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Histone deacetylase 3 regulates the inflammatory
gene expression programme of rheumatoid arthritis

fibroblast-like synoviocytes
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ABSTRACT

Objectives Non-selective histone deacetylase (HDAC)
inhibitors (HDACi) have demonstrated anti-inflammatory
properties in both in vitro and in vivo models of
rheumatoid arthritis (RA). Here, we investigated the
potential contribution of specific class | and class Ilb
HDACs to inflammatory gene expression in RA fibroblast-
like synoviocytes (FLS).

Methods RA FLS were incubated with pan-HDACi
(ITF2357, givinostat) or selective HDAC1/2i, HDAC3/6i,
HDAC6i and HDACSi. Alternatively, FLS were transfected
with HDAC3, HDAC6 or interferon (IFN)-o/ receptor
alpha chain (IFNAR1) siRNA. mRNA expression of
interleukin (IL)-1B-inducible genes was measured by
quantitative PCR (qPCR) array and signalling pathway
activation by immunoblotting and DNA-binding assays.
Results HDAC3/6i, but not HDAC1/2i and HDACS;,
significantly suppressed the majority of IL-1B-inducible
genes targeted by pan-HDACi in RA FLS. Silencing of
HDAC3 expression reproduced the effects of HDAC3/6i
on gene regulation, contrary to HDAC6-specific inhibition
and HDAC6 silencing. Screening of the candidate signal
transducers and activators of transcription (STAT)1
transcription factor revealed that HDAC3/6i abrogated
STAT1 Tyr701 phosphorylation and DNA binding, but did
not affect STAT1 acetylation. HDAC3 activity was
required for type | IFN production and subsequent STAT1
activation in FLS. Suppression of type | IFN release by
HDAC3/6i resulted in reduced expression of a subset of
IFN-dependent genes, including the chemokines CXCL9
and CXCL11.

Conclusions Inhibition of HDAC3 in RA FLS largely
recapitulates the effects of pan-HDACi in suppressing
inflammatory gene expression, including type | IFN
production in RA FLS. Our results identify HDAC3 as a
potential therapeutic target in the treatment of RA and
type | IFN-driven autoimmune diseases.

INTRODUCTION

Histone-modifying enzymes are epigenetic regula-
tors implicated in the control of inflammatory pro-
cesses, including immune and stromal cell
activation, survival and proliferation.’ Histone acet-
yltransferases (HATs) acetylate lysine residues on
histone tails, while histone deacetylases (HDACs)
counterbalance HAT activity by deacetylating
histone proteins. The delicate equilibrium between

the acetylated state and the deacetylated state of
chromatin  orchestrates  gene  transcription.”
Furthermore, HATs and HDACs can also affect the
acetylation status of non-histone proteins, thereby
regulating signalling proteins and transcription
factors to influence gene expression and cellular
function.® As a consequence, HDAC function could
be essential to the development and perpetuation
of chronic inflammatory diseases, such as rheuma-
toid arthritis (RA).* In fact, HDAC activity and
expression were shown to be altered in total per-
ipheral blood mononuclear cells (PBMCs), synovial
tissue and fibroblast-like synoviocytes (FLS) from
patients with RA.> Despite inflammatory mediators
such as tumour necrosis factor (TNF) were found
to positively associate with HDAC expression in
synovial tissue and rapidly induce HDAC activity in
FLS® 7 single targeting of TNF may not be suffi-
cient to restore the HDAC balance in immune cells
of patients with RA.® This suggests that multiple
factors contribute to the altered HAT/HDAC
balance and that inhibition of HDACs could have a
therapeutic contribution to RA treatment.

