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Abstract: Glaucoma is a progressive neurodegenerative disease which constitutes the main frequent
cause of irreversible blindness. Recent findings have shown that oxidative stress, inflammation
and glutamatergic pathway play key roles in the causes of glaucoma. Recent studies have shown a
down regulation of the WNT/β-catenin pathway in glaucoma, associated with overactivation of the
GSK-3β signaling. WNT/β-catenin pathway is mainly associated with oxidative stress, inflamma-
tion and glutamatergic pathway. Cannabidiol (CBD) is a non-psychotomimetic phytocannabinoid
derived from Cannabis sativa plant which possesses many therapeutic properties across a range of
neuropsychiatric disorders. Since few years, CBD presents an increased interest as a possible drug in
anxiolytic disorders. CBD administration is associated with increase of the WNT/β-catenin pathway
and decrease of the GSK-3β activity. CBD has a lower affinity for CB1 but can act through other
signaling in glaucoma, including the WNT/β-catenin pathway. CBD downregulates GSK3-β activity,
an inhibitor of WNT/β-catenin pathway. Moreover, CBD was reported to suppress pro-inflammatory
signaling and neuroinflammation, oxidative stress and glutamatergic pathway. Thus, this review
focuses on the potential effects of cannabidiol, as a potential therapeutic strategy, on glaucoma and
some of the presumed mechanisms by which this phytocannabinoid provides its possible benefit
properties through the WNT/β-catenin pathway.

Keywords: WNT/β-catenin pathway; cannabidiol; inflammation; oxidative stress; glutamatergic
pathway; glaucoma

1. Introduction

Glaucoma is a progressive neurodegenerative disease that constitutes the main fre-
quent cause of irreversible blindness. The number of people with glaucoma worldwide
will increase from 76.5 million in 2020 to 111.8 million by 2040, mainly due to the aging of
the population [1–3]. Glaucoma is characterized by loss of retinal ganglion cells (RGCs),
thinning of the retinal nerve fiber layer, and cupping of the optic disc [4]. Glaucoma
is a group of heterogeneous diseases characterized by varying clinical features. Aging,
increased intraocular pressure (IOP), and genetic background are the main risk factors for
glaucoma [4]. Primary open-angle glaucoma (POAG) is the main form in Western countries.
Nevertheless, 30% of Caucasian patients with POAG, and a greater proportion of the Asian
population show normal-tension glaucoma (NTG) [5]. The etiology of POAG is mainly
described as mechanical and/or vascular processes. The mechanical process enhances
compression of the axons due to elevation of IOP, whereas the vascular process highlights
events in which blood flow and ocular perfusion pressure are diminished in the posterior
pole [6,7]. Vascular or perfusion dysregulations in NTG present different clinical features,
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such as migraine headaches, Raynaud’s phenomenon or sleep apnea [8]. In high IOP
glaucoma, both the anterior and posterior segments are damaged, and extensive affection
is detectable in the trabecular meshwork (TM) and along the inner retina-central visual
pathway [9].

Pathogenic processes of the neurodegenerative mechanism lead to mechanical and
vascular stress enhancing mitochondrial dysregulation, chronic oxidative stress (OS) and
metabolic stress [10,11], excitotoxicity [12], and neuroinflammation [13,14]. OS and cell
senescence are increased in the aging retina [15,16] and are considered as the major glau-
coma risk factors. In the aging retina, OS leads to the activation of a local para-inflammation
of various magnitudes [17]. Para-inflammation, in glaucoma, is characterized by a tis-
sue adaptive response to noxious stress [17]. However, a physiological stage of para-
inflammation is needed to maintain homeostasis but when tissue is exposed to chronic
stress, inflammation may have a negative role and could be involved in both initiation
and progression of the disease [18]. The deregulation of para-inflammation, in the retina,
is a response to stress stimuli, especially chronic OS. However, excessive and uncon-
trolled para-inflammation could implicate inflammatory responses with a release of cy-
tokines/chemokines leading to neuroretina damages [19]. Para-inflammatory dysregula-
tion could be associated with TM dysfunction and increased resistance to aqueous outflow,
the main cause of increased IOP in POAG [9].

The trabecular meshwork was the main pathological localization of PAOG [20]. A bal-
ance between the production and outflow of the aqueous humor can control IOP. The TM is
formed by layers of trabecular beams, and is surrounded by elastic fibers, fibronectin and
laminin. Abnormalities of the extracellular matrix (ECM) are involved in high IOP [21]. Re-
cently, the WNT/β-catenin pathway has been found to be associated with the development
of glaucoma in the TM [22].

