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Abstract: Libertellenone H (LH), a marine-derived pimarane diterpenoid isolated from arctic fungus
Eutypella sp. D-1, has shown effective cytotoxicity on a range of cancer cells. The present study
is to explore the anticancer effect of LH on human pancreatic cancer cells and to investigate the
intracellular molecular target and underlying mechanism. As shown, LH exhibited anticancer activity
in human pancreatic cancer cells by promoting cell apoptosis. Mechanistic studies suggested that LH-
induced reactive oxygen species (ROS) accumulation was responsible for apoptosis as antioxidant
N-acetylcysteine (NAC) and antioxidant enzyme superoxide dismutase (SOD) antagonized the
inhibitory effect of LH. Zymologic testing demonstrated that LH inhibited Trx system but had little
effect on the glutathione reductase and glutaredoxin. Mass spectrometry (MS) analysis revealed that
the mechanism of action was based on the direct conjugation of LH to the Cys32/Cys35 residue of
Trx1 and Sec498 of TrxR, leading to a decrease in the cellular level of glutathione (GSH) and activation
of downstream ASK1/JNK signaling pathway. Taken together, our findings revealed LH was a
marine derived inhibitor of Trx system and an anticancer candidate.

Keywords: Libertellenone H; pancreatic cancer; ROS; Trx system; apoptosis

1. Introduction

The thioredoxin system, composed of thioredoxin (Trx), thioredoxin reductase (TrxR),
and nicotinamide adenine dinucleotide phosphate (NADPH), which is a critical antioxidant
system in defensing against oxidative stress and maintaining cellular redox homeostasis by
eliminating redundant ROS [1,2]. In mammals, Trx1 and TrxR1 were the dedicated isoforms
of Trx and TrxR for predominantly cytosolic localization. Structurally, Trx contains a highly
conserved -Cys-Gly-Pro-Cys- sequence in their catalytic center, and TrxR has a conserved
-Gly-Cys-Sec-Gly sequence in the C-terminal redox center [3]. The critical cysteine and
selenocysteine motifs can modulate specific signal transduction cascades through its redox
sensitive sulfhydryl switches [4]. The active reduced Trx (Trx-(SH)2) with vicinal dithiol
can interact with downstream proteins via thiol–disulfide exchange reactions to form a
disulfide bond and oxidized Trx (oxidized (Trx-S2)). The oxidized inactive disulfide of
Trx-S2 is then recycled to reduced Trx-(SH)2 by TrxR at the expense of NADPH [1,5].

Accumulating evidence suggests that Trx system plays a key role in tumor initiation,
progression and drug resistance. In the meantime, cancer cells are highly dependent on
the Trx system. For example, transfection with Trx1 increases NIH 3T3 cell proliferation
and stimulates tumor formation of MCF-7 breast cancer cells, whereas transfection with
dominant-negative mutant Trx1 (C32S/C35S) delays tumor progression and metastasis [6].
Moreover, TrxR deficiency reversed the phenotype [7] and tumorigenicity of malignant cells
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rather than simply reducing tumor progression and metastasis in murine tumor cells [8].
The reduced Trx1can bind to the apoptosis signal regulating kinase (ASK1) directly and
tumor suppressor PTEN to help tumor cells evade apoptosis [9,10]. ASK1, a member
of mitogen activated protein kinase (MAPK) kinase kinases family, activates the c-Jun
N-terminal kinases (JNK) and p38 MAPK pathway which is the major component for
tumor necrosis factor -α mediated apoptosis in response to oxidative stress [11]. Further,
the elevated levels of Trx system stimulates angiogenesis by the induction of hypoxia-
inducible factor 1 [12,13] and vascular endothelial growth factor, and the Trx-dependent
heme oxygenase-1 pathway [14]. It has been reported that overexpression of Trx system
was found in many human cancer cell lines and human tumors, like lung, breast, colorectal,
hepatocellular, pancreatic and gastric carcinoma [15–18]. In addition, the high expression
levels of Trx system in cancer cells are linked to aggressive tumor growth and clinically
correlated to poor prognosis. Hence, targeting the Trx system is a promising strategy for
cancer treatment [5,19].

