

I A 

l j /  \~ 
C 

E 

L 

D 

G H 

Loglo Fluorescence Intensity 

Figure 6. Expression of MHC class II IA and IE molecules by fibro- 
blast cell lines. Cells were stained with (A, C, E, and G) mAb to IA and 
(B, D, F, and/4) IE followed by FITC-labeled goat anti-mouse IgG. The 
parent line (A and B) DAP.3 was transfected with genes encoding the 
(FT7.1C6; C and D) IA b, (RT7.3H3 B4; E and F) IA k, and (DCEK Hi7; 
G and/4) IE k heterodimer. 
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Figure 7. Ability of fixed fibroblasts expressing syngeneic and allogeneic 
la molecules (see legend to Fig. 6) to stimulate C57BL/6 T lymphocytes. 
Fibroblasts were treated with 1% paraformaldehyde, incubated with STAg, 
then added to purified T lymphocytes. See Materials and Methods for de- 
tails. This experiment is representative of three performed. 

maldehyde, incubated with STAg, then washed and presented 
to T cells, the transfectants stimulated strong proliferation 
of the latter cells in contrast to the parent line, DAP.3 (Fig. 
7). The low level of  proliferation induced by DAP.3 may reflect 
nonspecific Ag carryover and subsequent cross-feeding to APC 
remaining in the responder population. 

These results demonstrate that APC presentation of the 
active parasite molecules to T lymphocytes, while requiring 
IA molecules, does not require haplotype matching between 
stimulator and responder populations, and furthermore that 
IE, which is not expressed in C57BL/6  animals, is able to 
act as a presentation molecule to responder cells of  the latter 

Table 1. Cytokine Production in 7-d Cultures of Splenocytes 

Cytokine Media Tachyzoites* STAg* Con AS 

IFN-3A <1.0 39.5 _+ 0.5 24.5 _+ 2.5 41.5 _+ 3.0 
IL-2 �82 <1.0 <1.0 <1.0 100.0 _+ 6.0 

IL-41 <0.5 <0.5 <0.5 90.0 _+ 1.0 
IL-5 II <0.1 <0.1 <1.0 1.8 _+ 0.3 

* 107 15 kR irradiated tachyzoites plus 107 splenocytes. 
* 50/xg/ml added to 107 splenocytes. 
S 1.5 /zg/ml. 
II ng/ml. 

U/ml.  

strain when provided exogenously. Finally, the ability of fixed 
fibroblasts to present Ag suggests that the response occurs 
independently of  conventional Ag processing. It is unlikely 
that presentation is due to preexisting peptides in STAg, since 
these Ag preparations are extensively dialyzed and have pre- 
viously been shown to lack biologically detectable M H C  
binding low molecular weight molecules (11). 

Parasite-stimulated T Lymphocytes Selectively Produce IFN-7. 
W h e n  cytokines present in the supernatants of 7-d cultures 
of  T. gondii-stimulated splenocytes were assayed, high levels 
of  IFN-y  were observed after either tachyzoite or soluble Ag 
stimulation (Table 1). In contrast, neither IL-2, IL-4, nor 
IL-5 were detected although Con A stimulated production 
of these cytokines in control cultures. 

Table 2. CD8 § Lymphocytes Are the Major Cell Population Producing IFN- 7 in Response to T. gondii 

Splenic Adherent Cells* 

Responders* Uninfected InfectedS 

Experiment 1 

Experiment 2 

Nondepleted 1.86 • 0.0211 9.76 _+ 0.70 

NK cell depleted 1.10 _+ 0.02 7.78 _+ 0.66 
T cell depleted 0.82 _+ 0.02 1.75 _+ 0.40 
None 0.56 + 0.04 1.06 _+ 0.45 

CD8 § 0.62 + 0.31 1.40 _+ 0.08 
CD8 § + IL-2~ 1.46 _+ 0.22 8.52 _+ 0.37 
CD8 § plus IL-2 0.91 + 0.24 1.77 _+ 0.18 

plus anti-CD8 
None 1.16 + 0.08 1.98 _+ 0.11 

* 2.5 x 105 irradiated (3,000 rad) cells. 
* Responder cells (2.5 x 105) were obtained by treatment with mAb plus complement. CD8 + cells (90% purity) were similarly obtained followed 
by passage over anti-mouse Ig-Sepharose. See Materials and Methods for details. 