Since the early 1970s, cannabinoids (CBs) have been investigated as anti-glaucoma
drugs [23]. Cannabinoids are a large class of chemical components from the trichomes
and the leaves of Cannabis plants (phytocannabinoids) or produced by pharmacological
synthesis (synthetic cannabinoids). These molecules interact with cannabinoid receptor 1
(CB1) and cannabinoid receptor 2 (CB2) which are the natural receptors of endocannabi-
noids modulating numerous physiological mechanisms [24]. CB1 and CB2 are expressed
in human retina, ciliary body and retinal pigment epithelium, administration of exogenous
cannabinoids could act on numerous retinal mechanisms including signal transduction,
photo-transduction and IOP control [25,26]. CBs have been widely investigated as IOP low-
ering treatments [27] and possess many benefits in glaucoma [25,27,28]. Besides IOP lower-
ing capabilities, CBs present major neuroprotective actions on the nervous system [28,29].
CBs can inhibit glutamate release and diminish oxidative stress [27].

Cannabidiol (CBD) is a non-psychotomimetic phytocannabinoid derived from Cannabis
sativa plant which possesses many therapeutic properties across a range of neuropsychiatric
disorders [30,31]. For a few years, CBD has presented increased interest as potential anxi-
olytic therapy [32–34]. CBD has a lower affinity for CB1 but can act through other signaling
ways in glaucoma. CBD downregulates GSK3-β activity, an inhibitor of WNT/β-catenin
pathway [35]. Moreover, CBD has been reported to suppress pro-inflammatory signaling
and neuroinflammation [36,37], oxidative stress [38] and glutamatergic pathway [39].

Thus, this review focuses on the potential effects of cannabidiol, as a potential thera-
peutic strategy, on glaucoma and some of the presumed mechanisms by which this phyto-
cannabinoid provides its possible benefit properties through the WNT/β-catenin pathway.

2. Pathophysiology of Glaucoma

In PAOG, the IOP increase leads to the TM occlusion induced by the iris tissue [9].
Chronic contact between the iris and the TM can lead to permanent damage to the TM.
The TM dysfunction and the reduction of its cellularity are the first steps to the high
tension glaucoma (HTG) onset, including POAG and also PACG (primary angle-closure
glaucoma). Numerous factors, including OS and aging, as well as environmental factors
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are implicated as the promotors of TM damage [40]. OS could be enhanced in the mor-
phological alterations of the TM of glaucomatous eyes, due to it stimulating inflammatory
response. Chronic inflammation and OS modulate each other in a vicious circle influencing
cellular responses. Cultures of TM present an NF-
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of the endothelial leukocyte adhesion molecule-1 (ELAM-1), IL-1β and IL-6 [41]. ELAM-1
belongs to selectin families, which are cell adhesion molecules. The presence of ELAM-1 in
POAG is considered to be a factor in the onset of TM endothelial dysfunction [42].

During glaucoma, a progressive loss of TM cells has been shown, due to the com-
bination of both aging and stress conditions [43]. In HTG, the TM displays both chronic
inflammation and tissue reprogramming mechanisms associated with OS damage and
endothelial dysfunction [44]. Among the pro-inflammatory cytokines, IL6, IL1 and TNF-
alpha can induce ECM remodeling and alter cytoskeletal interactions in the glaucomatous
TM [42]. The alterations in the protein patterns observed in the aqueous humor (AH) of
POAG patients are the consequence of the progressive loss of TM cellular integrity [45]. The
TM is the most sensitive tissue of the anterior segment of the eye to oxidative stress [46].
Glaucomatous TM cells present POAG-typical molecular modifications, such as ECM
accumulation, cell death, dysregulation of the cytoskeleton, advanced senescence, NF-
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stimulation and the release of inflammatory markers [41,47].

These findings may suggest that the IOP elevation, which occurs in glaucoma, is
associated with oxidative degenerative processes damaging the human TM endothelial
cells (hTMEs). Chronic exposure of TM cells to OS leads to numerous changes in the
lysosomal pathway responsible for autophagia [48], as well as cell senescence with an
increase in senescence-associated-galactosidase [49]. OS induces a lysosomal dysregulation
and the defective proteolytic stimulation of lysosomal enzymes with a subsequent decrease
in autophagic flux and the promotion of cell senescence [9].

The IOP elevation, either at the lamina cribrosa or the optic nerve head (ONH) level,
leads to hypoperfusion and to reperfusion damages [50]. IOP elevation is considered as a
cause of retinal ganglion cells (RGCs) damage, resulting in a retrograde transport blockade
and the accumulation of neurotrophic factors at the lamina cribrosa instead of reaching
the RGC soma [51]. The POAG etiology is still unclear but several risk factors have been
observed as the causes of promoting its onset, such as elevated IOP, aging, gender, ethnicity,
first-degree family history of glaucoma, oxidative stress, systemic and ocular vascular
factors, and inflammation [52].