Up to now, several small molecules targeting either Trx1 or TrxR have been developed
as potential therapy for cancer [5,19,20]. Because thiol groups especially the selenoth-
iols are essential groups for their activity, most inhibitors selectively target C-terminal
(GC497U498G) of TrxR and redox active site (C32GPC35) of Trx1 [21]. There are many
inhibitors of TrxR that based on natural products such as curcumin [22], shikonin [23],
myricetin, and quercetin [24]. It’s worth noting that brevetoxin-2, a neurotoxin produced
by the Florida red tide organism Karenia brevis, was the only marine-derived TrxR inhibitor
exhibiting a specific inhibitory mechanism [25]. Compared to TrxR, less natural inhibitors
have been developed to target Trx1. Isoforretin A, a diterpeniod from the leave of Isodon
forrestii var [26]. forrestii, specially inhibited Trx1 and mediated anticancer effects in preclin-
ical settings. Then, diallyl trisulfide (DATS), known as one of the main ingredients of galic,
suppressed interaction of Trx1 and downstream nuclear factor kappa B. Of note, a small
molecular PX12 that covalently bind to non-catalytic Cys73 of Trx1 has failed in phase II
trials for pancreatic cancer due to lack of significant anti-tumor activity [27]. Currently,
there is no clinically available anticancer drug that specifically targets the Trx system and
no marine natural products have shown specific inhibitory effect on Trx1. Therefore, it is
worthy to search novel marine natural Trx1 and TrxR inhibitors for cancer therapy.

The particularity of the marine ecological environment (high pressure, high salt,
and hypoxia) makes the secondary metabolites of marine microorganisms have unique
structures with extensive biological activities, which may have profound effects for drug
discovery and development [28]. In recent years, more than 1000 marine natural prod-
ucts have been newly discovered every year, and about half of these were obtained from
marine microorganisms [29]. To date, the marine microorganism-based drugs rifampicin,
cephalosporin, and marizomib are clinical available, and plinabulin has completed its
phase III clinical study, highlighting the potential of marine microorganism natural com-
pounds [30].

In our previous studies, a series of new pimarane diterpenes were isolated from
Eutypella sp. D-1, an arctic fungus from the soil of high latitude of Arctic. Among them,
Libertellenone H showed more significant anti-proliferative effects on a broad spectrum of
tumor cells than its homologs. However, the anticancer mechanism of LH has not been
fully studied [31]. In this paper, we demonstrated LH induced ROS accumulation by
suppressing Trx1 and TrxR through binding to the Cys32/Cys35 residues of Trx1 redox
sites and alkylating the C-terminal redox-active site Sec498 of TrxR, resulting in ASK1/JNK
signal activation and apoptosis in cancer cells.

2. Results
2.1. LH Inhibits Cell Growth in Human Pancreatic Cancer Cell Lines

In our previous studies, LH had been identified as an effective anti-tumor agent with
IC50 value in the low micromolar concentration range in various cancer cell lines, including
MCF7, U251, SG7901, HUH-7, HeLa, and H460 [31]. Here, we further investigated the
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inhibitory effects of LH on several human pancreatic cancer cells, a malignant tumor with
a very low five-year survival rate. We evaluated the cytotoxicity of LH in four pancreatic
cancer cell lines, PANC-1, SW1990, AsPC-1, and BxPC-3 and human pancreatic duct
epithelial cells HPDE6-C7 via the CCK8 assay. As exhibited in Figure 1B, LH displayed
a preferential anti-proliferative activity against the four pancreatic cancer cell lines in
a dose-dependent manner with IC50 values of 3.21, 0.67, 2.78, and 5.53 µM in PANC-1,
SW1990, AsPC-1, and BxPC-3 respectively after 48 h. The IC50 value of LH for HPDE6-C7
was 10.86 µM.
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Figure 1. Effects of LH on human pancreatic cancer cell lines. (A), Chemical structure of LH. (B), Growth inhibition of
LH on human pancreatic cancer cell lines PANC-1, SW1990, AsPC-1, BxPC-3 and human pancreatic duct epithelial cells
HPDE6-C7. Cells were incubation with 0, 0.625, 1.25, 2.5, 5, 10, 20, 40 µM LH for 48 h and cell viability was detected by the
CCK8 assay. (C,D), PANC-1 and SW1990 cells were exposed to indicated concentrations of LH for 48 h, and morphological
changes were indicated by Hoechst 33258 staining analysis. (E), SW1990 cells were exposed to 0, 1, 2 µM LH for 24 h or 48 h.
Apoptosis was analyzed by flow cytometry after Annexin V-FITC/PI staining. (F), PANC-1 cells were treated with 0, 3, 6
µM LH for 24 h or 48 h. Apoptosis was analyzed by flow cytometry after Annexin V-FITC/PI staining.

Next, we examined the effect of LH on the induction of apoptosis in PANC-1 and
SW1990. Hoechst staining results in Figure 1C,D showed that apoptosis cells with chro-
matin condensation and fragmentation markedly increasing in both PANC-1and SW1990
cells by LH after 48 h treatment. The Annexin V-FITC/PI double staining assay further
made a quantitation evaluation of apoptosis. Under the condition of 2 µM LH for 48 h, the
number of early and late apoptosis of SW1990 cells is 47.9%; under the condition of 6 µM
LH for 48 h, the ratio of early and late apoptosis PANC-1 cells is 44.5% (Figure 1E,F). It’s
illustrated that, compared to the control group, LH triggered the apoptosis of PANC-1 and
SW1990 in a time and concentration dependent manner.