We and others have shown that pan-HDAC inhi-
bitors (pan-HDACI) reduce cytokine production in
FLS and in immune cells from patients with RA,*~'°
display antiarthritic properties in vivo'' !> and
demonstrated primary clinical efficacy in the treat-
ment of rheumatic diseases.'> Which HDAC or
combination of HDAGC:s is specifically involved in
RA pathology, however, remains unknown. The
HDAC family includes 18 members divided into
class  HDACs (HDACs 1-3 and 8), class ITa HDACs
(HDACs 4-5, 7 and 9), class IIb HDACs (HDACs 6
and 10), class III sirtuins (Sirt1-7) and class IV
HDAC11."* Accumulating evidence suggests that
some of the class I and class IIb HDAC family
members could contribute to RA pathology, as their
synovial activity is elevated compared with disease
controls and further increased by inflammatory
stimuli,® 7 '° and inhibition of their activity is pro-
tective in animal models of arthritis."’ '® Class Ila
HDAC9 deficiency was found to enhance regulatory
T cell function and was protective in disease models
of systemic lupus erythematosus and colitis, but
there is little indication for a direct involvement of
HDACY activity in regulating cytokine expres-
sion.'”™"? Furthermore, our previous data indicated
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that synovial expression of class Ila HDACs does not positively
correlate with RA disease parameters nor with mediators of
inflammation, and that class Ila HDACS is a negative regulator of
chemokine expression in RA FLS.®

In this study, we investigated the potential differential contri-
bution of class I and class IIb HDAC family members to the
inflammatory status in RA FLS using the combination of selective
HDAC: and genetic silencing of individual HDAC expression.

MATERIALS AND METHODS

Patient material and FLS isolation

FLS were derived from synovial tissue specimens obtained from
patients with RA by needle arthroscopy, as previously
described,” cultured in medium containing 10% fetal bovine
serum (FBS, Invitrogen), and used between passages 4 and 10.
All patients fulfilled the criteria for the classification of RA and
had active disease, including clinical arthritis of the joint from
which the synovial biopsies were obtained.?! Clinical character-
istics of patients are shown in table 1. Informed written consent
was obtained from patients prior to inclusion in the study.

FLS treatment and stimulation

FLS were cultured overnight in medium containing 1% FBS
prior to incubation with cytokines. FLS were stimulated with
1 ng/mL interleukin (IL)-18 (R&D Systems), 1000 U/mL inter-
feron (IFN)-B (Peprotech) or IFN-a (Bio-Connect Life Sciences).
The pan-HDACi ITF2357 and inhibitors specific for HDAC1/2,
HDAC3/6, HDAC6 and HDACS (Italfarmaco) were used at con-
centrations ranging from 20 nM to 2 pM. Information about
the specificity of the HDACi has been previously published.?? %3

Statistical analysis
Data are presented as mean=SEM, unless otherwise indicated.
Friedman test followed by Dunns’ post hoc test and repeated
measures analysis of variance (ANOVA) followed by Bonferroni
correction were used for analysing sets of data requiring mul-
tiple comparisons. The ratio t test was used for all other com-
parisons. Data were analysed using GraphPad software with p
values <0.05 considered statistically significant.

Detailed descriptions of immunoblotting, HDAC activity, thia-
zolyl blue tetrazolium bromide (MTT) assay, mRNA expression

Table 1 Clinical features of patients with RA included in the study
Diagnosis RA (n=18)
Age (years) 58 (31-71)
The male to female ratio (n) 5:13
Disease duration (months) 229 (1-413)
ESR (mm/h) 31 (2-101)
CRP (mg/L) 11.3 (1.0-128.9)
DAS28 4.06 (2.80-6.63)
ACPA+: n/total (%) 11/18 (61)
RF+: nftotal (%) 10/18 (56)
Medications: n/total (%)
NSAIDs 8/18 (44)
Steroids 4118 (22)
DMARDs 15/18 (83)
Biologicals 10/18 (56)

The values are expressed as median (range), unless otherwise indicated.

ACPA, anticitrullinated protein antibody; CRP, C reactive protein; DAS28, disease activity
score in 28 joints based on ESR; DMARDs, disease-modifying antirheumatic drugs;

ESR, erythrocyte sedimentation rate; NSAIDs, non-steroidal anti-inflammatory drugs;

RA, rheumatoid arthritis; RF=rheumatoid factor.

analysis, ELISA, invasion assay, siRNA transfection, signal trans-
ducers and activators of transcription (STAT)1 DNA binding
and immunoprecipitation are provided in online supplementary
materials and methods.

