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Introduction

Cervical cancer prevention remains a big global challenge. 
It is estimated that in 2020 in the US, 13,800 women will be 
diagnosed with invasive cervical cancer, and among them, 
4290 will die.[1] This cancer ranks second in fatalities among 
20–39‑year‑old women.[1] Screening has helped to decrease the 
incidence rate of cervical cancer by more than half since the 
mid‑1970s through early detection of precancerous cells,[2] yet 
300,000 women die every year worldwide.[3] As a public health 
priority in 2018, the WHO director general made a global call 
for the elimination of cervical cancer.[4]

If clinically indicated, the cervix is further examined by 
taking a sample of cervical tissue  (biopsy). The tissue 

sample is transferred to a glass slide and observed under 
magnification (histopathology). Cervical dysplasia or cervical 
intraepithelial neoplasia  (CIN) is the growth of abnormal 
cervical cells in the epithelium that can potentially lead to 
cervical cancer. CIN is usually graded on a 1–3 scale. CIN 
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1 (Grade I) is mild epithelial dysplasia, confined to the inner 
one third of the epithelium. CIN 2  (Grade II) is moderate 
dysplasia, usually spread within the inner two‑third of the 
epithelium. CIN 3  (Grade 3) is carcinoma in  situ  (severe 
dysplasia) involving the full thickness of the epithelium.[5] A 
diagnosis of Normal indicates the absence of CIN. Figure 1 
depicts the localized regions with all four classes.

Our previous work on computational approaches for digital 
pathology image analysis has relied mostly on extraction of 
handcrafted features based on the domain expert’s knowledge. 
Guo et al.[6] manually extracted traditional nuclei features for 
CIN grade classification. The images were split into ten equal 
vertical segments for extraction of local features and classified 
using voting fusion with support vector machine (SVM) and 
linear discriminant analysis  (LDA). Huang et al.[7] used the 
LASSO algorithm for feature extraction with SVM ensemble 
learning for classification of cervical biopsy images. Automated 
CIN grade diagnosis was also performed through analyzing 
Gabor texture features with K‑means clustering[8] and slide‑level 
classification with texture features.[9] Kayser et al.[10] proposed a 
tool that can integrate the digital image content information with 
a system that understands the context for digitized tissue‑based 
diagnosis. The classification accuracy with above mentioned 
approaches fell short of that needed for clinical or laboratory 
use. In the past decade, success of deep learning approaches 
for image segmentation and classification in the health domain 
has attracted more research.[11] Toward that, AlMubarak et al.[12] 
developed a fusion‑based hybrid deep learning approach that 
combined manually extracted features and convolutional neural 
network (CNN) features to detect the CIN grade from histology 
images. Li et al.[13] proposed a transfer learning framework with 
the Inception‑v3 network for classifying cervical cancer images. 
An excellent review of computer vision approaches for cervical 
histopathology image analysis was presented in Li et al.[14]

A critical problem with manual CIN grading by pathologists is 
the variability among general pathologists in CIN determination. 
Stoler et al.[15] found an agreement for the general community 
pathologist with the expert pathologist panel assignment to 
range from 38% to 68%: 38.2%, 38%, and 68% for CIN Grades 
1, 2, and 3, respectively. The overall Cohen’s kappa value (κ) 
was 0.46 for four grades, these three CIN grades and cervical 

carcinoma. Cai et al.[16] found close agreement among expert 
pathologists. For four expert pathologists, with 8–30 years of 
grading CIN slides, a weighted κ range of 0.799–0.887 was 
found. If automated CIN grading results can be made as close 
to expert readings as the variability among expert pathologist 
readings, automated CIN grading may become feasible.

Our proposed DeepCIN pipeline draws inspiration from the way 
pathologists examine epithelial regions under the microscope. 
They do not scan the entire slide at once; instead, they analyze 
local regions across the epithelium to understand the bottom‑to‑top 
growth of atypical cells and to compare the relative sizes of the cell 
nuclei in local neighborhoods. They use this local information to 
decide the CIN grade globally for the whole epithelium region. We 
developed a pathologist‑inspired automated pipeline analogous 
to human study of histopathology slides, where we first localize 
the epithelial regions, then we analyze the features across these 
regions in both directions; finally, we fuse the feature information 
to predict the CIN class label and estimated the contribution of 
these local regions toward the global class result.

In this article, we present DeepCIN to automatically categorize 
high‑resolution cervical histology images into Normal or one 
of the three CIN grades. Images used in this work are manually 
segmented epithelium regions extracted from digitized whole 
slide images (WSIs) at × 10 magnification. The classification 
is carried out through hierarchical analysis of local epithelial 
regions by focusing on individual vertical segments and then 
combining the localized feature information in spatial context 
by introducing recurrent neural networks (RNNs).