Molecules 2021, 26, 315 4 of 15

2.2. LH Induced-ROS Accumulation Involved in Its Antitumor Activity

It has been reported induction of ROS preferably induced cancer cell apoptosis [32].
Therefore, the intracellular ROS level was determined using the fluorescent probe dichloro-
dihydro-fluorescein diacetate (DCFH/DA) to detect induction of ROS after exposure to LH
in SW1990 and PANC-1 cells. As shown in Figure 2A,B, compare to the control groups, the
intracellular ROS level in PANC-1 and SW1990 cells are both increased after treated with
LH (Figure 2C,D).
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Figure 2. LH induced-ROS accumulation is involved in its antitumor activity. (A), ROS levels in PANC-1 cells were assessed
after 0, 2, 4, 6, 8 µM LH treated for 2 h by fluorescent probe DCFH/DA staining and determined by flow cytometry.
(B), PANC-1 cells were incubation with 2 µM LH for 0, 1, 2, 3, 4, 5, 6 h, and ROS levels were measured as mentioned above.
(C), SW1990 cells were treated with 0, 1, 2, 3, 4 µM of LH for 1 h and then ROS levels were assessed as mentioned above.
(D), SW1990 cells were treated with 4 µM LH for 0, 1, 2, 3, 4 h, and then ROS levels were measured as mentioned above.
(E), LH dose dependently decreased intracellular GSH levels. GSH levels were measured after SW1990 cells treated with 0,
3, 6 µM LH for 2 h by GSH and GSSG Assay Kit. (F), LH decreased intracellular GSH levels. GSH levels were determined
after SW1990 cells disposed to LH at 4 µM for 0, 1, 2, 3 h. G-L, SW1990 cells were pretreated with NAC, SOD at indicated
concentration for 30 min, the cell viability (G,H) was determined by CCK8 assay after incubated with 0, 1.25, 2.5, 5, 10 µM
LH for 48 h, the levels of ROS (I,J) were determined by flow cytometry after incubated with 4 µM LH for 1 h, the apoptosis
(K,L) was assessed by flow cytometry after incubated with 3 µM LH for 24 h.

As an important antioxidant in cells, GSH plays a critical role to prevent oxidant
damage and adjust redox homeostasis. Then, the effect of LH on intracellular GSH level
was examined. Figure 2E,F showed that compared with the control group, intracellular
GSH level decreased after LH treatment in SW1990 cells. Next, to determine increased
intracellular ROS levels may act on LH-induced cell growth inhibition or apoptosis, the
antioxidant NAC and antioxidant enzyme SOD was added to the cancer cell lines before
further LH treatment. The results showed that pretreatment with NAC or SOD partly coun-
teracted LH-induced cell growth inhibition (Figure 2G,H), intracellular generation of ROS
(Figure 2I,J), and apoptosis in SW1990 cells. (Figure 2K,L). These data suggested that the
accumulation of ROS might be responsible for LH-induced cancer cells growth suppression.
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2.3. LH Inhibited Trx/TrxR System

LH contained two α, β-unsaturated carbonyl groups, which can interact with free
thiol of cysteine and selenocysteine residues in proteins by forming covalent linkages or
offering an electrophilic center in oxidation-reduction reactions.

So, we examined whether LH was a novel inhibitor of Trx1 and TrxR. First, in cell
free system we detected the effects of LH on Trx1/TrxR using commercially available kits
which is based on fluorescent substrate reduced by cooperation of Trx1 and TrxR. The
investigation of inhibition potency of LH toward Trx1 is measured by reaction 1, and
TrxR is measured by reaction 2. The results suggested LH significantly inhibited Trx1
and TrxR enzymes with IC50 value of 35.15 µM and 3.10 µM in Trx system (Figure 3A,B).
To investigate the specificity of LH on Trx system, the effects of LH on some other thiol-
containing enzymes, human glutaredoxin 1 (Grx1) and glutathione reductase (GR) were
analyzed. The results showed that LH almost had no inhibitory effects on Grx1 (Figure 3C)
and very weak inhibition on GR (Figure 3D).

NADPH + H+ + Insulin− S2
Trx+TrxR→ NADP+ + Insulin− (SH)2 (1)

NADPH + H+ + f GSSG TrxR+Trx→ NADP+ + 2 f GSH (2)

In addition to Trx, human TrxR has an extensive substrate specificity including induced
disulfides of low molecular weight. A classical way to examine the activity of the TrxR is
by using 5,5’-dithiobis-(2-nitrobenzoic acid (DTNB)) with NADPH as the ultimate electron
donor. Therefore, we determined the activity of TrxR in reduction of low molecular weight
disulfide of DTNB in the presence and absence of LH (Reaction 3). The analysis results in
Figure 3E showed that LH also effectively inhibited TrxR in the reduction of DTNB with
IC50 value of 18.26 µM. When no pre-incubation of TrxR and LH before the reaction, the
reduction of DTNB did not occurred (Figure 3F). Then, after 5 min of incubation, TrxR
activity was almost completely inhibited by LH (Figure 3G), indicating that the alkylation
of TrxR by LH occurs correlated with incubation time and slowly relative to the reduction
of DTNB. Those results of experiment showed that LH is an efficient inhibitor of Trx/
TrxR system.