Cells were infected with 2 x 107 15-kR irradiated ts-4 tachyzoites. 
fl ng/ml, measured at day 6 of culture. 
1 40 U/ml.  
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Table 3. Association of T. gondii-induced Proliferation with V~5 Expression 

Strain Mtv-6, 9 IE V~5* 

[3H]-TdK incorporation (cpm) 

Infected SAC* Anti-CD3 s 

2 x 105 1 x 105 1 x 105 

N:NIH-blk 
C57BL/6 
A.BY 
BALB.B 
B10.A(4R) 
DBA/2 
B10.D2 
C3H/HeN 
BALB/c 
B10.A 
B10.A(2R) 

Unknown 
- + 

+ - -  

+ + 

- -  + 

+ - -  

- -  + 

+ - 

+ + 

- -  + 

- -  + 

- 9.7 _+ 0.7 4.23 -+ 0.43 1.21 + 0.32 1.94 _+ 0.21 
- 6.8 +- 0.6 4.14 -+ 0.17 1.01 + 0.28 2.68 -+ 0.15 
- 6.1 +_ 0.1 5.20 + 0.69 1.65 _+ 0.39 3.17 _+ 0.14 
- 4.0 +- 0.3 1.57 _+ 0.67 0.87 +_ 0.08 2.26 -+ 0.12 
- 3.5 -+ 0.4 2.02 +- 0.44 0.93 + 0.06 2.79 + 0.08 
+ 2.7 + 0.4 4.54 + 0.20 2.76 _+ 1.10 3.32 + 0.16 
+ 1.9 _+ 0.4 0.83 +_ 0.03 0.68 _+ 0.01 ND 
+ 1.8 +- 0.1 0.22 _+ 0.03 0.48 +_ 0.02 2.69 _+ 0.07 
+ 1.6 + 0.1 0.73 -+ 0.57 0.20 -+ 0.01 ND 
+ 0.9 +- 0.2 0.88 -+ 0.19 0.13 -+ 0.06 3.43 _+ 0.24 
+ 0.6 -+ 0.1 0.95 -+ 0.21 0.25 -+ 0.02 2.98 -+ 0.21 

* Percentage of splenic CD3 § cells expressing VB5 determined by two-color flow cytometric analysis. 
* Indicated number of splenic T cells were added to infected and noninfected SAC. Data show parasite-induced proliferation ( x 10 -4) after back- 
ground subtraction. See Materials and Methods for details. 
S Incorporation of [3H]TdR (x 10 -s) induced by plate-bound mAb 145-2Cll. 

The observed IFN-'y response stimulated by T. gondii was 
almost completely abolished by T cell depletion (92% reduc- 
tion) but was only minimally affected by anti-NKl.1 treat- 
ment (20% reduction) (Table 2, Experiment 1) arguing against 
NK cells (15) as the major source of the cytokine in these 
cultures. Direct evidence that CD8 + cells produce IFN-'y in 
response to parasite stimulation is shown in experiment 2 
(Table 2). As was the case for proliferation (Fig. 5 A), purified 
CD8 + lymphocytes produced high levels of the cytokine in 
response to infected SAC, but only when IL-2 was added. 
As expected, lymphokine secretion was abrogated with the 
inclusion of anti-CD8 mAb (1/~g/ml), demonstrating that 
the IFN-y originates from the CD8 + lymphocytes which 
constitute the majority of the cell population. The similar 
level of cytokine produced by purified T cells (Table 2, Ex- 
periment 1) and CD8 § lymphocytes (Experiment 2) suggests 
that the latter cells are the major IFN-3' producers in the 
Ag-stimulated cultures. Nonetheless, the results do not for- 
mally exclude the possibility that residual CD4 + lympho- 
cytes contribute to a portion of the IFN-'y produced. 