RESULTS

Selective class | HDACi differentially regulate global protein
acetylation in RA FLS

Pan-HDACi are broad-acting anti-inflammatory agents that are
beneficial in several disease models.** As primary evidence from
in vitro and animal studies of arthritis pointed to class I HDACs
as important contributors in the pathogenesis of RA,® ® 1° we
attempted to dissect the potential roles of individual class I
HDACs in mediating the inflammatory activation of RA FLS,
using both pan-HDACi and inhibitors selective for HDAC1/2,
HDAC3/6 and HDACS. Treatment of RA FLS with each inhibi-
tor resulted in distinct effects on global protein lysine acetyl-
ation. Both pan-HDACi and HDAC3/6i dose-dependently
induced hyperacetylation of tubulin, a known HDACG6 substrate
(figure 1A, top panel, 52 kDa band), as well as histone 3 (H3)
and histone 4 (H4) (figure 1A, top panel, 18 and 14 kDa,
respectively). In contrast, HDAC1/2i and HDACSi displayed
minimal to negligible effects on acetylation of these substrates.
To confirm the pharmacological activity of the compounds, we
measured the enzymatic activity of class I (figure 1B, upper
panel), class IIb (figure 1B, lower panel and data not shown)
and class ITa HDACs (data not shown) in lysates of FLS treated
with the inhibitors. Pan-HDACi (p<0.0001), HDAC1/2i
(p<0.05) and HDAC3/6i (p<0.05) significantly reduced class I
HDAC activity, while a trend towards reduction in class I and
class IIb HDAC activities was observed with HDACS8i and
HDAC3/6i, respectively. Together, these data suggest that while
each of the inhibitors displays pharmacological activity in RA
FLS, HDAC3 and/or 6 are primarily responsible for mediating
tubulin, H3 and H4 lysine acetylation.

Inhibition of HDAC3/6 displays similar effects to pan-HDACi

in suppressing inflammatory gene expression in RA FLS

To exclude the possible effects of compound toxicity in our ana-
lysis, we exposed FLS to increasing concentrations of HDACi
and verified cell viability by MTT assay. Treatment for 24 h
had no discernible effect on overall FLS metabolic activity
(figure 2A). To further assess the contributions of the different
HDACi to the inflammatory activation of FLS, we analysed the
expression of a panel of 83 IL-1B-inducible genes in the presence
or absence of the HDACi by quantitative PCR (qPCR) array
(figure 2B and data not shown). Eighty per cent of the genes
downregulated by more than twofold with pan-HDACI in each
of the three RA FLS lines subjected to this analysis were similarly
affected by HDAC3/6i. In contrast, only the lymphotoxin (LTA)
gene was downregulated by HDAC8i and none by HDAC1/2i.
To confirm the effects of HDAC3/6i on gene expression, we per-
formed independent qPCRs on a selected subset of targets using
mRNA from additional RA FLS lines treated with the inhibitor
(figure 2C). In agreement with qPCR array data, HDAC3/6i sig-
nificantly suppressed IL-1B-induced expression of interferon-f1
(IFNB1), CXCL9, CXCL10, CXCL11, CCL2, CCL3, IL6, ILS,
matrix metalloproteinase (MMP)I and MMP3. In contrast,
HDAC1/2i and HDACSi failed to inhibit IL6 and IL8 induction,
even at concentrations as high as 2 puM (see online supplemen-
tary figure S1). Consistent with its effects on mRNA expression,
HDAC3/6i significantly suppressed IL-6 and IL-8 protein pro-
duction following IL-1pB stimulation (figure 2D, left panel and
right panel, respectively) and reduced RA FLS invasive capacities
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Figure 1 Histone deacetylase inhibitors (HDACi) differentially affect

global protein acetylation and HDAC activity. (A) Rheumatoid arthritis
(RA) fibroblast-like synoviocytes (FLS) were incubated with increasing
concentrations (20, 100 and 500 nM) of either pan-HDAC1/2,
pan-HDAC3/6 and pan-HDACS inhibitors or selective HDAC1/2, HDAC3/
6 and HDACS8 inhibitors for 4 h. Total cell lysates were analysed by
western blotting with antibodies recognising acetylated lysine (Ac
Lysine), tubulin and histone 3 (H3). Proteins detected at 52, 18 and