NADPH + H+ + DTNB TrxR→ NADP+ + 2TNB (3)

Figure 3H showed that compare to the control group, the expression levels of Trx1
ware decreased in LH-treated PANC-1 and SW1990 cells, while there were no significant
changes of TrxR in both cell lines. Next, to evaluate the role of Trx system in LH-induced
cell growth inhibition and apoptosis, siRNA was used to knockdown TrxR expression in
cells. The data in Figure 3H, I show that the protein expression level of TrxR decreased
in the siRNA-TrxR interference SW1990 cells. As shown in Figure 3J, knockdown of TrxR
antagonized the proliferation inhibition effect of LH, rendering siRNA-TrxR interference
cells less sensitive to LH. It’s suggested that the expression levels of TrxR influenced cell
sensitivity to LH.

Reduced Trx can bind to ASK1 and suppress its kinase activity to avoid triggering
downstream signaling and ASK1-induced apoptosis. Once ASK1 is dissociated from Trx,
subsequently ASK1/JNK signaling cascade is activated. Therefore, the effects of LH treat-
ment on the ASK1-JNK signaling in PANC-1 and SW1990 cells were determined (Figure
3K). Indeed, the Western blot analysis results demonstrated the increased phosphorylation
of ASK1 and JNK following by LH treatment, indicating that the phosphorylation and
activation of ASK1/JNK signaling may be involved in LH-induced apoptosis in cancer cells.
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Figure 3. LH exhibited effective inhibition on Trx/ TrxR system. In vitro assays for Trx1 (A), TrxR (B), Grx1 (C), GR (D). For
Trx1 activity assay, 0.04 µM Trx1, 1 µM TrxR was incubated with LH. For TrxR activity assay, 0.4 nM of TrxR, 2 µM TrxR
was incubated with LH. For Grx activity assay, 0.6 nM of hGrx-1, 50 nM GR, 0.5 mM GSH was incubated with LH. For
GR activity assay, 20 µM of GR, 1 mM GSH was incubated with LH. (E), TrxR was pre-reduced with NADPH for 30 min
with indicated concentrations of LH, followed by addition of DTNB. (F), 50 µM LH was pre-incubated or no pre-incubated
with TrxR for 30 min, followed by addition of DTNB. (G), NADPH-reduced TrxR was incubated with 10 µM LH for 0, 5,
10, 20 min. (H), Expression levels of Trx1 and TrxR1 in SW1990 and PANC-1 cells were determined after incubating with
indicated concentration of LH for 24 h by Western blotting. β-tublin served as protein-loading control. (I), Knockdown
efficiency was analyzed after SW1990 cells transfected with TrxR siRNA, control siRNA and positive GAPDH siRNA for
48 h by Western blotting. (J), TrxR-silenced SW1990 cells and control cells were treated with 0, 2.5, 5, 8, 10, 20 µM LH
for 48 h, and cell viability was measured by CCK8 assay. (K), SW1990 and PANC-1 cells were incubated with indicated
concentration LH for 48 h. Total and activation forms of ASK1 and JNK were evaluated by Western blotting. GAPDH is
shown as a protein-loading control.

2.4. LH Covalently Bound to Cys32 and Cys35 Residues of Trx1

In order to explore the interactive detail of LH and Trx1, molecular docking analysis
were used to predict the binding modes between LH and Trx1. The energetically optimized
binding mode of LH and Trx1 was shown in Figure 4A,B. The strong covalent bond between
free sulfhydryl of reactive residues Cys32/Cys35 and α, β-unsaturated carbonyl group of
LH was formed through Michael addition. Meanwhile, it can be found that the hydroxyl
group of LH formed hydrogen bond with Met74 of Trx.
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Figure 4. LH covalently binds toTrx1 and TrxR. Binding interactions between LH and Cys32 residues (A) or Cys35 residues
(B) of Trx1 by molecular docking. (C), The adduct was detected by MS/MS after LH (5 mM) incubating with Trx1 (35 µg) at
37 ◦C for 2 h. (D), LH was incubated with NADPH and TrxR at 37 ◦C for 1 h, then added to BIAM alkylation at pH 8.5
or 6.5. The same amount of dimethyl sulfoxide (DMSO) was used as a control. (E), Binding interactions between LH and
Cys498 residues of TrxR. (F), The adduct of LH and TrxR was detected by MS/MS after LH (3.3 mM) incubating with TrxR
(4.8 µg) at 37 ◦C for 1 h.