The use of RNNs[17,18] has been found to be successful in 
solving time‑series and sequential prediction problems. Their 
use has led to a better understanding of contextual features 
from images when combined with CNN‑based models. 
Typically, CNNs act as a feature extractor, and RNNs learn the 
contextual information. Shi et al.[19] proposed a convolutional 
RNN for scene text  (sequence‑to‑sequence) recognition. 
Attention mechanisms[20] were incorporated later to improve 
performance.[21,22] Attention‑based networks have been used in 
speech, natural language processing, statistical learning, and 
computer vision.[23]

A key aspect of our model is that it focuses on differentially 
informative vertical segment regions. This is crucial for 
deciding the level of CIN because the variation of CIN grade 
in the local region could impact the overall CIN assessment of 
the epithelium.[24] The major contributions of this article are:
1.	 Hierarchical image analysis from localized regions to the 

whole epithelium image
2.	 Capturing the varying nuclei density across the epithelium 

region by vertically splitting the region into standard width 
segments with reference to the medial axis

3.	 Weakly supervised training scheme for vertical segments
4.	 Image‑to‑sequence two‑stage encoder model for extracting 

localized segment level information
5.	 Attention‑based fusion (many‑to‑one model) for the whole 

epithelium image CIN classification

Figure  1: Sections of epithelium region with increasing cervical 
intraepithelial neoplasia severity  (from  [b‑d]) showing delayed 
maturation with an increase in immature atypical cells from bottom to 
top. The sections can be categorized as (a) Normal, (b) CIN1, (c) CIN2, 
and (d) CIN3. In these images, left to right corresponds to bottom to top 
of the epithelium
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6.	 Identifying local segment contributions toward the whole 
image CIN classification.

Methodology

DeepCIN incorporates a two‑fold learning process [Figure 2]. 
First, generated vertical segments from the epithelial image are 
fed to a two‑stage encoder model for weak supervision training 
to constrain the segment class to the image class. Second, an 
attention‑based fusion network is trained to learn the contextual 
feature information from the sequence of segments and classify 
the epithelial image into one of the four classes. The remainder 
of this section of the paper is organized as follows: Section II. 
A discusses cross‑sectional vertical segment generation within 
an epithelium image; Section II. B and Section II. C present 
the two parts of the model: a segment‑level sequence generator 
and an image‑level classifier; Section II. D describes the model 
training approach.

Localization
Initially, we process the manually segmented epithelium 
regions to find the medial axis and reorient the epithelium to 
be aligned horizontally, as performed by Guo et al.[6] Guo’s 
methods are modified to generate standard‑width vertical 
segments with reference to the medial axis. This helps in 
better understanding the pattern of atypical cells under uniform 
epithelium sections and generating more image data for 
training our deep learning model. We approximate the medial 
axis curve as a piece‑wise linear curve by iteratively drawing 
a series of circles (left to right) of radii equal to the desired 
segment width. The center of each successive circle is the 
right‑most intersection point of the previously drawn circle and 
the medial axis curve. All the consecutive intersection points 
along the medial axis curve are joined to form a polygonal 
chain. At the midpoint of each line segment, we compute the 
slope corresponding to an intersecting perpendicular line. 
At the endpoints of the line segment, we draw vertical lines 
parallel to this midpoint perpendicular. This creates rectangular 
vertical regions of interest, as shown in Figure 3. Using these 
individual vertical regions, we compute a bounding box, 
which we apply to the original image to crop a refined vertical 
segment. The heights and counts of vertical segments created 
in this manner vary with the shapes and sizes of the epithelial 

images. The height and width of the segments are empirically 
chosen to be 704 pixels and 64 pixels, respectively (Section 
III. A). The RGB image segments are further processed by 
channel‑wise normalizing the pixel intensities with 0 mean and 
standard deviation of value 1 and rotating counterclockwise 
by 90°. This facilitates the classification of localized epithelial 
regions.

Formally, we assume that an epithelial image Iepth has N 
vertical segments Ivsi

 stacked up in a sequence by their spatial 
positioning from left to right such that

I I I Ivs vs vsNepth = …{ }1 2
, , , � (1)

Segment‑level sequence generation
The segment‑level sequence generator network is built as 
a two‑stage classifier model. The main objective of this 
network is to generate logit vectors to serve as localized 
sequence information for further image‑level analysis. 
Since ground‑truth labels for our vertical segments are not 
available, the network is trained against the image‑level CIN 
grade. Since we expect variability in the true CIN grades 
across the vertical segments, use of the single image‑level 
grade for all segments within an image introduces noisy 
labeling for the segments, and this may be expected to affect 
our training. Hence, we consider this a weakly supervised 
learning process.

