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Abstract: Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) for
which both genetic and environmental risk factors have been identified. The strongest synergy among
them exists between the MHC class II haplotype and infection with the Epstein Barr virus (EBV),
especially symptomatic primary EBV infection (infectious mononucleosis) and elevated EBV-specific
antibodies. In this review, we will summarize the epidemiological evidence that EBV infection is a
prerequisite for MS development, describe altered EBV specific immune responses in MS patients,
and speculate about possible pathogenic mechanisms for the synergy between EBV infection and the
MS-associated MHC class II haplotype. We will also discuss how at least one of these mechanisms
might explain the recent success of B cell-depleting therapies for MS. While a better mechanistic
understanding of the role of EBV infection and its immune control during MS pathogenesis is required
and calls for the development of innovative experimental systems to test the proposed mechanisms,
therapies targeting EBV-infected B cells are already starting to be explored in MS patients.

Keywords: HLA-DRB1*1501; EBNA1; CD4+ T cells; antigen-presenting cell (APC); CD20; humanized
mice; lymphoblastoid cell line (LCL)

1. Introduction on EBV, Its Tumorigenesis and Its Immune Control

Epstein Barr virus (EBV) is a ubiquitous γ-herpesvirus that persistently infects more
than 90% of the human adult population [1]. At the same time, it readily transforms
human B cells into immortalized lymphoblastoid cell lines (LCLs) in culture and was
identified as the first human tumor virus in Burkitt’s lymphoma [2,3]. Moreover, EBV
is associated with additional lymphomas and epithelial carcinomas as well as smooth
muscle tumors [4]. The majority of these tumor cells express latent EBV gene products
that are not required for infectious viral particle production [5]. While Burkitt’s lymphoma
expresses only EBV nuclear antigen 1 (EBNA1) as protein, Hodgkin’s lymphoma and
nasopharyngeal carcinoma express EBNA1 and the two latent membrane proteins (LMP1
and 2). Finally, diffuse large B cell lymphomas (DLBCLs) in immune-suppressed patients
often express six nuclear antigens (EBNA1, 2, 3A, 3B, 3C, and LP) and the LMPs. In addition,
non-translated viral RNAs (EBERs and miRNAs) are expressed in all EBV-associated
malignancies. Expression of all latent gene products can also be found in LCLs, and these
transform B cells into potent antigen-presenting cells (APCs) [6]. These so-called viral
latency patterns are, however, not exclusive to the EBV-associated tumors, but are also
found in healthy EBV carriers [7]. All latent EBV proteins are expressed in naïve B cells.
The three Hodgkin’s lymphoma-associated latent EBV proteins (EBNA1, LMP1, and LMP2)
are found in germinal center B cells of healthy EBV carriers, and Burkitt’s lymphoma-
associated sole EBNA1 expression is detected in homeostatically proliferating memory B
cells [8]. EBV is thought to persist without latent EBV protein, but non-translated viral
RNA expression in memory B cells as a long-lived lymphocyte reservoir [9]. Thus, the
viral gene expression programs of EBV-associated malignancies are already established in
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healthy EBV carriers, but their development into malignancies is prevented by cytotoxic
cell-mediated immune responses.

This becomes apparent during acquired or inherited immune suppression. For exam-
ple, co-infection with the human immunodeficiency virus (HIV) leads to increased devel-
opment of EBV-associated Burkitt’s lymphoma, Hodgkin’s lymphoma, and DLBCL [10].
In addition, primary immunodeficiencies that affect individual genes and render affected
patients susceptible to EBV-associated pathologies point towards cytotoxic lymphocytes,
primarily CD8+ T cells, as important pillars of EBV-specific immune control [11–13]. These
identify the perforin/granzyme cytotoxic machinery as essential for EBV-specific immune
control, while type I and II interferon responses are dispensable. Furthermore, they identify
T cell receptor signaling and the co-receptors CD27, 4-1BB, SLAM family receptors, and
NKG2D as important during EBV-specific immune control. Finally, additional primary
immunodeficiencies indicate that the development and expansion of these cytotoxic lym-
phocytes ensures immune control of EBV in most individuals that are infected prior to two
years of age [14]. This immune control needs to keep persistent infection by this important
human tumor and immune modulatory virus under control for the rest of the host’s life.