3. Oxidative Stress, Inflammation and Glutamate in Glaucoma

The mechanisms of ROS production are activated in several pathological conditions
of the retina, such as glaucoma, occlusion of the central artery of the retina and age-
related macular degeneration. They are enzymes, including the nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase, the xanthine oxidoreductase, the cytochrome
P450, the mitochondrial cytochrome oxidase and the eNOS decoupled, which catalyzes the
overproduction of ROS in the tissues of the vascular system [53,54]. Oxidation decreases
tetrahydrobioprotein (BH4) bioavailability, whereas it increases the 7,8-dihydrobioprotein
(BH2) competing with BH4 to enhance eNOS [55].

To date, the visual loss processes are not entirely elucidated in glaucoma, and ROS
production plays an important role in its development [56]. ROS production rates are
increased in patients with glaucoma in the aqueous humor but also in the blood serum [57].
One of the main factors for glaucoma risk is elevated IOP. A moderately elevated IOP in-
creases ROS production levels, stimulates NOX2 expression, and endothelial dysregulation
in retinal arteries, suggesting that IOP augmentation affects the vascular function of the
retina [58]. However, there are other pathogenic processes linked to glaucoma, including
glutamate excitotoxicity [59], which are not necessarily associated with the elevated levels
of IOP [56]. It seems that the death of RGCs during a glaucoma process stimulates ROS
production in vitro [60]. It has been shown that ROS production controls the immune
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response by stimulating the action of antigen glial cells [60]. The ROS production affects
the retina, and increases IOP to induce dysfunction of the support glia, which facilitates
the secondary degeneration of the RGCs in glaucoma [61].

The immune system is regulated by several inflammatory factors, such as tumor
necrosis factor α (TNF-α), interleukin-6 (IL-6), vascular endothelial growth factor (VEGF)
and tumor growth factor-β (TGF-β) [62]. Chronic inflammation is also responsible for
the increase of cyclooxygenase 2 (COX-2, a prostaglandin-endoperoxidase synthase) [63].
Numerous cytokines (TNF-α, IL-1) activate COX-2 [64]. COX-2 stimulates ROS and RNS
production [63,65]. Nuclear factor-
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B stimulates the expression of TNF-α, IL-6, IL-8, STAT3, COX-2, B-cell
lymphoma 2 (BCL-2), metalloproteinases (MMPs), VEGF [66], and the ROS production [67].
Furthermore, iNOS, an enzyme catalyzing nitric oxide (NO), is activated during chronic
inflammation [68].

Several pieces of research have shown the mechanism by which oxidative stress can
lead to chronic inflammation [69]. The imbalance caused by oxidative stress leads to
damage signaling in cells [70]. The ROS production plays a central role both upstream
and downstream of NF-κB and TNF-α pathways, which are the main mediators of the
inflammatory response. The hydroxyl radical is the most harmful of all the ROS. A vicious
loop is observed between ROS and these pathways. ROSs are generated by NADPH oxidase
(NOX) system. Moreover, the modified proteins by ROS could generate an initiation of
auto-immune response to stimulate TNF-α and NOX [71]. Nuclear factor erythroid-2
related factor 2 (Nrf2) is mainly associated with oxidative stress in inflammation [69]. Nrf2
is a transcription factor that binds to the antioxidant response element (ARE) [72]. Several
studies have shown that Nrf2 can present an anti-inflammatory role by regulating MAPK,
NF-
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B, and PI3K pathways [73]. Thus, Nrf2 may play a major role against oxidative
damages [74]. Furthermore, evidence also suggests that mitochondrial dysregulation has a
significant role in the cancer mechanism [69].

Glutamate is an amino-acid responsible for the brain’s primary excitatory neurotrans-
mission [75]. Glutamatergic neurons are embedded in every brain circuit in comparison to
dopamine and serotonin which are used by a small minority of neural cells in the brain.
Glutamate is the main excitatory neurotransmitter in the brain and is present in more
than 50% of synapses. This signaling plays a major role in neuronal plasticity, memory
and learning [76]. Rapid neurotoxicity enhanced by neuronal excitotoxin has been ob-
served with abnormal glutamate levels [77]. In neurons, glutamate is stored in synaptic
vesicles from which it is released. Glutamate release increases glutamate concentration in
the synaptic cleft to bind ionotropic glutamate receptors. The main consistent candidate
gene in OCD is SLC1A1 (solute carrier, family 1, member 1) gene [78]. SLC1A1 encodes
for the neuronal excitatory Na+-dependent amino acid transporter 3 (EAAT3). EAAT1
and EAAT2 are the main astrocyte glutamate transporters whereas EAAT3 is the major
neuronal glutamate transporter. Glutamate is converted into glutamine in astrocytes. Then,
glutamine is captured by the presynaptic neurons to be re-converted into glutamate [79].
The role of the EAAT3 is to control glutamate spillover (signification de spillover?) which
affects pre-synaptic N-methyl-D-asparate (NMDA) and metabotropic glutamate receptors
activity [80,81]. EAAT3 activity is dysregulated by the overexpression of GSK-3β [82].