Molecules 2021, 26, 315 8 of 15

To confirm the directly combination between LH and Trx1 further, LH and h-Trx1
enzyme were incubated and the products were determined by LC-MS/MS (Figure 4C). The
molecular weight of LH was 458.24. The component at m/z 1221.65 corresponding to the 22
to 32 residues in Trx1 as LVVVDFSATWC, compared to the component at m/z 1648.16 cor-
responding to the same peptide plus one reducible LH (the two hydroxyl groups reduced
to hydrogen atoms) molecule, which indicated forming a covalent complex between LH
and Cys32 of Trx1. In the same way, the component at m/z 1905.26 and 2331.77 represented
the same peptide LVVVDFSATWCGPC and peptide plus one reducible LH, indicating LH
covalently conjugated at Cys35. In general, the MS/MS analysis demonstrated that the
covalent bonds formed between LH and Trx1 at the ratio of 2:1, and both Cys32 and Cys35

residues of Trx1 were targets for LH.

2.5. LH Covalently Bond to Sec498 Residues of TrxR

In the reduced form of TrxR, Cys497 and Sec498 in C-terminal redox active sites were
present as -SH/-SeH group. The pKa value of Cys-SeH and most protein Cys-SH residues
are about 8.5 and 5.7 respectively [33]. Thus the -SH/SeH groups in human TrxR can
selectively be labeled with biotin-conjugated iodoacetamide (BIAM) at different pH buffers.
At pH 8.5, both the -SH and -SeH groups are alkylated, and at pH 6.5, only the -SeH group
is alkylated. As shown in Figure 4D, at pH 6.5 the labeling intensity were significantly
weaker than control, demonstrating that Sec498 of TrxR can be alkylated by LH prior to
BIAM. At pH 8.5, the weakened extent of labeling intensity was same as the extent observed
in pH 6.5, indicating that the Sec498 of TrxR C-terminal redox-active site was specifically for
LH modification.

To investigate the covalently binding models between LH and TrxR, molecular docking
studies were performed. In our docking studies, the Sec498 residue was altered to Cys
residue in the crystallographic structure of TrxR to accommodate calculation of software.
Mainly combination modes were shown in Figure 4E, the covalent binding is more likely
between Cys498 and α, β-unsaturated carbonyl group of LH through Michael addition
reaction. Meanwhile, two hydrogen bonds formed between the ketonic oxygen of LH with
Asn107 and hydroxyl at the carboatomic ring of LH with Ile413.

To further confirm LH binding to TrxR directly, LH incubated with TrxR protein, and
tested by MS analysis (Figure 4F). TrxR protein was incubated with LH at 37 ◦C for 2 h
before MS analysis. The molecular weight of LH was 458.24. The component at m/z 1039.42
corresponding to the N-terminal 487 to 498 residues of TrxR, represented the peptide
SGASILQAGCU. The molecular weight of this peptide plus one molecular LH was equal
to the molecular weight of component at m/z 1497.99. However, no signal of any peptide
plus two LH molecules was detected, suggesting that an equivalent amount of LH covalent
bound to the TrxR. The results suggested that Sec498 of TrxR was the specific target for TrxR.

3. Discussion

In the present study, we evaluated the antitumor potentials of LH, a pimarane diter-
penoid from Arctic fungus Eutypella sp. D-1. It’s shown that LH, as a Trx system inhibitor,
triggers potent ROS-mediated apoptosis in human pancreatic cancer cell lines.

The inhibitory effect of LH on Trx system in pancreatic tumor cell lines was demon-
strated by the followings. First, the ROS level can be rapidly increased and maintained
at a high level for a long time with the intracellular reduced GSH was depleted after LH
treatment. Second, the ROS scavenger NAC and SOD reversed LH-elicited apoptosis,
demonstrating that excessive ROS generation underlie the proapoptotic activity of LH.
It’s suggested that LH regulated cellular antioxidant systems, and the collapse of redox
homeostasis may be account for LH induced cell growth inhibition and apoptosis. Third, in
the cell-free system LH inhibited Trx1 and TrxR enzymes with IC50 value of 35.15 µM and
3.10 µM, but had little effects on Grx and GR in the cell-free system. Besides, downregula-
tion of TrxR expression in SW1990 cells decreased LH-induced growth-inhibitory effects.
The downstream signaling pathway of Trx system, ASK1/JNK cascade, associated with
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apoptosis was activated after LH treatment. Importantly, LH-Trx1 adducts and LH-TrxR
adducts were tested by MS/MS analysis. It’s revealed that the Cys32/ Cys35 residues at
the active sites of Trx1 and Sec498 at C-terminal redox-active site of TrxR were identified as
binding sites of LH, suggesting LH was a Trx and TrxR inhibitor.