2. Epidemiological Evidence for EBV’s Association with MS

As for many other autoimmune diseases, the etiology of multiple sclerosis (MS) is not
entirely clear and does not completely rely on genetics as there are strong environmental
factors influencing the individual susceptibility. Migration studies show a consistent
pattern of individuals, who migrated from a high-risk MS area to an area with a low
prevalence, acquiring the risk associated with the new host region. Interestingly, this tends
to be only true if migration occurred during childhood before the age of 15. After this
time window, individuals predominantly retain the MS risk from the area they migrated
from [15,16]. These findings suggest that during childhood, environmental factors can
modify the disease susceptibility and are relevant for the initiation of the disease, indicating
that the first two decades of life are crucial for MS risk establishment.

For many years, an infectious etiology has been suspected. Epidemiological data
supports the “hygiene hypothesis”, proposing the existence of infectious agents that
increase the risk of MS if acquired in adolescence, but not if primary infection occurred
during infancy [17,18]. Supporting this hypothesis, epidemiological findings indicate that
MS prevalence is low in developing countries and tends to increase in regions with higher
socioeconomic status and sanitation.

Interestingly, the time point of primary EBV infection is generally considered as a
marker for childhood hygiene and has been linked to increased risk of MS development.
Usually acquired in early childhood in developing countries, primary EBV infection is
drastically postponed in developed areas, with a much lower seroprevalence in young
adults [14,19]. For the latter, the risk of acquiring EBV dramatically increases and con-
traction will more likely be manifested as IM, whereas primary EBV infection during
childhood is generally associated with low or no symptoms [20]. A study conducted in
2006 found that individuals with a history of infectious mononucleosis (IM), which is
primary EBV infection with an overshooting CD8+ T cell lymphocytosis, carry a 3.2 times
higher risk for developing MS compared to EBV-positive individuals who acquired the
virus asymptomatically [21].

While several studies provide strong evidence for IM as an important risk factor for
MS, the extremely high prevalence of EBV seropositivity in the population (95%) and the
relatively low frequency of MS incidence pose a great challenge to prove the direct causality
between EBV status and the risk for MS development without considering IM history. The
first evidence for a positive association between EBV infection and the occurrence of MS
came from a landmark longitudinal study. The collection of serum samples from more than
8 million active-duty US military personnel found no MS cases among individuals with an
EBV seronegative status, while 100% of the individuals that developed MS seroconverted
to an EBV-positive status prior to the onset of MS symptoms [22]. Additionally, two
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independent studies conducted in pediatric MS cases found increased EBV seropositivity
in children with MS (89.6% and 83%), compared to healthy controls (72% and 42%) [23,24].
To date, these studies provided some of the strongest epidemiological evidence associating
EBV infection to MS. In summary, EBV infection prior to the age of 15 might influence the
risk of developing MS. This age dependency could result from altered immune responses
upon virus encounter at adolescence and early adulthood. This will be discussed next.

3. Altered EBV-Specific Immune Responses in MS Patients

EBV has long been suspected to be involved in the pathogenesis of multiple autoim-
mune diseases. Several studies indicate that the humoral and cellular immune response
against EBV as well as the regulation of viral persistence in the EBV-infected memory B
cell pool are dysregulated in certain autoimmune diseases [25–31].