We tackle this classification problem as a sequence recognition 
problem. As shown in Figure 4, the stage I is constructed with 
a CNN that can extract the convolutional feature maps. These 
spatial features are then reduced to have a height of 1 with 
maximum pooling operation. It is further transformed into a 
feature sequence by splitting along its width and concatenation 
of vectors formed by joining across the channels, similar to 
Shi et al.[19] The RNN acts as a stage II encoder model that 
further encodes the sequential information to predict the class 
value  (many‑to‑one model). It is important to understand 
that the vertical segments carry valuable localized feature 
information, including varying nuclei density, which is crucial 
in the decision process. Therefore, it is well represented as 
a feature sequence and a bidirectional RNN focuses on the 
intrinsic details within these vertical segment regions from 
left to right and right to left.

Figure 2: Overview of DeepCIN model
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The architecture of the proposed segment‑level sequence 
generator is given in Table 1. The stage I encoder is built with 
first 87 layers of the DenseNet‑121 model.[25] A max‑pooling 
layer is added to this last layer such that the feature map has 
the height of 1. This can be considered as a feature sequence 
generated from left to right.    Note that the convolutions 
always operate on local regions and hence are translationally 
invariant. Hence, the pixels in the feature maps from left to right 
correspond to a local region in the original image (receptive 
field) from left to right, that is, the elements in the feature 
sequence are image descriptors in the same order. Importantly, 
they preserve the bottom‑to‑top spatial relationships in the 
original epithelium image. To further analyze this feature 
context, the generated feature sequence is fed to a stage II 
model built of RNNs. Specifically, we employed Bidirectional 
Long‑Short‑Term Memory (BLSTM)[26] networks to analyze 
and capture the long‑term dependencies of the sequence from 
both the directions. For the stage II encoder, two sets of BLSTM 
and single‑layer neural networks (NN) were appended to the last 
max‑pooling layer of the stage I encoder. The final classification 
result is extracted from the logit vector of the last element in the 
output sequence generated at the stage II encoder. These logit 
vectors summarize the information of all the vertical segments 
and when combined, form an information sequence that is fused 
to determine the image‑level CIN classification.

Assuming an epithelial image with N vertical segments Ivsi, 
we have created logit sequence vectors vsi obtained with a 
segment‑level sequence generator fs (;θ):

vs f Ii s vsi
= ( );θ � (2)

where θ represents the model parameters.

Image‑level classification
The image‑level classifier network is designed as an 
attention‑mechanism based fusion network, as shown in 
Figure 5. We aim to capture the dependencies among vertical 
segments with a gated recurrent unit  (GRU).[18] The input 
sequences are picked up by GRU, which tracks the state of the 
sequences with a gating mechanism. The output is a sequence 
vector that represents the image under test. We use a small 
classifier with an attentional weight for each GRU cell output 
to encode the sequence of the vertical segments as:

h GRU vs hi i i= ( )−; 1 � (3)

where i N∈[ , ]1  and hi is the hidden state that summarizes the 
information of the vertical segment Ivsi.

The vertical segments may not contribute equally to epithelial 
image classification. We use an attention mechanism with 
a randomly initialized segment‑level context vectorapplied 
on the outputs of the GRU units that were subjected to tanh 
activated NN. This vector is used to generate the attentional 
weights which analyze the contextual information and give a 
measure of importance of the vertical segments. The following 
equations explain the employed attention mechanism:

e w W h bi
T

vs i vs= +( )tanh � (4)

α i
i

i

N

i

e

e
=
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=
∑
exp

exp
1

� (5)

v hI i
i

N

i=
=
∑α

1
� (6)

where Wvs and bvs are trainable weights and bias. vI is the image 
feature vector that summarizes all the information of vertical 
segments in an epithelial image. The image‑level classification 
is determined by:

p W v bl I= +( )softmax 0 0 � (7)

Training
We trained the proposed networks independently with stratified 
K‑fold cross‑validation split at the image level. First, the 
segment‑level sequence generator is trained to generate the 
logit vectors of all the segments and then concatenated to form 
a sequence to further train the image‑level classifier.