In cancer cells, the metabolic abnormalities and oncogenic signaling are always accom-
panied by the excess ROS accumulation and trigger a redox adaptation response, resulting
an increased antioxidant capacity, such as overexpressing of ROS scavengers including Trx
and/or GSH and a shift of redox dynamics with exorbitant ROS generation and elimination
to keep the ROS levels below the toxic threshold [32,34]. Therefore, cancer cells would
be more dependent on the antioxidant system and more susceptible to induce further
oxidative stress when exposed to exogenous ROS-generating agents or compounds that
inhibit the antioxidant system [32,35]. In our work, the effect of LH on cancer cells included
cell growth inhibition, apoptosis and excess generation of intracellular ROS. Those effects
can significantly offset by antioxidants NAC and SOD. As such, ROS accumulation may be
in the key position in mediating anticancer activity of LH.

Grx system, whose function is the same as Trx system through thiol-disulfide exchange,
is consisted of Grx1, GSH, GR, and NADPH [1]. As LH showed stronger suppression
effect against Trx/TrxR than Grx/GR, we propose that LH showed a relatively specialty
on Trx/TrxR system as following. (1) GR and TrxR both belong to the pyridine nucleotide
disulfide oxidoreductase family of dimeric flavoenzymes. TrxR possessed two active sites
containing the catalytic group of disulfide or seleno-sulfide: N-terminal active center
(-Cys59-Val-Asn-Val-Gly-Cys64) and the C-terminal active center (Cys497-Sec498-Gly-). Com-
pare to the TrxR, GR has similar N-terminal active center domain and lacks the C-terminal
active center [1,36]. According to the stronger suppression effect of LH on TrxR than
GR, it’s deduced that LH targeted C-terminal active site containing the catalytic group of
disulfide or seleno-sulfide of TrxR. Furthermore, BIAM-labeling assays proved the Sec498 of
C-terminal domain as the primary site of alkylation by LH, which is verified by LC-MS/MS
analysis and molecular docking simulation. Those results demonstrated that LH selectively
targeted towards the Sec498, and showed fairly specificity on TrxR. (2) Trx is the parent of a
family of oxidoreductases whose function carried on by thiol-disulfide exchange including
Grx. Trx and Grx have a similar three-dimensional topology and active site CXXC motif.
Some researches indicated that the reactivity of thiol-containing enzymes depends not only
on their –CXXC residues, but on the spatially close to the redox sites [37,38]. The hydrogen
bond and salt bridge forming in the active site play an important role in the function and
activity of the enzyme. In our study, besides the Cys32/Cys35 in the C-terminal redox sites,
molecular docking exhibited that a hydrogen bond formed between the LH and Met74,
which conduced to the stable binding interaction. Consequently, we reasoned that the
stronger suppression influence LH showed on Trx than on Grx might attribute to the spa-
tially close to the redox site of Trx1. Similarly, the hydrogen bonds which LH formed with
Asn107 and Ile413 of TrxR also contributed to the stability of LH-TrxR conjugated interaction.

But currently, we could not eliminate the possibility that other thiol-containing en-
zymes or proteins which LH would combine with. However, at least, the Trx system is one
of the important targets for LH.

In general, the study showed that LH was a potential antitumor compound in vitro,
and was effective to against cell proliferation and pro-apoptosis in human pancreatic cancer
cell lines PANC-1 and SW1990 (Figure 5). LH inhibited Trx/TrxR by a Michael addition
reaction between α, β-unsaturated carbonyl moiety of LH and cysteine or selenocysteine of
Trx/TrxR. The formation of the covalent bond attenuated reversible thiol/selenol reduction
of Trx/TrxR, decreased Trx/TrxR activity and facilitated ROS accumulation, resulting in the
dissociation of ASK1 from complex with Trx. Finally, dissociated ASK1 phosphorylation
and activating downstream ASK1-JNK signaling resulted in cellular redox homeostasis
disruption, and ROS-mediated cell oxidative stress, ensuring apoptosis. Our study pro-
vided important information for the explanation of the anticancer activity of pimarane
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diterpene and for the development of new pimarane diterpene targeting Trx system with
high specificity and activity against cancer cells.
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4. Materials and Methods
4.1. Reagents

LH, isolated from the Arctic fungus Eutypella sp. D-1 as described previously [31],
was dissolved in dimethylsulphoxide as a 10 mmol/L stock solution, and diluted with
culture medium. Primary antibodies anti-Trx1, anti-TrxR, anti-β-tublin, anti-JNK, anti-
ASK1 were purchased from Proteintech (Wuhan, China); and anti-GAPDH, Secondary
goat anti-rabbit anti-mouse IgG antibodies were from TransGen Biotech (Beijing, China).
The chemoluminescence reagent was obtained from Millipore (Millipore, MA, USA). Then
DCFH-DA, NAC, GSH, and SOD were purchased from Beyotime Biotechnology (Shanghai,
China). All other chemical reagents were of analytical grade.
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4.2. Cell Lines and Culture