14 kDa with antiacetylated lysine Ab correspond to acetylated tubulin,
acetylated H3 and histone 4 (H4), respectively. The results are
representative of four independent experiments. (B) RA FLS (n=4) were
incubated with different HDACi for 4 h. Cell pellets were incubated
with fluorogenic class-specific HDAC substrates and class | and class Ilb
HDAC activities were measured by fluorescent product release. The
values represent arbitrary fluorescence values for cells untreated or
treated with HDACi. *p<0.05, ****p<000.1, ratio t test.

(figure 2E), an effect possibly associated with decreased levels of
MMPs, and induced expression of TIMP1 (figure 2B, C).

HDAC3, but not HDAC6, mediates IL-1B-induced gene
expression in RA FLS

The HDAC3/6i used in these studies effectively targets both
HDAC3 and HDAC6.>*> HDAC3 has previously been identified

as a key epigenetic modulator of inflammatory activation of
murine macrophages and human PBMCs.? *° 2¢ Also, HDAC6
inhibition was shown to inhibit proinflammatory TNF-o and
IL-6 cytokines in lipopolysaccharide (LPS)-stimulated THP-1
cells.”” To determine whether HDAC3 or HDAC6 might be
responsible for the transcriptional changes observed with
HDAC3/6i, we made use of an additional inhibitor specific for
HDAC6. In initial experiments, we assessed the concentration
of HDAC6i (1 uM) which induced a similar degree of tubulin
acetylation as to HDAC3/6i (figure 3A) and had no effect on
FLS viability (see online supplementary figure S2). Under these
conditions, we observed no significant effect of HDAC6i on the
expression of genes induced by IL-1B and suppressed by
HDAC3/6i (figure 3B). While this suggested a primary role for
HDACS3 in the effects of HDAC3/6i in suppressing FLS inflam-
matory activation, we sought to confirm this independently by
knocking down HDAC3 and HDAC6 in FLS. Silencing effi-
ciency at the level of mRNA and protein was confirmed for
both HDAC3 (figure 3C, D, respectively) and HDAC6 (figure
3F, G). Silencing of HDAC3 significantly suppressed the
IL-1B-mediated induction of genes targeted by HDAC3/6i
(figure 3E and data not shown), contrary to HDAC6 silencing
(figure 3H). Together, these results suggest that the HDAC3/6i
prevents inflaimmatory gene expression primarily through its
effects on HDAC3.

HDAC3 regulates STAT1 phosphorylation independently of
STAT1 acetylation

Macrophages deficient in HDAC3 display an impaired inflam-
matory gene expression programme upon LPS stimulation, par-
tially dependent on altered transcriptional activation of
STAT1.%° Sustained levels of STAT1 protein and its activated
phosphorylated forms are elevated in RA FLS and synovium,
likely contributing to the maintenance of the active inflamma-
tory process.”® 2° We therefore investigated whether HDAC3
might regulate gene expression in a STAT1-dependent manner
in RA FLS. Treatment of FLS with HDAC3/6i had no effect on
total STAT1 protein expression, but prevented STAT1 Tyr701
phosphorylation in response to IL-1B stimulation. In contrast,
HDAC6i had no effect on STAT1 phosphorylation (figure 4A).
Consistent with HDAC3/6i effects on STAT1 phosphorylation,
which is required for its transcriptional activation, HDAC3/6i
also completely blocked the induction of STAT1 DNA-binding
activity in response to IL-1f (figure 4B). Silencing of HDAC3
expression similarly prevented IL-1B-induced STAT1 phosphor-
ylation (figure 4C). It has been previously reported that STAT1
hyperacetylation is a prerequisite for STAT1 dephosphorylation
and inactivation,’® so we examined if HDAC3/6i regulates the
acetylation status of STAT1. We found that HDAC3/6i had no
effect on STAT1 acetylation after 4 h of treatment (figure 4D)
or at earlier time points (figure 4E). We conclude that while
HDACS3 strongly regulates STAT1 activity in RA FLS, this does
not occur via a direct acetylation event.