During segment‑level sequence generation, the problem 
of class imbalance is solved by upsampling the vertical 
segment images with image augmentations: randomly flipping 
vertically and horizontally, rotating with a range of 180°–180° 
angles, changing hue, saturation, value and contrast, and 
applying blur and noise. The objective is to minimize the 
cross‑entropy loss (equation 8) calculated directly from the 

Figure  4: Segment‑level sequence generator network with two‑stage 
encoder structures

Figure 3: Localized vertical segment generation from an epithelial image
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vertical segment image and its restricted ground‑truth label 
given by

L
y
yk vs
k

j
j

= −
( )
( )
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
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∑

Σ log
exp
exp

� (8)

where k is the class label of vertical segment image vs an yk is the kth 
label element value in the logit vector. We use ADADELTA[27] for 
optimization since it automatically adapts the learning rates based 
on the gradient updates. The initial learning rate was set to 0.01.

For image‑level classification, we use the weighted negative 
log‑likelihood of correct labels to compute the cost function 
and back propagate the error to update the weights with a 
stochastic gradient descent optimizer (learning rate was fixed 
at 0.0001). Training loss is given by:

L q pk k
l

Ik
′ = − ( )∑ log � (9)

where k is the class label of epithelial image I and qk is the 
weight of the label k.

Experiments

We conducted experiments on our cervical histopathology 
image database to evaluate the effectiveness of the proposed 

classification model and compared its performance with other 
state‑of‑the‑art methods.

Dataset and evaluation metrics
For all the cross‑validation experiments, we use a dataset 
that contains 453 high‑resolution cervical epithelial images 
extracted from 146 hematoxylin and eosin‑stained cervical 
histology WSIs. In addition, we use independent 224 
high‑resolution epithelium images as a hold‑out test data. 
These WSIs were provided by the Department of Pathology at 
the University of Oklahoma Medical Center in collaboration 
with the National Library of Medicine. The WSIs were scanned 
at ×20 using Aperio ScanScope slide scanner in a pyramidal 
tiled format and saved with the file extension svs. Each 
pixel in the WSI has a size of 0.25 µm2. The pyramidal tile 
level varies from 0 to 2/3/4. In this study, ×20 magnification 
images (pyramid level 0) downsampled to ×10 magnification 
are referred to as high‑resolution images. All images have 
corresponding ground‑truth labels. These annotations were 
carried out by an expert pathologist. The epithelial images 
have varying sizes which range from about 550  ×  680 
pixels (smallest) to 7500 × 1500 pixels (largest). This varying 
size affects the number of vertical segments generated from an 
image, typically ranging from 6 to 118. Although the vertical 
segments are generated such that the widths are 64 pixels wide 
and the height of these segments ranges from 160 to 1400 
pixels, We address this problem by resizing the images to their 
median height: 704 pixels. This height was chosen empirically 
as a multiple of 32 to apply convolutions for feature extraction.

The segments were preprocessed such that they are RGB 
images of standard size: 64 × 704 × 3. We have created a total 
of 11,854 vertical segment images from 453 epithelial images. 

Figure  5: Attention‑based fusion network for epithelial image‑level 
classification. The input sequences are fed to GRU cells. ѲDenote a 
two‑layer neural network with hyperbolic tangent and softmax activation 
functions, respectively to generate attentional weights. ѲDenotes a single 
layer NN with softmax activation function that produces the classification 
output

Table 1: Segment‑level sequence generator model 
architecture

Layers Configurations Size
Stage   I Input ‑ 3×64×704

Transition 
layer 0

k:7 × 7, s:2, p:3 64×32×352
mp:3 × 3, s:2, p:1 64×16×176

Dense 
block 1

k s p
k s p
: , : , :
: , : , :
1 1 1 1
3 3 1 1

6
×
×









 ×

256×16×176

Transition 
layer 1

k s
ap s
: , :
: , :
1 1 1
2 2 2
×
×











128×8×88

Dense  
block 2

k s p
k s p
: , : , :
: , : , :
1 1 1 1
3 3 1 1

12
×
×









 ×

512×8×88

Transition 
layer 2

k s
ap s
: , :
: , :
1 1 1
2 2 2
×
×











256×4×44

Dense  
block 3

k s p
k s p
: , : , :
: , : , :
1 1 1 1
3 3 1 1

24
×
×









 ×

1024×4×44

Pooling mp:4 × 1, s:1 1024×1×44
Stage   II BLSTM+ 

NN
nh:256 512×44
nh:256 256×44

BLSTM+ 
NN

nh:256 512×44
nh:4 4×44

Output ‑ 4×1
k, s, p, mp, ap, and nh, are kernel, stride size, padding size, max pooling, 
average pooling, and number of hidden layers, respectively. “BLSTM” 
and “NN” stands for bidirectional LSTM and single‑layer neural 
network, respectively. BLSTM: Bidirectional Long‑Short‑Term Memory, 
NN: Neural network, LSTM: Long‑Short‑Term Memory
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The class distribution of these data is shown in Table 2. There 
are two main challenges with this epithelial image dataset. 
First, the cervical tissues have irregular epithelium regions, 
with color variations, intensity variations, red stain blobs, 
variations in nuclei shapes and sizes, and noise and blurring 
effects created during image acquisition. These effects tend 
to have large inter‑ and intraclass variability across the four 
classes we seek to label. Second, even though our database is 
labeled by experts and may be considered of high quality, it 
is relatively small. This is a common and recognized problem 
in the biomedical image processing domain.