Parasite-induced Proliferative Response Correlates with the Level 
of Vfl5 Expression in Inbred Mouse Strains. Inbred mice de- 
lete to varying degrees V~5-bearing cells during lymphopoi- 
esis, giving rise in many cases to extremely low levels of pe- 
ripheral T lymphocytes bearing this particular TCR chain. 
This phenomenon is now know to codepend upon expres- 
sion of MHC class II IE molecules and the endogenous 
retroviruses Mtv-9 and Mtv-6 (16-19) (Table 3). Based on these 
observations and the data presented above, we predicted that 
parasite-driven T cell proliferation would be directly related 
to the degree of expression of peripheral V~5 + lymphocytes 
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in a given mouse strain. Indeed, we found a highly significant 
association between VB5 expression and proliferation using 
infected SAC and 2 x 10 s (p •0.015) or 10 s (p ~0.002) T 
lymphocytes of different mouse strains (Table 3). In contrast, 
there was no significant correlation between proliferation and 
VB5 expression in control cultures polyclonally stimulated 
with anti-CD3 mAb, indicating that the low proliferation 
of some strains after T. gondii stimulation cannot be attrib- 
uted to a generally diminished T cell responsiveness. 

D i s c u s s i o n  

The results presented in this paper demonstrate a superan- 
tigen activity associated with live T. gondii tachyzoites as well 
as soluble molecules derived from these parasites. To our 
knowledge these data provide the first evidence of a superan- 
tigen expressed by a protozoan pathogen. The proliferation 
induced by tachyzoites and STAg does not appear to reflect 
a conventional primary immune response, as has recently been 
reported for the interaction of Trypanosoma cruzi with human 
PBL (20) and Leishmania major with mouse T cells (21), for 
the following reasons. First, a class II molecule is involved 
in presentation of Ag to CD8 + cells in this system, and 
whereas conventional Ag is presented to CD8 + lymphocytes 
in association with MHC class I molecules, superantigens 
such as staphylococcal enterotoxins are able to stimulate 
CD8 + cells through class II glycoproteins (22-24). Second, 
T cells bearing V~5 TCR are selectively expanded after cul- 
ture with Toxoplasma, and mouse strains expressing low levels 
of this particular VB chain display correspondingly low 
proliferation after stimulation with T. gondii. Third, fibro- 



blasts transfected with allogeneic MHC class II molecules 
can present parasite Ag to T cells. Finally, the response does 
not require conventional Ag processing since paraformalde- 
hyde-fixed APC are able to present soluble Ag to responder 
lymphocytes. 

Whereas previously described microbial and viral super- 
antigens stimulate CD4 § or CD4 § in conjunction with 
CD8 + cells (7), the superantigen activity in T gondii is un- 
usual in that CD8 § lymphocytes are selectively expanded. 
Although the mechanism underlying this phenomenon is un- 
clear, it is possible that whereas both subsets initially respond, 
CD8 + lymphocytes either multiply faster or produce a 
factor that inhibits growth of CD4 + cells. Whatever the ex- 
planation, it is noteworthy that several investigators (25-28) 
have reported an increase in CD8 + over CD4 § cells during 
toxoplasmosis in both mice and humans, possibly providing 
an in vivo correlate of the observations reported here. Our 
in vitro system may thus provide a means of dissecting the 
mechanisms underlying the preferential induction of CD8 + 
lymphocytes in these cases. 

Whereas CD4 + lymphocytes do not persist in culture, 
their role in the superantigen-driven response is not super- 
fluous. Thus, removal of these cells before Ag stimulation 
renders the remaining CD8 + cells nonresponsive unless ex- 
ogenous IL-2 is supplied (Fig. 5). It would seem likely, there- 
fore, that CD4 + lymphocytes provide CD8 § cells with an 
IL-2-mediated helper function in this in vitro system. In- 
deed, preliminary evidence (not shown) indicates that Ab- 
mediated neutralization of IL-2 with mAb blocks the prolifer- 
ative response. The CD4 + dependency of CD8 + prolifera- 
tion mimics responses seen in ts-4-vaccinated mice (3, 5) and 
animals chronically infected with ME49 (2), in that CD4 § 
cells appear to augment, or synergize with, CD8 + effector 
function. The experiments reported here suggest a mechanistic 
basis for the requirement of CD4 + cells in CD8 § lympho- 
cyte function, and demonstrate that the CD4 § dependency 
can be traced back to the earliest stages of contact between 
T. gondii and cells of the immune system. 

The immune response that develops after T. gondii infec- 
tion is characterized by rapid development of strong protec- 
tive cell-mediated immunity that is highly dependent upon 
IFN-3' during both acute and chronic phases of infection (2-4, 
29). In immunologically intact mice, most of this cytokine 
appears to derive from CD8 + and Thl-type CD4 + cells (3, 
30). Indeed, the effectiveness of Toxoplasma in inducing pro- 
tective immunity most probably lies in its ability to selec- 
tively stimulate this arm of the immune system, and deter- 
mining how this polarized state is achieved is an issue of 
considerable importance within the context of vaccine devel- 
opment. 