In glaucoma, the glutamate toxicity could contribute to RGC death and appears to be
mediated mainly by the NMDA receptor that, apart from promoting cell death, due to its
greater Ca2+ permeability, has a high affinity for glutamate and a slow inactivation [83,84].
Glutamate excitotoxicity is implicated in the mtDNA alteration or DNAoxidation–related
mitochondrial dysregulation in retinal neurodegeneration [85]. Glutamate excitotoxicity
over-activity leads to neuronal cell death through high levels of glutamate and the over-
activation of NMDA receptors. The excitotoxic affection to RGCs may be involved by the
increased glutamate synthesis or a decreased glutamate clearance [86].
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4. WNT/β-Catenin Pathway

WNT name is derived from Wingless drosophila melanogaster and its mouse homolog
Int. WNT/β-catenin pathway is involved in numerous signaling and regulating pathways,
such as embryogenesis, cell proliferation, migration and polarity, apoptosis, and organo-
genesis [87]. However, during numerous pathological states, the WNT/β-catenin pathway
can be dysregulated, such as inflammatory, metabolic and neurological disorders, tissue
fibrosis and cancers [88].

The WNT pathway belongs to the family of secreted lipid-modified glycoproteins [89].
WNT ligands are secreted by both neurons and immune cells located in the central ner-
vous system [90]. WNT pathway dysregulation contributes to several neurodegenerative
diseases [91–95]. The WNT pathway has the main step known as the β-catenin/T-cell
factor/lymphoid enhancer factor (TCF/LEF). Cytosolic accumulation of β-catenin is con-
trolled by the destruction complex AXIN, tumor suppressor adenomatous polyposis coli
(APC), and glycogen synthase kinase-3 (GSK-3β). Without WNT ligands, the destruction
complex participates in hyper-phosphorylate cytoplasmic β-catenin and leads to its protea-
somal degradation. However, in their presence, the WNT ligands bind to Frizzled (FZL)
and LDL receptor-related protein 5/6 (LRP 5/6) interrupting the destruction complex
and preventing β-catenin degradation into the proteasome. B-catenin translocates to the
nucleus where it interacts with TCF/LEF. This activates WNT target genes [96–98].

Glycogen synthase kinase-3β (GSK-3β) is one of the main inhibitors of the WNT/β-
catenin pathway [99–104]. As an intracellular serine-threonine kinase, GSK-3β is a key
negative regulator of the WNT pathway [105]. It is involved in the regulation of several
kinds of pathophysiological signaling, such as cell membrane signaling, cell polarity, and
inflammation [106–108]. GSK-3β acts by inhibiting cytoplasmic β-catenin and stabilizes it
to induce its nuclear migration. Inflammation is an age-related process associated with the
increase of GSK-3β activity and the decrease of the WNT/β-catenin pathways [109].

Recent studies have observed that glaucoma patients present an increased GSK-3β
activity and thus its inhibition could be an interesting treatment [110,111]. GSK-3β is a
serine/threonine kinase that is involved in numerous intracellular signaling pathways.
Dysfunction of GSK-3β is involved in the pathogenesis of several diseases, including
neuropsychiatric disorders [112]. GSK3β is known to be the major inhibitor of the canonical
WNT/β-catenin pathway [103,113–117].