The scoring metrics used for the performance evaluation 
are precision  (P), recall  (R), F1‑score  (F1),    classification 
accuracy (ACC), area under the receiver operating characteristic 
curve, average precision, and Matthews correlation coefficient. 
Cohen’s kappa score  (κ) is used for the evaluation of the 
scoring schemes described in Section III. D. The percentage 
weighted average scores were reported due to the inevitable 
imbalance in the data distribution.

Implementation details
Although the entire DeepCIN model can be implemented end 
to end, we have split the process into two independent training 
steps. This model was chosen to overcome the GPU memory 
limitation to process these large input images and network 
architectures.

Details about the segment‑level sequence generator network 
and image‑level classifier network are given in Table 1 and 
Figure 4, respectively. Both the networks output four classes. 
The first network is trained with weak supervision to determine 
the logit sequence vectors of each vertical segment. The class 
outputs of the final network comprise our major concern.

A transfer learning technique was incorporated in the stage 
I encoder of the segment‑level sequence generator. The 
convolution filters were initialized with ImageNet[28] pretrained 
weights and were left frozen since the stage I encoder is 
built with initial layers of the DenseNet‑121 model, which 
presumably has weights already set to extract low‑level image 
features such as edges, colors, and curves. All the CNN layers 
are activated with the rectified linear unit (ReLU) function, 
and the single layer NN, followed by BLSTM layers in the 
stage II encoder, which does not impose any nonlinearity to 
get logit vector sequence. The latter network consists of GRU 

cells (with 128 hidden units), a two‑layer NN with hyperbolic 
tangent and softmax activation functions to generate attentional 
weights and a single‑layer NN with softmax activation function 
to produce the classification output from the image feature 
vector.

We trained and validated the models using stratified fivefold 
cross‑validation. We split training and validation data at the 
image level and maintained the same distribution across both 
the models. To address the class imbalance problem, we 
have upscaled the less populated class images with image 
augmentations for the segment‑level sequence generation 
and in the image level classification, we employed a weighted 
loss function.

Each individual fold for both the models was trained for 200 
epochs with a batch size of 56 with early stopping to avoid 
overfitting.

We implemented our localized vertical segment generation 
in MATLAB[29] running on an Intel Xeon CPU @ 2.10GHz 
which took 3.42 s on average to process one epithelial image. 
The deep learning models are trained under CUDA 10.2 and 
CuDNN v7.6 backend on an NVIDIA Quadro P4000 8GB 
GPU and 64GB RAM with a PyTorch v1.4[30] framework. The 
time taken for validation is about 0.68 s per epithelial image. 
Thus, the entire DeepCIN pipeline takes 4.10 s on average to 
process and validate one epithelial image.

Ablation studies
In this section, we perform classifier ablation studies on 
the DeepCIN pipeline to understand its key aspects. The 
experiments include a comparison with different segment 
widths, stage I and stage II encoder variants, different fusion 
techniques, and benchmark models.

The proposed model takes standard size image inputs. Resizing 
images will cause image distortions. We observe that this has 
a minor effect on the performance, expected since both the 
training and testing images are similarly resized, which would 
result in the model’s capability of handling such distortions. 
However, the segment width is to some extent a free variable 
whose setting may modulate the amount of local spatial 
information contained in a vertical segment. Recognizing 
this, we experimented with segment widths of 32, 64, and 
128. According to Table 3, we observe that a segment width 
of 64 pixels is an optimal choice (in our experimental search 
space) compared to the segments with 32 pixels wide and 128 
pixels wide.

The stage I encoder in the segment‑level sequence generator 
acts like a spatial feature extractor. Since our biomedical 
digital image environment is not data rich for training deep 
learning models, we have experimented with various published 
models which have been pretrained with the benchmark 
ImageNet database. Only a set of initial layers that extract 
low‑level features from the input image are considered in 
building the stage I encoder. The top‑performing Stage I 
encoder model results were recorded, as shown in Table 4. 