HDAC3 controls the IL-1B-induced STAT1 phosphorylation

via downregulation of IFN-B expression

STAT1 signalling is tightly regulated by the type I IFNs IFN-o
and IFN-B and the type II IFN IFN-y.*>! In RA FLS, IFN-p is an
essential mediator of TNF-dependent STAT1 activation and
pharmacological inhibition of this pathway prevents T
cell-attracting chemokine production in FLS.** Here, we inves-
tigated whether regulation of IFN-B by HDAC3 might be
responsible for the observed effects of HDAC3 inhibition on
STAT1 activation and type I IFN gene responses in RA FLS.
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Figure 2 Histone deacetylase (HDAC)3/6i recapitulates the effects of pan-HDAC inhibitors (HDACi) on inflammatory gene expression. (A)
Rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS) (n=5) were left untreated or preincubated with increasing concentrations (20, 100 and
500 nM) of pan-HDACi or selective HDACi for 30 min and further stimulated with interleukin (IL)-1B for 24 h. Changes in cell viability were analysed
by MTT assay and presented as the mean absorbance+SEM at 590 nm. (B) FLS (n=3) were left untreated or preincubated with 250 nM of indicated
HDACi for 30 min, prior to stimulation with IL-1B for 4 h. mRNA levels of 83 IL-1B-responsive genes were determined by quantitative PCR (qPCR)
using a customised RT2 Profiler PCR Array. Data are presented on heat map as row Z-scores computed from delta Ct values relative to a panel of
five housekeeping genes. (C) RA FLS (n=6) were left untreated or incubated with 250 nM HDAC3/6i for 30 min and further stimulated with IL-18 for
4 h. Total RNA was extracted and changes in mRNA accumulation were analysed by qPCR. *p<0.05, **p<0.01, ***p<0.001 ****p<000.1, ratio t
test. (D) RA FLS (n=5) were left untreated or preincubated with increasing concentrations (20, 100 and 500 nM) of HDAC3/6i for 30 min and then
stimulated with IL-1B for 24 h. IL-6 and IL-8 production was determined by ELISA. *p<0.05, **p<0.01, repeated measures ANOVA followed by
Bonferroni correction for multiple comparison analysis. (E) RA FLS (n=4) were seeded into Boyden chambers, left untreated or preincubated with
250 nM HDAC3/6i for 30 min and then stimulated with IL-1B for 24 h. After 24 h of incubation, the number of invasive cells was determined.
Graphs indicate the average number of cells per field. *p<0.05, repeated measures ANOVA followed by Bonferroni correction for multiple
comparison analysis.

Exposure of FLS to IL-1B, IFN-o or IFN-B over time revealed
differential kinetics of STAT1 phosphorylation (figure 5A). In
particular, STAT1 phosphorylation in the presence of IL-1f was
delayed compared with the responses induced by IFN-a or
IFN-B. To verify whether late STAT1 activation by IL-1B would
rely on type I IFN production, we silenced the expression of
the IFN-0/B receptor alpha chain (IFNAR1) (figure 5B, C).
IFNART1 silencing potently blocked STAT1 phosphorylation in