The first indications of an altered EBV-specific B cell response in MS came from several
independent longitudinal studies. Analysis of serum samples, collected from a healthy
adult population before the onset of MS disease, showed a significant increase of antibody
titers to EBV nuclear antigens (particularly EBNA1) several years before the manifestation
of the first MS symptoms [32–34]. This indicates that the risk of developing MS increases
significantly with the levels of anti EBV antibody titers and the elevation of such anti-
bodies is likely an early event in MS pathology. Further evidence for the involvement
of a dysregulated EBV-specific immune response in MS came from the investigation of
oligoclonal IgG antibodies in cerebrospinal fluid (CSF) of MS patients. Enrichment of
clonally expanded B cells and accumulation of oligoclonal IgG in the CSF of MS patients
are considered as immunological hallmarks of the disease [35,36]. Similar to the systemic
increase of EBV-specific antibodies before MS onset, investigations found higher frequen-
cies of CSF-derived EBNA1-specific IgG antibodies in MS patients [37–40]. In addition to
EBNA1-specific antibodies, humoral responses to the lytic EBV antigens BRRF2 and BFRF3
were found to be elevated in MS patients [41]. Some cross-reactivity to self-proteins of these
elevated EBV antigen-specific antibody responses was identified. Along these lines, some
EBNA1-specific antibodies cross-react with anoctamin 2 [40], and BRRF2-specific antibodies
bind mitochondrial proteins, while BFRF3-specific antibodies recognize septin-9 [42].

Evidence for the involvement of EBV-specific T cell responses in driving MS patho-
genesis came from a study investigating the sequence similarity between T cell epitopes
and self-peptides. Several virus-derived peptides, including a peptide derived from the
DNA-polymerase protein of EBV (BALF5), were identified that had the ability to efficiently
activate myelin basic protein (MBP)-specific CD4+ T cell clones [43]. An increased frequency
of EBNA1-specific Th1-polarized CD4+ T cells, with more diversified EBNA1 recognition,
has been found in MS patients compared to healthy EBV seropositive controls [28]. In accor-
dance with this, a subsequent study showed increased CD4+ T cell proliferation of PBMCs
from MS patients stimulated with EBNA1 peptides but not with peptides from influenza
or HCMV. Such MS patient-derived CD4+ T cells showed a significantly higher recognition
of self-myelin antigen compared with other autoantigens [44]. Several studies also found
that EBV-specific CD8+ T cell responses are significantly higher in MS patients compared
to healthy controls and patients with other inflammatory neurological diseases [45,46]. By
using HLA class I pentamers, it was shown that CD8+ T cell responses to EBV lytic antigens
peaked during active disease and are lower during the inactive phases of MS, demonstrat-
ing that changes in the immune response to EBV are associated with the different phases
of MS [47]. Interestingly, in many studies, no difference was found in EBV viral loads
between the MS and control groups [28,45], indicating that although MS patients are able
to efficiently control EBV infection, at least systemically, their CD4+ as well as their CD8+

EBV-specific T cell responses are dysregulated and might rather promote disease pathology.
Thus, both EBV-specific antibody and T cell responses are elevated in MS patients, and
some of these cross-react with autoantigens.
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4. Evidence for Decreased Immune Control of EBV in MS Patients and Genetic
MS Predisposition

Genes within the human leukocyte antigen (HLA) complex have long been known to
play a crucial part in the development of MS and other autoimmune diseases. Genome-
wide association studies identified the HLA allele DRB1*15:01 (HLA-DR15) as the strongest
genetic risk factor of MS [48]. Interestingly, symptomatic primary EBV infection, IM, has
been found to synergize with this main genetic risk factor HLA-DR15, leading to a 7-fold
increase in MS risk [49]. The underlying mechanism of this synergistic effect is, however,
largely unknown. Efforts to unravel this interaction have so far been hampered by the lack
of an adequate model to study this interaction in vivo.