Table 2: Class label distribution from 453 epithelial 
images

Class Count (%)

Epithelial images Segments
Normal 244 (53.8) 6836 (57.7)
CIN1 57 (12.6) 1433 (12.1)
CIN2 79 (17.5) 2039 (17.2)
CIN3 73 (16.1) 1546 (13.0)
Total 453 (100.0) 11,854 (100.0)
CIN: Cervical intraepithelial neoplasia
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We observed that DenseNet‑121 was better at extracting the 
crucial epithelial information, compared to ResNet‑101[31] and 
Inception‑v3[32] models. The DenseNet‑121 model is better at 
feature reuse and feature propagation throughout the network 
with reduced parameters. Both DenseNet‑121 and ResNet‑101 
are good at alleviating vanishing gradient problems; however, 
DenseNet‑121 with its feed‑forward interconnections among 
layers helps in better feature understanding. Inception‑v3 
uses models that are wider rather than deeper to prevent 
overfitting with factorizing convolutions to reduce the number 
of parameters without compromising network efficiency.

The stage II encoder further encodes the feature sequence 
that is mapped from the translationally invariant feature 
information available from the encoder. Our efforts to use 
bidirectional LSTM as a stage II encoder delivered better 
performance on the segment‑level sequence generation 
that reflects on generating essential and better logit feature 
vectors. Table  5 shows that bidirectional analysis enables 
understanding of the context of the feature information; 
this aided in upsampling the segment data by flipping the 
input images horizontally. The use of attention was not 
helpful for understanding the feature sequence in the vertical 
segments with almost 1% decrease in performance across all 
the metrics  [Table 5]. This indicates that the entire feature 
sequence is equally important to interpret the localized 
information, as shown by the equal distribution of attentional 
weights. The use of vanilla NNs (fully connected layers) was 
comparatively less efficient because LSTMs contain internal 
state cells that act as long‑term and short‑term memory 
units and manage to learn by remembering the important 
information and forgetting the unwanted. NNs lack this ability 
and focus only on the very last input.

We observed that attentional weights help to analyze the 
valuable information from the contribution of each segment 
towards the image‑level classification. Table  6 confirms 
this observation, showing nearly a 2% improvement in 
performance with the inclusion of attention. Techniques 
like maximum voting and average voting of segment‑level 
sequence generation results are simple and straight forward but 
fail to provide the additional information about the localized 
segment data.

Results

We finally compare the performance of the proposed model 
with the state‑of‑the‑art CIN classification models. The 
models used for the comparison are proposed by Guo et al.[6] 
and AlMubarak et al.[12] The best model of Guo et al.,[6] LDA, 
was trained with 27 handcrafted features extracted from 
vertical image segments. The epithelium was split into ten 
equal parts to create these segments and fusion was performed 
through a voting scheme. AlMubarak et al.[12] used the same 
vertical segments and divided them into three sections: 
top, middle, and bottom. 64  ×  64 size Lab color space 
image patches were extracted to train three CNN models. 

The resulting confidence values from these sections were 
treated as features, and the 27 features were concatenated 
to form a hybrid approach for training an SVM classifier. 
The final classifiers of both these models were trained with 
a leave‑one‑out approach.

For a direct comparison, we have retrained Guo et al.[6] 
and AlMubarak et al.[12] models on the 453 high-resolution 
epithelial histopathology image data. Table 7 shows that the 
proposed model performs best for the CIN classification task. 
In addition, our model provides the significance of individual 
local regions toward the whole image classification. The 
results for sample images from the proposed DeepCIN model 
are shown in Figure  6. We observed that the performance 
was uniform among different sizes of epithelium images. 
The distribution of the entire data and the predictions for all 

Table 4: Ablation study on stage I encoder models

Stage I encoder P R F1 ACC AUC AP MCC
DesnseNet‑121* 88.6 88.5 88.0 88.5 96.5 91.5 82.0
ResNet‑101 87.1 86.9 86.4 86.9 95.0 88.9 79.6
Inception‑v3 85.5 85.4 85.1 85.4 94.8 87.8 77.1
P: Precision, R: Recall, F1: F1‑score, AP: Average precision, MCC: 
Matthews correlation coefficient, AUC: Area under Receiver Operating 
Characteristic curve, ACC: Classification accuracy

Table 6: Ablation study on fusion techniques

Fusion P R F1 ACC AUC AP MCC
GRU 86.3 86.1 85.6 86.1 96.3 90.4 78.0
GRU+attention* 88.6 88.5 88.0 88.5 96.5 91.5 82.0
Max vote 87.6 87.2 87.0 87.2 ‑ ‑ 79.9
Avg vote 88.0 87.6 87.4 87.6 ‑ ‑ 80.6
GRU: Gated recurrent unit