5. WNT/β-Catenin Pathway in Glaucoma

Recent studies have shown that the WNT/β-catenin pathway is involved in the
pathophysiology of TM cells. This pathway could serve as a regulator of IOP [118]. Secreted
frizzled-related protein 1 (sFRP1), a WNT inhibitor, is elevated in the glaucomatous TM.
Exogenous sFRP1 involves high IOP [119,120]. In sFRP1-perfused human eyes, the level
of β-catenin is decreased [119]. sFRP1 is associated with cell stiffness [120]. TM cells have
multiple responses to the stimulus by different concentrations of sFRP1 [120]. It has been
illustrated that sFRP1 is elevated in normal TM cells grown on substrates simulating the
stiffness of the glaucomatous TM. Increased stiffness of the TM involves the aqueous humor
outflow resistance and is leading to elevated IOP [120]. Moreover, the GSK3β, another
WNT inhibitor, can decrease the activity of the WNT/β-catenin pathway and lead to ocular
hypertension in association with sFRP1 [119]. It has been shown that there are two effects
of WNT in glaucoma [118]. The glaucoma gene myocilin (MYOC) has been shown to be a
regulator of WNT/β-catenin pathway [121]. Nevertheless, the damages induced by MYOC
mutation on the WNT pathway remain unclear in the TM. The aqueous humor outflow
resistance is damaged by the change in adhesion junctions and cell contact, and then IOP is
dysregulated [118]. The WNT/β-catenin pathway is believed to be a novel interventional
target for the treatment of glaucoma [122–124]. Several WNT target genes are expressed
in the TM, and the WNT ligand WNT3a is dysregulated [118,119]. The overexpression
of both sFRP1 or Dkk1 can increase IOP in perfusion-cultured human eyes and in mouse
eyes [118,119]. Moreover, the cotreatment with a small-molecule WNT pathway activator



Int. J. Mol. Sci. 2021, 22, 3798 6 of 18

can downregulate sFRP1-induced OHT in mouse eyes. The activation of WNT/β-catenin
pathway in the TM using lithium chloride decreases the production of some ECM and
matricellular proteins [125,126]. WNT/β-catenin signaling and K-cadherin expression are
major for the control of IOP, and the downregulation of this pathway leads to IOP elevation
in glaucoma [127]. Recent studies have shown that active WNT/β-catenin pathway inhibits
fibrosis-associated proteins in the TM and that the POAG-associated WNT antagonist
sFRP1 increases ECM deposition, TM cell stiffness [120] and IOP [118,119]. Moreover,
recent findings have shown that the WNT/β-catenin can regulate TM homeostasis and
IOP by a cross-inhibit circle with TGF-β signaling [126].

6. WNT/β-Catenin Pathway and the Altered Pathways in Glaucoma
6.1. WNT/β-Catenin Pathway and Oxidative Stress

FoxO (Forkhead box class O) transcription factors are the main intracellular controllers
of numerous metabolic signaling such as glucose production, and the cellular response to
oxidative stress [128]. ROS production is associated with the inhibition of the WNT pathway
by diverting β-catenin from TCF/LEF to FoxO [129]. This leads to the accumulation and
binding of β-catenin to FoxO as a cofactor, and in increasing FoxO transcriptional activity
in the nucleus [130,131]. FoxO stimulates apoptotic genes [132–134]. FoxO3a stops the
cell-cycle by stimulation of the production of the cyclin-dependent kinase inhibitor p27
kip1 and the inhibition of cyclin D1 expression [135,136]. The activation of FoxO induces
apoptosis [137]. However, the activation of the WNT pathway can downregulate FoxO3a
in the cytosol to prevent the loss of mitochondrial membrane permeability, cytochrome c
release, Bad phosphorylation, and activation of caspases which activates ROS production
and oxidative stress [138].

6.2. WNT/β-Catenin Pathway and Inflammation

The stimulation of the WNT pathway cascade restrains inflammation and leads to
neuroprotection via interactions between microglia/macrophages and astrocytes [139,140].

Several studies have shown negative crosstalk between WNT/β-catenin pathway and
NF-
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B 2 (p52/p100), RelA (p65), RelB and c-Rel [142]. B-catenin complexes
with RelA and p50 to diminish the activity of the NF-
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B signaling [143]. Moreover, by
interacting with the PI3K, β-catenin inhibits the functional activity of NF-
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B activity has been observed in numerous cell
types, such as fibroblasts, epithelial cells, hepatocytes and osteoblasts [141]. In parallel,
the overactivation of GSK-3β leads to an inhibition of the β-catenin and then an activation
of the NF-
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B pathway [145]. The potential protective action of β-catenin was due to the
activation of PI3K/Akt pathway and thus the reduction of TLR4-driven inflammatory
response in hepatocytes [146]. NF-
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B activation leads to the diminution of the complex
β-catenin/TCF/LEF by the upregulation of LZTS2 in cancer cells [147]. DKK, a WNT
inhibitor, was a target gene of the NF-
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tion of pro-inflammatory genes. This effect is controlled by the GSK-3β. GSK-3β is a direct
inhibitor of the β-catenin levels and an activator of the NF-
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6.3. WNT/β-Catenin Pathway and Glutamatergic Pathway