By using a humanized mouse model of EBV infection, we could recently confirm a
possible synergistic effect between EBV and the HLA complex HLA-DR15. Engraftment of
immune-deficient mice with either HLA-DR15+ or HLA-DR15− human immune system
components showed that animals carrying the HLA-DR15 haplotype suffered from higher
viral loads compared to those engrafted with HLA-DR15− cells [50]. Interestingly, these
elevated viral titers in HLA-DR15+ animals were accompanied by an increased expansion
of CD8+ T cells and higher T cell activation, similar to the clinical manifestation of IM
symptoms [50], implicating a poor MHC class II-mediated immune control of EBV infection
in HLA-DR15 carriers (Figure 1). Additionally, EBV-reactive CD4+ T cells from HLA-DR15+

animals showed reactivity against MBP, one of the major autoantigens in MS [50]. Similarly,
autoantigen RASGRP2-specific CD4+ T cells restricted by HLA-DRB5*0101, a MHC class II
molecule in linkage disequilibrium with HLA-DR15 and belonging to the MS-associated
HLA haplotype, cross-react with a peptide of the EBV large tegument protein deneddylase
BPLF1 [51]. This supports previous data suggesting molecular mimicry as the mechanism
for the induction of CNS autoreactive T cells during EBV infection (Figure 1). In summary,
these findings suggest that EBV infection in the context of the main genetic risk factor for
MS, HLA-DR15, leads to a reduction of EBV-specific immune control, thereby supporting
the priming of hyperreactive and cross-reactive T cells.

Regarding the interaction between EBV-specific B cell immune response and HLA-
DR15, it was found that HLA-DR15+ individuals had elevated antibody activity to the EBV
antigen EBNA1 compared to HLA-DR15-negative carriers. Furthermore, in HLA-DR15
carriers, less EBNA1 reactivity was required to increase the risk for MS development [52].
In a follow-up study, specific serological responses against EBNA1 epitopes and their
association with HLA-DR15 were investigated. MS patients showed an overall elevation
of antibody reactivity against several different domains of EBNA1 compared to matched
controls. However, antigenicity varied greatly between different domains. The strongest
association with increased MS risk came from the EBNA1 domain (amino acid 385–420) [53].
Interestingly, this fragment contains a pentapeptide that shares homology with the heat
shock peptide αB-crystallin. Upon EBV infection, αB-crystallin can be upregulated in
peripheral B cells. This EBV-induced expression leads to the priming of pro-inflammatory
T cells, which could trigger myelin-directed autoimmunity [54]. Indeed, αB-crystallin is
often found in MS lesions and has been suggested to serve as an immunodominant myelin
antigen in the CNS of MS-affected individuals [54]. Altogether, EBV infection in the context
of HLA-DR15 could lead to the activation and expansion of virus-specific T and B cells that
cross-react to myelin antigens and initiate the pathology of MS.
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Figure 1. Potential interaction mechanisms between EBV infection and HLA-DR15 for the develop-
ment of MS. HLA-DR15+ carriers show a reduced EBV-specific immune control, with higher viral
loads and increased T cell activation. The strong immune activation during primary EBV infection
could allow the activation and expansion of autoreactive T cells by insufficiently controlled EBV-
transformed B cells (autoreactivity depicted as red nuclei). Accumulating EBV-transformed B cells
could activate cross-reactive T cells, favoring their survival and expansion, in an HLA-DR-dependent
manner. By a yet unknown mechanism, autoproliferative lymphocytes might home to the CNS,
where possibly EBV-transformed B cells could act as APCs for the cross-reactive T cells that then
activate myeloid cells with proinflammatory cytokines to start the immunopathology seen in MS
with myelin damage.

5. Role of B Cells and Their Antigen Presentation during MS

However, it remains unclear why preferentially EBV infection and no other pathogens
would explore genetic susceptibility for MS development. One possibility is that EBV
converts B cells into potent APCs that then could stimulate autoreactive, possibly EBV
cross-reactive CD4+ T cells [55]. Along these lines EBNA2 has been shown to augment
transcription of MS risk loci, resulting in increased LCL proliferation [56,57]. Some of these
affect tumor necrosis factor (TNF) receptor signaling [58] that is also engaged by LMP1,
which augments antigen presentation of LCLs [59]. The recent success of B cell-depleting
therapies in MS suggests that indeed, B cells might fulfill an important function as APCs in
this autoimmune disease [60–63]. These successful therapies target CD20 and deplete naïve
and memory B cells but leave plasma cells and for some time antibody levels untouched in
the treated patients. In contrast, Atacicept, which targets naïve B cells and plasma cells,
exacerbated MS and therefore its clinical trials were halted [64]. This suggests that activated
and memory B cells promote MS and clinical improvement is already achieved shortly
after their depletion.