Table 3: Ablation study on segment widths

Segment width P R F1 ACC AUC AP MCC
32 82.9 82.3 81.2 82.3 93.5 85.3 72.3
64* 88.6 88.5 88.0 88.5 96.5 91.5 82.0
128 85.3 85.6 84.9 85.6 95.9 89.8 77.1
P: Precision, R: Recall, F1: F1‑score, AP: Average precision, 
MCC: Matthews correlation coefficient, AUC: Area under Receiver 
Operating Characteristic curve, ACC: Classification accuracy, *Indicates 
the best performing model

Table 5: Ablation study on stage II encoder models

Stage II encoder P R F1 ACC AUC AP MCC
BLSTM* 88.6 88.5 88.0 88.5 96.5 91.5 82.0
BLSTM+attention 87.9 87.6 87.7 87.6 95.2 88.9 80.1
FC 85.3 85.0 84.2 85.0 94.7 87.4 76.3
BLSTM: Bidirectional Long‑Short‑Term Memory, P: Precision, 
R: Recall, F1: F1‑score, AP: Average precision, MCC: Matthews 
correlation coefficient, AUC: Area under Receiver Operating 
Characteristic curve, ACC: Classification accuracy, FC: Fully-connected 
layer, * indicates the best performing model
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5‑folds is depicted in the Sankey diagram in Figure 7, which 
shows the proportion of images that are correctly classified 
and misclassified. Image samples belonging to the CIN1 class 
were mostly misclassified as a normal class. Two reasons may 
explain this: (1) CIN1 images closely resemble normal images 
and (2) the number of CIN1 class images is small, relative to 
the number of Normal class images.

As an extension, we have tabulated the performance model 
with exact class labels, CIN versus Normal, CIN3‑CIN2 
versus CIN1‑Normal, CIN3 versus CIN2‑CIN1‑Normal, and 
off‑by‑one class [Table 8]. For the exact class label scheme, 
the predicted class label should exactly match the expert 
ground‑truth class label. The CIN versus Normal scheme 
is an abnormal–normal grouping of the predicted labels. 
The CIN3‑CIN2 versus CIN1‑Normal and CIN3 versus 
CIN2‑CIN1‑Normal interclass grouping schemes resemble 
the clinical decisions for treatment. The off‑by‑one scheme 
emphasizes the possible disagreement between the expect 
pathologists while labeling the CIN class which is usually 
observed to be one grade off.[33]

We have ensembled our five models from the fivefold 
cross‑validation with maximum voting system to test the model 
performance on unseen data. The results from the hold‑out 224 

image data are shown in Table 9. The results when compared with 
Table 8 indicate that the proposed model is good at generalizing 
on unseen data. We noticed that the kappa score with CIN3 versus 
CIN2‑CIN1‑Normal scoring scheme is affected due to small 
portion of CIN 3 images were miss predicted as CIN 2 class.

Discussion

The main objective of the DeepCIN model is to classify 
the high‑resolution epithelium images into normal or 
precancerous transformation of cells of the uterine cervix. We 
generate classification results by fusing localized information, 
forming a sequence of logit feature vectors in the same 
order of the vertical segments from the epithelium image. 
The number of vertical segments created varies since the 
epithelium images have arbitrary shapes. Traditional NNs are 
limited to fixed‑length input, but RNNs have the capability 
to read varying input sequences along with memorization. 
We employ a GRU to read the arbitrarily shaped input 
sequences. GRU with attention helps in better understanding 
the differentially informative localized data. Unlike the 
stage II encoder from the segment‑level sequence generator, 
incorporation of attention helped the model to better fuse 
the segment data and identify localized regions that are 
significantly important in the classifying the epithelial image.

It is now four decades since Marsden Scott Blois presented 
a paradigm for medical information science to distinguish 
domains in medicine in which humans are essential from those 
in which computation is essential and computers are likely 
to play a primary role.[34] He emphasized the importance of 
human judgment in the former domain, which includes most 
of clinical medicine but does not include the evaluation and 
interpretation of physiological parameters, for example, blood 

Table 7: Comparison with state‑of‑the‑art models

Model P R F1 ACC AUC AP MCC
Guo et al.[6] 67.5 73.3 69.4 73.4 ‑ ‑ 56.5
AlMubarak et al.[11] 66.1 75.6 70.4 75.5 90.9 78.1 60.3
Ours* 88.6 88.5 88.0 88.5 96.5 91.5 82.0
P: Precision, R: Recall, F1: F1‑score, AP: Average precision, MCC: 
Matthews correlation coefficient, AUC: Area under receiver operating 
characteristic curve, ACC: Classification accuracy

Figure 6: Results of DeepCIN. From top to bottom, each column presents original image, localized vertical regions, contribution of segments within 
an image toward the image‑level CIN classification (represented as probability distribution over the segments [attentional weights], the dotted lines 
indicate mean value and segments above the mean value, highlighted in green, are contributing the most), and corresponding ground truth and 
prediction labels, respectively
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gases, which is the proper domain of computers. With regard 
to the Blois paradigm, we propose that computer processing of 
histopathology images falls within the computational domain, 
and computers are likely to play a primary role.