the presence of IL-1B or IFN-B (figure 5D), indicating that
STAT1 activation by IL-18 is dependent on primary type I IFN
signalling. Consistent with this, and in contrast to HDAC3/61
suppression of STAT1 phosphorylation in response to IL-1B,
activation of STAT1 by exogenously added IFN-B was
unaffected by HDAC3/6i (figure SE). Silencing of IFNARI1
expression prevented the expression of a subset of genes regu-
lated by HDAC3 (eg, CXCL9 and CXCL11), but left others
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Figure 3 Histone deacetylase (HDAC)3 silencing suppresses the expression of HDAC3/6i target genes, contrarily to HDAC6 silencing or inhibition.
(A) Rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS) (n=3) were left untreated or incubated with either 250 nM HDAC3/6i or increasing
concentrations (250, 500 and 1000 nM) of HDACGi for 4 h. Protein lysates were analysed by western blotting with antibodies recognising acetylated
tubulin and tubulin. (B) RA FLS (n=3) were left untreated or preincubated with 250 nM HDAC3/6i or HDACGi for 30 min, prior to stimulation with
interleukin (IL)-1B for 4 h. Changes in mRNA accumulation were analysed by quantitative PCR (qPCR), and data were presented as expression
relative to GAPDH. (C) RA FLS (n=4) were left not transfected or were transfected for 48 h with 20 nM control non-targeting siRNA (siScrb) or

20 nM HDAC3-specific siRNA (siHDAC3). HDAC3 knockdown efficiency was verified at the mRNA level by qPCR. (D) FLS were transfected as in (C) to
confirm HDAC3 protein silencing by immunoblotting. Total protein lysates were analysed with Abs recognising HDAC3 or control H3. The signal
intensity of five independent experiments was subsequently quantified by densitometry analysis. (E) FLS (n=6) were transfected as in (C) and further
stimulated with 1 ng/mL IL-1p for 4 h. Changes in mRNA expression were analysed as in (B). *p<0.05, **p<0.01, ***p<0.001 ****p<0.0001, ratio
t test. (F) FLS (n=3) were transfected with either non-targeting siRNA (siScrb) or 20 nM HDAC6-specific siRNA (siHDAC6) using the same protocol as
in (C) to confirm HDACG silencing on mRNA. (G) Confirmation of HDAC6 silencing on protein level was assessed as in (D), protein lysates were
immunoblotted for HDAC6 or control actin, and densitometry analysis of three independent experiments is shown. (H) FLS (n=4) were transfected as
in (C) and further stimulated with 1 ng/mL IL-18 for 4 h. Changes in mRNA expression were analysed as in (B). *p<0.05, ratio t test.

(IL6 and IL8) unaffected (figure SF). These data indicate that may indicate a pathological epigenetically imprinted status of
HDAC3 contributes to the activation of RA FLS in part the immune and stromal cells that contributes to the perpetu-

through promoting type I IFN production and subsequent auto- ation of inflammatory activation.*® Indeed, distinct DNA methy-
crine effects on STAT1-dependent gene expression and indicate lome signatures and elevated HDAC expression have been
that selective inhibition of HDAC3 could dampen the inflam- observed in long-term cultured RA FLS compared with osteo-
matory activation of FLS. arthritis (OA) FLS,** 3% and pharmacological inhibition of pro-
teins reading or modifying epigenetic marks was shown to
DISCUSSION prevent the inflammatory activation of RA FLS.> 3¢
In RA, substantial lack of responsiveness to available therapies is Pan-HDACi were described as potent anti-inflammatory
leading to the growing necessity to identify novel therapeutic drugs in several immune-mediated diseases and in a variety of
targets which could suppress inflammatory cytokine production. solid and haematologic tumours.”* Despite their safety and
Further on, relapse phenomena after reducing or stopping con- approved use for severe malignancies, including cutaneous