β-catenin activates EAAT2 and glutamine synthetase (GS) at the transcriptional level in
progenitor-derived astrocytes through the activation of TCF/LEF [151]. The knockdown of
β-catenin leads to the diminution of EAAT2 and GS expression in the prefrontal cortex [152].
In astrocytes, the inhibition of β-catenin is associated with diminution of both EAAT2 and
GS expression [153]. The dysregulation of the WNT/β-catenin pathway induces glutamate
excitotoxicity resulting in the increase of both inflammation and exudative stress [153].
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7. Cannabidiol

Cannabinoids refer to a heterogeneous group of compounds classified into three
major groups: endogenous, synthetic and phytocannabinoids [31,154]. CBD is a non-
psychotomimetic phytocannabinoid derived from Cannabis sativa plant. The Cannabis sativa
plant produces more than 66 compounds, such as delta9-tetrahydrocannabinol (THC),
responsible for anxiogenic effects, and CBD, the major non-psychotomimetic compound
in the plant [155]. CBD attenuates brain damage associated with neurodegeneration.
Humans tolerate a high dose of CBD [156]. Moreover, CBD can interact with synaptic
plasticity and induces neurogenesis. The mechanisms of the CBD effects remain unclear
but have multiple pharmacological targets. Traditional medicines use Cannabis sativa for
centuries. CBD, one of the main compounds of Cannabis sativa, has recently presented
numerous interesting actions in many neuropsychiatric disorders [157]. CBD presents
a large spectrum of possible therapeutic properties such as anxiolytic, antidepressant,
neuroprotective, anti-inflammatory and immunomodulatory [31]. Cannabinoids could be
considered as a new class of drugs because of their possible actions on neuropsychiatric
disorders [158]. CBD has a potential therapeutic role in neuropsychiatric disorders such as
schizophrenia, epilepsy, addiction and neonatal hypoxic-ischemic encephalopathy [159].
CBD can activate WNT/β-catenin and PI3K/Akt pathways and produces therapeutic
effects in schizophrenia [160–162].

8. Cannabinoids in Glaucoma

CBs could have a major role in IOP control through the interaction with the ciliary
muscle and Schlemm’s canal, and by the modulation of cyclooxygenase-2 (COX-2) [163].
These actions are obtained by the interaction with CB1 receptor but also by the modulation
of cyclooxygenase (COX) pathway [164]. CB1 is expressed in both retina and anterior eye
structures including TM, Schlemm’s canal, iris, ciliary body muscle, and ciliary pigmented
epithelium. Several pathways could be implicated in the IOP lowering action of CBs by the
regulation of aqueous humor production and outflow (trabecular and uveoscleral) [165].
Activation of the CB1 receptor in the ciliary muscle could also induce vasodilatation with
consequent reduction of aqueous humor production [166]. Nevertheless, the exact role of
CBs in the regulation of IOP remains unclear [27]. In parallel, CBs inhibit glutamate and
nitric oxide release by the activation of pre-synaptic CB receptors leading to higher neuronal
excitability and synaptic plasticity [28]. Glutamate pathway can regulate the RGC death
through the stimulation of nitric oxide synthase and the increase in oxidative damages.
Glutamate pathway in glaucoma is well investigated [27]. The anti-inflammatory actions of
CBs could also have a role in neuroprotection. Stimulation of CB1 and CB2 receptors in the
retina and CNS downregulates the production of nitric oxide and inflammatory cytokines
which are responsible for OS and RGC death [167]. In the TM, the reduction of OS could
also be obtained by ROS blockage without any CB receptor activation, such as activation of
the WNT pathway [168].

Nevertheless, CBD could have an opposing effect on IOP by increasing or decreasing
it [169]. The increase of IOP by CBD could be the result of the antagonist role of CBD on
CB1 receptor [169]. The absence of the effect of CBD on IOP could be due to the direct and
indirect activity at GPR18 receptor and CB1 receptor which could be both deleted. CBD
is activated on GPR18 [170] to interrupt the activity of FAAH [171], responsible for the
elevation of acylethanol-amines, such as AEA, one of the precursor of GPR18 [172]. Diurnal
action of CB1 and activation of GPR18 remain unstudied. Time of day and broadly speaking
pressure, which is higher during the day, regulate the pressure in the eye. Mice present a
nocturnal and reversed cycle of GPR18 which participate in lowering eye pressure. Thus,
diurnal signaling should have a major role in the ocular response of CBD, which is different
between humans and mice [173]. Moreover, gender different effects could be involved
in IOP-response to CBD, by interacting with GPR119 ligand. Female mice show lower
ocular pressure under CBD administration, whereas it is not the case for male mice [174].
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Furthermore, a low dose of CBD administration may have no significant IOP-lowering
effect [27,175]. However, these different mechanisms remain unclear.