Conclusion

In this study, we address the CIN classification problem by 
focusing on localized epithelium regions. The varying atypical 
nuclei density which is crucial in CIN determination is better 
analyzed by sequence mapping of the deep learning features. 
This sequence is interpreted in both directions under weak 
supervision with the long‑term and short‑term memory of 
the feature information. We employed an attention‑based 
fusion approach to carry out an image‑level classification. 
This hierarchical approach not only produces the image‑level 
CIN classification labels but also provides the contribution of 
each individual vertical segment of the epithelium toward the 
whole image classification. We conjecture that this information 

highlights the highest‑risk areas; this serves as an automated 
check for the pathologist’s assessment.

We observed that our proposed model, DeepCIN, has 
outperformed state‑of‑the‑art models in classification accuracy. 
The final image‑level classification accuracies and Cohen’s 
kappa score are {88.5% (± 2.2%), 81.5%}, {94.1% (± 2.0%), 
87.9%}, {96.7% (±1.6%), 92.5%}, {96.0% (1.7%), 84.8%}, 
and {98.9% (± 0.0%)-}, for exact class label, CIN versus 
Normal, CIN3‑CIN2 versus CIN1‑Normal, CIN3 versus 
CIN2‑CIN1‑Normal, and leave‑one‑out schemes, respectively. 
These results significantly exceed the variability of community 
pathologists when measured against the gold standard and 
are in the range of inter‑pathologist variability for expert 
pathologists as measured by the κ statistics.

Limitations of this work include use of a database that is 
not publicly available, which precludes validation by other 
researchers. Ground truth for the entire set was based on 
only one expert pathologist. Part of the set was scored by two 
pathologists; accuracies obtained for the two sets are similar.

Future work could improve results by including more annotated 
image data with balanced class distribution for training. 
There is also a possibility for improvements if the entire 
model could be trained end to end, which requires greater 
GPU resources. Our future research will focus on WSI‑level 
classification with end‑to‑end automation which combines 
the proposed model with our previous work on automated 
epithelium segmentation[35] and automated nuclei detection[36] 
for extracting enhanced feature information.
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Table 8: Fivefold cross‑validation results with different scoring schemes

Scoring scheme P R F1 ACC AUC AP MCC κ
Exact class label 88.6 88.5 88.0 88.5 96.5 91.5 82.0 81.5
CIN versus Normal 94.6 94.1 94.0 94.1 93.8 97.7 88.5 87.9
CIN3‑CIN2 versus CIN1‑normal 96.8 96.7 96.7 96.7 96.0 98.9 92.7 92.5
CIN3 versus CIN2‑CIN1‑normal 96.2 96.0 96.0 96.0 88.4 98.3 85.3 84.8
Off‑by‑one ‑ ‑ ‑ 98.9 ‑ ‑ ‑ ‑
P: Precision, R: Recall, F1: F1‑score, AP: Average precision, MCC: Matthews correlation coefficient, AUC: Area under receiver operating characteristic 
curve, ACC: Classification accuracy

Table 9: Cervical intraepithelial neoplasia classification results on 224 image‑set

Scoring scheme P R F1 ACC AUC AP MCC κ
Exact class label 90.2 88.4 88.2 88.4 98.0 93.1 80.5 80.0
CIN versus normal 97.3 97.3 97.3 97.3 97.2 99.7 94.4 94.4
CIN3‑CIN2 versus CIN1‑Normal 95.7 95.6 95.5 95.5 94.0 99.1 90.3 90.0
CIN3 versus CIN2‑CIN1‑Normal 93.0 92.4 91.5 92.4 78.2 97.0 71.9 68.1
Off‑by‑one ‑ ‑ ‑ 98.2 ‑ ‑ ‑ ‑
P: Precision, R: Recall, F1: F1‑score, AP: Average precision, MCC: Matthews correlation coefficient, AUC: Area under receiver operating characteristic 
curve, ACC: Classification accuracy

Figure 7: Sankey diagram – based on the combined test results from 
the fivefold cross‑validation. The height of each bar is proportional to the 
number of samples corresponding to each class
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