ventional and disease-modifying antirheumatic drug treatment T-cell lymphoma,®>” evidence from cancer clinical trials has
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Figure 4 Histone deacetylase (HDAC)3 regulates STAT1 phosphorylation, but not STAT1 acetylation. (A) Rheumatoid arthritis fibroblast-like
synoviocytes (FLS) (n=3) were left untreated or preincubated with 250 nM HDAC3/6i or HDAC6i for 30 min and further stimulated with interleukin
(IL)-1B for 4 h. Protein lysates were analysed by western blotting with antibodies recognising STAT1 Tyr701 phosphorylation (p-STAT1 Tyr701), STAT1
or control H3. A representative of four independent experiments is shown. (B) Transcription factor DNA-binding assays were used to analyse
DNA-binding activity of STAT1 in FLS nuclear extracts (n=6). The data are presented as the percentage of the absorbance values relative to
unstimulated cells. **p<0.01, Friedman test followed by Dunn’s multiple comparison analysis. (C) FLS were transfected as in figure 3C and further
stimulated with IL-1B for 4 h. Protein lysates were analysed by western blotting with antibodies recognising phospho-STAT1(Tyr701) and H3 and
signal intensity of six independent experiments was subsequently quantified by densitometry analysis. *p<0.05, Wilcoxon matched pairs test. (D and
E) FLS were preincubated with 250 nM HDAC3/6i for 30 min and stimulated with IL-1p for either 4 h (D) or 1 and 2 h (E). Cell lysates were
precleared, immunoprecipitated with STAT1 Ab and immunoblotted with either STAT1 or acetylated lysine (Ac Lys) Abs. The input represents 10% of

the whole cell lysate used for the immunoprecipitation.

raised the potential of undesirable effects occurring upon
HDAC: treatment, such as thrombocytopenia, caused by defect-
ive megakaryocyte differentiation and platelet formation and
possibly associated with tubulin hyperacetylation.>®~*° Hence,
selective HDAC inhibition may help to improve the therapeutic
margin of safety. Emerging evidence indicates that specific class
I HDAC family members (HDAC1-3, 8) could have a major
role in the transcriptional regulation of inflammatory mediators,
both in arthritis models and in other inflammatory dis-
eases.'® 22 2° Here, we compared the effects of ITF2357, a
pan-HDACi shown to repress inflammation in in vitro and in
vivo models of arthritis, with HDAC1/2, HDAC3/6 and
HDACS inhibitors on gene expression in RA FLS. We found
that inhibition of HDAC3/6, but not of HDAC1/2 nor HDACS,
highly resembled the effects of pan-HDACI, as it led to suppres-
sion of genes associated with RA pathogenesis, including cyto-
kines, MMPs, as well as IFNB1 and IFN-related genes.
Importantly, both HDAC1/2 and HDACS inhibitors that were
used in this study are remarkably selective and retain selectivity
at high doses,” >* indicating that the lack of effect on the
genes that we screened is unlikely to be associated with ineffect-
ive HDAC enzymatic inhibition. In line with this possibility,
transcriptome analysis of HDAC1-knockout FLS revealed that
HDAC1 is predominantly implicated in the control of cell
migration and proliferation, rather than cytokine transcrip-
tion.>> Additionally, the acetylation signature of PCI34051, a
selective HDACS inhibitor, was found to be restricted to a
limited set of targets, particularly SMC3.*! Taken together,

HDAC1, HDAC2 and HDACS8 are likely to play roles in
responses to other stimuli, target other genes not screened in
our study, regulate the inflammatory response at later time
points or have cell-specific roles.”* ** *3

HDAC3 was previously shown to be an important epigenome
modifier in the transcriptional regulation of inflammatory
genes, as HDAC3 depletion prevents LPS-induced macrophage
activation®® and its pharmacological disruption regulates athero-
genic macrophage polarisation”® and cytokine production in
RA patient PBMCs.® On the other hand, HDAC6 plays a role
in immunological tolerance in macrophages** * and its defi-
ciency enhances regulatory T cells (T.,) suppressive func-
tions.*® Screening of a subset of genes affected by HDAC3/6i
revealed that HDAC3 knockdown reproduced the effects of
HDAC3/6i, though to a more moderate extent that reflected
partial knockdown efficiency. In contrast, both HDAC6 silen-
cing and inhibition showed null or mild effects on transcrip-
tional regulation, indicating that HDAC3 has a primary role in
mediating the IL-1B-induced activation of FLS.