9. Activation of the Canonical WNT Pathway by Cannabidiol: A Potential Therapeutic
Strategy for the Altered Pathways in Glaucoma
9.1. Cannabidiol and WNT Pathway

Dysfunction of GSK-3β is involved in the pathogenesis of several diseases, including
neuropsychiatric disorders [112]. GSK-3β is a regulator of several pathways such as inflam-
mation, neuronal polarity or either cell membrane signaling [107]. GSK3β is known to be
the main inhibitor of the WNT/β-catenin signaling [103,113,114,117]. GSK-3β downregu-
lates the canonical WNT/β-catenin pathway by inhibiting β-catenin cytosolic stabilization
and its translocation in the nucleus [176]. Moreover, several studies have shown a link
between neuro-inflammation and the increase of the GSK-3β activity and in parallel the
decrease of the WNT/β-catenin pathway and the protein kinase B (Akt) pathway [99].
CBD downregulates the expression of GSK-3β through the promotion of the PI3K/Akt
signaling [100,177]. PI3K/Akt signaling regulates GSK-3β activity [178]. Cannabinoids
control the PI3K/Akt/GSK-3β axis [179,180]. Genes encoding for the PI3K/Akt pathway
is increased in CBD-GMSCs (mesenchymal stem cells derived from gingiva treated by
CBD) [100].

9.2. Cannabidiol and Oxidative Stress

Energy and glucose metabolisms involved during oxidative stress are mainly con-
trolled by the intracellular FOXO transcription factors (FOXO1, 3a, 4) [128]. The interaction
between β-catenin and FOXO transcription factors promotes cell quiescence and cell cycle
arrest. B-catenin blocks its transcriptional complex with TCF/LEF through the interaction
with FOXO-induced ROS [129]. B-catenin does not translocate to the nucleus and thus
accumulates in the cytosol to inactivate the WNT/β-catenin pathway [130,131].

CBD can reduce the redox balance through the modification of both the level and ac-
tivity of oxidants and antioxidants [181]. CBD stops the free radical chain reactions through
the capture of free radicals and then by reducing their activities [182]. CBD downregulates
the oxidative conditions through the prevention of the formation of superoxide radicals,
generated by xanthine oxidase (XO), NADPH oxidase (NOX1 and NOX4) [183,184]. More-
over, CBD can enhance the diminution in NO levels in the liver of doxorubicin-treated
mice [185]. CBD diminishes reactive oxygen species (ROS) production through the chela-
tion of transition metal ions implicated in the Fenton reaction to form extremely reactive
hydroxyl radicals [186]. CBD acts on the classic antioxidant butylated hydroxytoluene
(BHT) to prevent the dihydrorodamine oxidation in the Fenton reaction [187].

The antioxidant activity of CBD is characterized by the activation of the redox-sensitive
transcription factor which refers to the nuclear reythroid 2-related factor (Nrf2) [188]
responsible for the transcription of cytoprotective genes [189]. Superoxide dismutase
(SOD) and enzymatic activities of Cu, Zn and Mn-SOD, which are responsible for the
metabolism of superoxide radicals, are increased by CBD [190]. Glutathione peroxidase
and reductase are increased by CBD and decrease the malonaldehyde (MDA) levels [191].
Enzymatic activities are altered during oxidative modifications of proteins. CBD, by
targeting glutathione and cytochrome P450, car inhibit their biological activity to decrease
oxidative stress [185,192]. Moreover, through the diminution of ROS levels, CBD can
prevent and protect non-enzymatic antioxidants [190], including vitamins A, E and C [193].

9.3. Cannabidiol and Inflammation

Cannabinoids present anti-inflammatory action by endogenous receptors, such as
cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2) [194]. N-Oleoyl glycine
(OLGly), a lipoamino acid, increases adipogenic genes including PPARγ, a marker of
inflammation, and the mRNA expression of CB1 receptor. The inhibition of CB1 receptor
by its antagonist SR141716 downregulates the actions of OLGly on the expression of PPARγ.
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Moreover, OLGly activates the Akt pathway and inhibits FoxO activity [195]. CBD can
bind PPARγ [162,196]. PPARγ is a main factor of inflammation by interacting with NF-κB.
This bind occurs between the ligand-binding domain of PPARγ and the Rel homology
domain region of the p65 subunit of NF-κB. Proteasomal degradation of p65 is caused by
Lys48-linked polyubiquitin of the ligand-binding domain of PPARγ [197]. Thus, PPARγ
can modulate inflammation through the ubiquitination proteasomal degradation of p65
leading to the control of cyclooxygenase (COX2), TNF-α, IL-1β and IL-6 [162]. PPARs are
ligand-activated transcription factors that bind PPRE (PPAR-response elements). PPARs
are implicated in numerous pathophysiological mechanisms, such as cell differentiation,
protein metabolism, lipid metabolism, carcinogenesis [198,199], adipocyte differentiation,
insulin sensitivity and inflammation [200,201]. PPARγ ligands, such as thiazolidinediones
(TZDs), are able to decrease inflammatory activity [202]. Negative crosstalk has been
well described between PPARγ and the WNT pathway [113,203–205]. The PI3K/Akt
pathway, which is positively induced by β-catenin [117,204,206–208], acts through the
phosphorylation of GSK-3β to negatively control the PPARγ expression [209]. PPARγ
agonists decrease β-catenin expression by overactivating GSK-3β [210]. Moreover, PPARγ
agonists stimulate Dickkopf-1 (DKK1) activity to diminish the canonical WNT/β-catenin
pathway and then downregulate the differentiation of fibroblasts [211]. Moreover, PPARγ
agonists stimulate GSK-3β to diminish β-catenin expression [210]. In parallel, β-catenin
directly inhibits NF-κB activity [149,150].