One way of driving the immune system to this response 
phenotype is by the early T. gondii-induced production of 
IFN-3,, since this cytokine promotes development of both 
Thl and CD8 + cells (31, 32). Indeed, during murine L. major 
infection, development of the resistant Thl  phenotype is de- 
pendent upon early NK cell production of IFN-y (33, 34), 
and recent results from our laboratory demonstrate that 

T. gondii also stimulates NK cell IFN-y production through 
an IL-12-dependent mechanism (13, 15, 35). The results of this 
paper suggest that superantigen-driven stimulation of CD8 + 
cells could provide an additional early source of IFN-3,, and 
it is perhaps the combination of these two factors that leads 
to the remarkably strong cell-mediated response elicited by 
Toxoplasma. 

Our results (Table 3) show a highly significant correlation 
between V35 expression by different inbred mouse strains 
and the ability of nonimmune T cells to respond to parasite 
superantigen. In addition to confirming the association of 
proliferation with V35 expression, these data argue against 
V35 expansion being driven by Mtv-6 or Mtv-9 induced as 
a result of T. gondii infection for the following reasons. First, 
Mtv-6 and Mtv-9 require IE to mediate their effects (16-19), 
and this is not the case for the activity described here. In 
addition, Mtv-9 reacts with V35 and V311-bearing lympho- 
cytes (36), and we see no evidence for expansion of the latter 
subset in our experiments. Finally, several of the mouse strains 
examined lack Mtv-6 yet still respond. Nevertheless, we cannot 
formally exclude the possibility that the effects observed here 
result from parasite-induced expression of a previously un- 
described endogenous superantigen. 

It is interesting to note that by comparing our findings 
with inbred strain surveys performed by others (1, 37, 38), 
it appears that the mouse strains most susceptible to T. gondii, 
as defined by increased mortality, tend to be those expressing 
high levels of V35. Thus, for example, C57BL/6 mice have 
high V35 expression and are susceptible to infection, whereas 
BALB/c mice, having low levels of V35, are resistant. These 
differences in susceptibility have been ascribed in the past to 
classical MHC gene effects (1, 37, 38). Our data, however, 
suggest an alternative mechanism of MHC influence on in- 
fection in which the class II IE gene acting in concert with 
the appropriate endogenous retroviruses could exert an in- 
direct effect by mediating deletion of V35-bearing cells. As 
a result of this deletion the mouse would be protected against 
the potentially harmful consequences of a superantigen-driven 
response. In this model, the response induced by the T. gondii 
superantigen activity, in analogy with those driven by bac- 
terial enterotoxins, would be detrimental as opposed to 
beneficial to the host (39). Further studies examining the rela- 
tionship between superantigen responsiveness and parasite- 
induced pathology are necessary to formally test the latter 
hypothesis. 

In addition to the potential effects of the T. gondii superan- 
tigen activity in determining the response phenotype of 
parasite-specific immunity, it is possible that congenitally ac- 
quired or chronic toxoplasmosis could lead to elimination 
or anergy of V35+-bearing lymphocytes, as has been de- 
scribed for other superantigens (40-43). Indeed, preliminary 
data from our laboratory in which T cells from infected mice 
appear to lose their responsiveness to anti-V35 stimulation 
support this hypothesis. Such an occurrence in human popu- 
lations, where the Toxoplasma infection rate is 30-80% (44), 
could have important clinical consequences. Indeed, recent 
evidence suggests that T. gondii has superantigen-like effects 
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on human lymphocytes (Drs. McLeod, R. and D. Mack, per- 
sonal communication), and consistent with superantigen- 
induced deletions in the T cell repertoire, congenitally in- 
fected infants display lowered T cell responses to T. gondii 
in vitro (45). Thus, individuals may undergo altered immune 
responses as a result of T. gondii-induced changes in the T 
cell repertoire, a phenomenon that might profoundly affect 

the ability of individuals to control Toxoplasma infections 
as well respond to other diseases. Such unresponsiveness should 
be genetically linked to the alleles determining the T C R  
specificities responsible for superantigen recognition thereby 
providing a possible explanation for the variable manifesta- 
tion of congenital toxoplasmosis in exposed individuals. 
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