The anti-inflammatory properties of HDAC3 depletion in
macrophages were described to be dependent on altered STAT
expression and function.?® This observation is in line with previ-
ous works showing that bulk HDAC activity and the expression
of class I HDACs are required to regulate the Janus kinase
(JAK)/STAT signalling.*” In RA FLS, we found that
IL-1B-induced STAT1 Tyr701 phosphorylation, an indicator of
STAT1 activation, was abrogated by HDAC3/6i. Notably, drugs
interfering with the JAK/STAT signalling are beneficial in the
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Figure 5 Histone deacetylase (HDAC)3/6i effects on STAT1 regulation reflect the suppression of interferon (IFN)-B. (A) Rheumatoid arthritis (RA)
fibroblast-like synoviocytes (FLS) were stimulated with either 1 ng/mL interleukin (IL)-1B or 1000 U/mL IFN-o. and IFN-B at different time points, as
shown in the figure. Protein lysates were analysed by western blotting with antibodies recognising phospho-STAT1(Tyr701), STAT1 and H3. (B and C)
RA FLS (n=3) were left not transfected or were transfected for 48 h with 20 nM control non-targeting siRNA (siScrb) or 20 nM IFN-o/p receptor
alpha chain (IFNAR1)-specific siRNA (silFNAR1). IFNAR1 knockdown efficiency was verified at the mRNA level by quantitative PCR (qPCR) in (B) and
at the protein level by western blot in (C). In (C), total protein lysates were analysed with Abs recognising IFNAR1 or control actin (representative of
three independent experiments). (D) FLS (n=2) were transfected as in (B), stimulated with either 1 ng/mL IL-1p for 4 h or with 1000 U/mL IFN- for
1 h and total protein lysates were processed as in (A). (E) FLS (n=2) were left untreated or incubated with 250 nM HDAC3/6i for 30 min, prior to
stimulation with either 1 ng/mL IL-1B for 4 h or with 1000 U/mL IFN-B for 1 h. Protein lysates were analysed as in (A). (F) FLS (n=7) were
transfected as in (B) and stimulated with 1 ng/mL IL-1p for 4 h. Changes in mRNA accumulation were analysed by q PCR, and data were presented

as the mean+SEM mRNA expression relative to GAPDH. *p<0.05, ratio t test.

treatment of patients with RA failing to respond to methotrex-
ate, pointing to a relevant targetable pathway for the disease.*®
As STAT signalling is regulated by HDACs, we wondered
whether direct acetylation of STAT1 protein could interfere
with normal STAT1 function. Evidence in literature indicates, in
fact, that STAT1 acetylation is necessary for its subsequent
dephosphorylation.?® *° However, we could not detect STAT1
acetylation after incubation with HDAC3/6i. Previous papers
reporting STAT1 acetylation at late time points might indicate
that this phenomenon is rather secondary®® and cannot,
anyhow, explain HDAC3/6i early effects on gene regulation. On
the contrary, we report that HDAC3/6i indirectly regulates
STAT1 activation by primary suppression of type I IFN produc-
tion. Given the variety of genes regulated by HDAC3/6i, we

investigated to what extent selective suppression of IFN signal-
ling could affect global gene expression in FLS. As expected,
only the expression of a subset of genes involved in classical
type I IFN response, such as CXCL9 and CXCL11, but not IL6
and IL8, was suppressed by IFNART1 silencing. Thus, inhibition
of the IFN signature is a relevant, but not exclusive, mechanism
for the regulation of inflammatory gene expression by HDAC3/
6i. In line with this possibility, previous findings from our group
and by others identified control of mRNA decay as a distinct
mechanism by which HDACi control gene expression.'® *°
Specifically, IL6 transcript stability was significantly reduced
after pan-HDACi treatment in RA FLS,'° suggesting that a
similar regulation could occur upon selective HDAC3
inhibition.
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While the process underlying HDAC3-mediated regulation of
type I IFN signalling in FLS needs to be further characterised,
and the action range of HDAC3/6i has yet to be investigated,
data from this study and others provide strong evidence that
HDACS3 can act as a crucial epigenetic regulator of inflamma-
tion. Our results suggest that the development of selective
HDACS3 inhibitors could be beneficial in the therapy of inflam-
matory disorders, such as RA and other rheumatic diseases char-
acterised by type I IFN signature,”! while limiting possible side
effects of pan-HDACi.
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