Some of these activated B cells might be EBV transformed and localize to the CNS
for autoimmune T cell restimulation (Figure 1), especially during progressive disease.
Along these lines, B cell follicles and especially meningeal B cell follicles are associated
with severe disease progression [65,66]. These might be supported by follicular helper
T cells and B cells with NF-κB activation as identified by single-cell RNA sequencing in
the cerebrospinal fluid [67,68]. In these follicles, some studies have found EBV-infected B
cells [69–71], while others have not [72,73]. In addition, viral transcripts were so far not
detected in the cerebrospinal fluid [68]. A propensity of EBV-infected B cells to home to the
CNS has been observed in other disease settings. These include primary CNS lymphomas
that occur in HIV-infected individuals [74,75]. Those are 100% EBV-associated and occur
after loss of EBV-specific CD4+ T cells when systemic immune control of EBV is still fairly
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intact. A second clinical setting in which EBV-transformed B cells home to the brain and
are associated with clonal EBV-specific T cell expansions in the CNS are some patients that
suffer from neurological symptoms after immune check-point blockade of PD-1 [76]. Thus,
B cell infiltration and follicle formation in the CNS are associated with progressive MS
disease, but it remains unclear if these include significant numbers of EBV-infected B cells,
which, however, in other clinical settings demonstrate a propensity to home to the brain.

Nevertheless, under the assumption that such an EBV-transformed B cell reservoir
exists in the CNS or periphery and is insufficiently controlled but eliminated by B cell-
depleting therapies, clinical trials were started to eradicate these cells with EBV-specific T
cells [77–79]. For this purpose, MS patient-derived EBV-specific T cells were expanded with
an adenovirus encoding EBNA1, LMP1, and LMP2 epitopes. These were then transferred
back into so far 10 MS patients. Sustained clinical responses that correlate with the EBV
reactivity of the original T cell product were observed for up to 3 years [79]. Albeit in
few patients, these findings suggest that EBV transformation might contribute to the
activated memory B cell compartment that promotes MS and is depleted by CD20-specific
antibody therapies, such as with Rituximab, Ocrelizumab, and Ofatumumab. However,
future research is needed to localize this EBV-infected B cell reservoir that might drive
autoimmune T cells by antigen presentation.

6. Conclusions and Outlook

EBV infection and altered immune responses during IM have now been strongly
associated with an increased risk of developing MS [55,80–82]. It is less clear, however,
if this results from an uncontrolled reservoir of B cells, activated by EBV infection, that
stimulates autoreactive T cells, possibly even in the CNS, or if the infection primes cross-
reactive T cell responses that recognize both EBV and myelin antigens. Some evidence
for both has been reported, but recent clinical data on the success of B cell-depleting
therapies and adoptive transfer of EBV-specific T cells would favor the former hypothesis.
Such dysregulation of EBV infection and its specific immune control is associated with
increased MS risk and can be found in MS patients. This argues in favor of strengthening
the EBV-specific immune control, possibly even by vaccinating susceptible individuals
long before MS onset. Along these lines, adolescents that are still EBV seronegative and
therefore have an increased risk of developing IM upon primary infection [14] might
benefit from such a vaccination, similar to vaccination against human papillomavirus
(HPV) at this age [83]. Different recombinant viral vectors, EBV-derived virus-like particles,
and recombinant viral proteins are currently being explored for vaccination against EBV-
associated tumors [84–93], and it will be interesting if these could prevent IM and the
associated risk of developing MS, or even treat MS. Before targeting MS with EBV-specific
vaccination, however, a better understanding of the mechanisms by which EBV exploits
genetic susceptibility to increase MS risk is needed.
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