Human pancreatic cancer cell lines PANC-1, SW1990, AsPC-1, BxPC-3 were purchased
from the Cell Bank of Shanghai Institute of Biochemistry and Cell Biology. HPDE6-C7
cells was obtained from the American Type Culture Collection. Both SW1990 and AsPC-1,
BxPC-3, HPDE6-C7 cell lines were maintained in RPMI 1640 medium and PANC-1 was
cultured in DMEM. The cell medium was supplemented with 10% fetal bovine serum and
1% penicillin/streptomycin at 37 ◦C in a humidified 5% CO2 atmosphere incubator.

4.3. Cell Proliferation

Cell growth inhibition was measured by Cell Counting kit-8 assay (Solarbio, Beijing,
China). Exponentially grown cells were seeded into 96-well plates at 4 × 103 cells per well
for overnight. Then cells were treated with a range of LH concentrations (0, 0.625, 1.25, 2.5,
10, 20, 40 µM) for 48 h. Cell viability was assessed by the absorbance at 450 nm after 10 µL
CCK8 added each well and incubating at 37 ◦C for 45 min.

4.4. Cell Apoptosis Analysis

Cells were stained with Hoechst 33,258 and examined by fluorescence microscopy to
examining the condensation and fragmentation of nuclei. Apoptosis ratio was quantified
using flow cytometry after staining by Annexin-V-FITC/PI (KeyGEN, Nanjing, China).

4.5. ROS Determination

The intracellular level of ROS was examined by the oxidation sensitive fluorescent
probe DCFH-DA. Exponentially cells were seeded into 6-well plate with 2 × 105 cells
per well for about 24 h before treated with a range of LH concentrations. Cells were
harvested, stained with DCFH-DA for 30 min at 37 ◦C in the dark, and then measured by
flow cytometer according to the manufacturer’s instructions.

4.6. Assessment of GSH Levels

Intracellular GSH levels were examined by using a commercial GSH and GSSG Assay
Kit (Beyotime, Shanghai, China). Exponentially SW1990 cells were seeded in 6-well plate
for 24 h. Different concentration of LH were added to the culture plates and continuously
for indicated time. The cells were collected and deproteinized before frozen and thawed
twice times with liquid nitrogen. Intracellular GSH levels were calculated on the basis of
protein concentration detected by Bovine Serum Albumin (BSA) protein assay kit.

4.7. Western Blot Analysis

Cells were split on ice by RIPA buffer (Beyotime, Shanghai, China) containing phos-
phatase inhibitor (Roche, Basel, Switzerland), protease inhibitor and phenylmethanesul-
fonyl fluoride to collect total protein. The protein concentration was measured by BCA
method. Equal amounts of the protein samples were separated by sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE), and transferred to nitrocellulose mem-
branes. The members were incubated with the corresponding primary and secondary
antibodies after blocked in 5% nonfat milk at room temperature for 1 h. Protein expression
was visualized using the Western Bright Chemiluminescent detection system.

4.8. Trx1 Activity Analysis

The enzyme activity of Trx1 was assessed by modified Thioredoxin Activity Fluo-
rescent Assay Kit (Caymen Chemical, Ann Arbor, MI, USA) in 96-well plate. Various
concentration of LH was added to wells containing 0.04 µM hTrx1, 1 µM TrxR and followed
by addition of β-NADPH and incubated at 37 ◦C for 30 min. Finally, the fluorescent
substrate was added, and the Trx1 activity was recorded as the emission at 545 nm after
520 nm excitation for 60 min according to the manufacturer’s instructions.
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4.9. TrxR Enzyme Assay (Fluorescence Substrates Method)

The activity of TrxR in Trx system was performed by modified Thioredoxin Reductase
Activity Fluorescent Assay Kit (Caymen Chemical, Ann Arbor, MI, USA) which based on
Trx1 reduction of fluorescence substrates in cell-free system. According to the manufac-
turer’s instructions, the samples containing 0.4 nM TrxR and 2 µM Trx were added with
10 µL of LH at various concentrations and 5 µL of β-NADPH, followed by incubation at
37 ◦C for 30 min. After the addition of fluorescent substrate, recorded the emission at
545 nm after 520 nm excitation for 30 min in a fluorescent plate reader at room temperature.

4.10. TrxR Enzyme Assay (DTNB Method)

Method A (pre-incubation with LH): The activity of TrxR towards the reduction of
DTNB was conducted in 96-well plates containing 50 mM Tris-HCL, pH 7.5, 1 mM EDTA,
20 nM TrxR, 240 µM NADPH, and 3 mM DTNB. First, 20 nM TrxR and 200 µM NADPH
was incubation with varying concentrations of LH at 37 ◦C for 30 min. The absorbance at
410 nm was recording every 5 min for 60 min after 3 mM DTNB added.

Method B (no pre-incubation with LH): The analysis was conducted as mentioned
above (Method A) except that 10 µM LH and DTNB solutions were pre-mixed and added
simultaneously after reduction of TrxR by NADPH.

4.11. Grx1 Activity Analysis

The Grx activity assay mixture was made up of 50 µL of assay buffer (83 mM potassium
phosphate, pH 7.5, containing 0.83 mM ethylene diamine tetraacetic acid (EDTA), 10 µL of
NADPH, 5 µL of GSH (0.5 mM), 5 µL of Grx (the final concentration of 0.6 nM), 10 µL of
GR (the final concentration of 50 nM) and 10 µL of LH at various concentrations (diluted
with assay buffer). The reaction was started by the addition of 10 µL fluorescent substrate,
followed by carefully shaking and monitored the emission at 545 nm after excitation at
520 nm for 30 min.

4.12. GR Activity Analysis

Cell-free GR activity was analyzed in 100 mM potassium phosphate (pH 7.0), 10 mM
EDTA. The 100 µL reaction mixture comprised 20 µM GR, 0.75 mM DTNB, 0.1 mM NADPH,
and a range of concentrations of LH. The reactions were initiated by adding oxidized 1 mM
GSH and were recording at 405 nm. Activity was calculated as the increase in absorbance
between 2 min after GSH addition.

4.13. RNA Interference

Lipofectamine 2000 (Invitrogen, Waltham, MA, USA) were used in the transference
of siRNA duplexes into SW1990 cells. The siRNA sequences for TrxR were SiTrxR1-a 5′-
GCAUCAAGCAGCUUUGUUATT-3′; SiTrxR1-b 5′-GGGUCCAAAUGCUGGAGAATT-3′.
The siRNA sequences for GAPDH (positive control, CTL) was SiGAPDH# 5′-UGACCUCAA
CUACAUGGUUTT-3′. The invalid siRNA (negative control, NC) sequence was 5′-UUCUC
CGAACGUGUCACGUTT-3′. Western blotting was used to assess the knockdown effi-
ciency. Cell viability was measured by CCK8 assay as described above.

4.14. Molecular Docking

Molecular docking was performed using the Schrodinger software (Schrödinger, Inc.,
New York, NY, USA). The 3D structure of Trx1 and TrxR were retrieved from the protein
data bank (PDB ID: 4PUF_C) and (PDB ID: 2zzb). In LH-TrxR1 covalent docking, the
protein TrxR was prepared by Protein Preparation Tool in Schrodinger including optimized
hydrogen bond network at pH 7.0 with PROKA tool, restrained minimization in OPLS3
force field with converge heavy atoms to 0.3 Å. The energy optimization of ligand LH
was prepared by Ligand Preparation Tool with OPLS3 force field to produce low energy
conformation. Covalent docking was performed around the reactive residue Cys497 and
Cys498 within 25 Å. In LH-Trx1 covalent docking, the preparation of the protein Trx1
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and LH was performed as described above except the restrained minimization was in
OPLS-2005 force field before covalent docking was performed around the reactive residue
Cys32 and Cys35 within 30 Å.

4.15. BIAM Labeling

First, TrxR was incubated with LH and 200 µM NADPH at 37 ◦C for 1 h. The same
amounts of DMSO were treated in controls. Next, the mixture was subjected to 100 µM
BIAM in 100 mM Tris–HCl and 1 mM EDTA at pH 6.5/8.5 and incubation at 37 ◦C for
30 min. The BIAM-labeled enzymes were denatured in nonreduced protein sample buffer
and then separated by SDS–PAGE, transferred to PVDF membrane, and analysis with
HRP-conjugated streptavidin and ECL.

4.16. MS/MS Analysis

First, 5 mM LH was incubated with 35 µg Human Trx1 protein (Sino Biological Inc.,
Beijing, China), and 3.3 mM LH was incubated with 4.8 µg Human TrxR protein (Cayman
Chemical, Ann Arbor, MI, USA) for 2 h at 37 ◦C. All the protein samples were reduced by
Shimadzu Biotech Proteome Kit, trypsin digested using MonoSpin Trypsin, and desalted
by a MonoSpin C18 column, then detected by MALDI 7090 (SHIMADZU, Kyoto, Japan).

4.17. Datal Analysis

Three independent experiments were performed in triplicate. Data were analyzed by
GraphPad Prism. Statistical significance was analyzed by two-tailed t test.
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