9.4. Cannabidiol and Glutamatergic Pathway

Few studies have investigated the interaction between the endogenous cannabinoid
system and the glutamatergic pathway in the brain [212]. CBD diminishes the glutamate
release in neural signaling implicated in compulsive behavior [213]. Many studies high-
lighted that the actions of CBD on dopamine and GABA levels were correlated with its
strong anti-oxidant properties through the modulation of nitric oxide synthase expression
and the inhibition of ROS-generating NADPH oxidases [214]. However, endogenous
cannabinoids can bind to the cannabinoid CB1 receptor and dampen presynaptic gluta-
mate release [215]. Moreover, the inhibition of GSK-3β can decrease EAAT3 activity [82].
Nevertheless, the relation between CBD and the glutamatergic pathway remains unclear.
CBD can block the actions of CB1R/CB2 combined receptor agonist [216] and can act as a
CB1R antagonist [217].

10. Conclusions

Currently, even if CBs are well documented in the literature, few investigations
have studied CBD as a possible alternative therapeutic way to treat glaucoma patients.
Nevertheless, CBD could appear to be interesting in glaucoma by targeting both oxidative
stress, inflammation and the glutamatergic pathway through the activation of the WNT/β-
catenin pathway. The action of CBD is mainly involved by its negative interaction with
GSK-3β, the main inhibitor of the WNT/β-catenin pathway. In glaucoma, the WNT/β-
catenin is downregulated to allow the stimulation of oxidative stress, inflammation and
glutamatergic pathway. Future prospective studies should focus on CBD and its different
actions in glaucoma.
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pathway responsible for autophagia [48], as well as cell senescence with an increase in 

senescence-associated-galactosidase [49]. OS induces a lysosomal dysregulation and the 

defective proteolytic stimulation of lysosomal enzymes with a subsequent decrease in au-

tophagic flux and the promotion of cell senescence [9]. 

The IOP elevation, either at the lamina cribrosa or the optic nerve head (ONH) level, 

leads to hypoperfusion and to reperfusion damages [50]. IOP elevation is considered as a 

cause of retinal ganglion cells (RGCs) damage, resulting in a retrograde transport block-

ade and the accumulation of neurotrophic factors at the lamina cribrosa instead of reach-

ing the RGC soma [51]. The POAG etiology is still unclear but several risk factors have 

been observed as the causes of promoting its onset, such as elevated IOP, aging, gender, 

ethnicity, first-degree family history of glaucoma, oxidative stress, systemic and ocular 

vascular factors, and inflammation [52]. 

3. Oxidative Stress, Inflammation and Glutamate in Glaucoma 

The mechanisms of ROS production are activated in several pathological conditions 

of the retina, such as glaucoma, occlusion of the central artery of the retina and age-related 

macular degeneration. They are enzymes, including the nicotinamide adenine dinucleo-

tide phosphate (NADPH) oxidase, the xanthine oxidoreductase, the cytochrome P450, the 

mitochondrial cytochrome oxidase and the eNOS decoupled, which catalyzes the over-

production of ROS in the tissues of the vascular system [53,54]. Oxidation decreases tetra-

hydrobioprotein (BH4) bioavailability, whereas it increases the 7,8-dihydrobioprotein 

(BH2) competing with BH4 to enhance eNOS [55]. 

To date, the visual loss processes are not entirely elucidated in glaucoma, and ROS 

production plays an important role in its development [56]. ROS production rates are in-

creased in patients with glaucoma in the aqueous humor but also in the blood serum [57]. 

One of the main factors for glaucoma risk is elevated IOP. A moderately elevated IOP 

increases ROS production levels, stimulates NOX2 expression, and endothelial dysregu-

lation in retinal arteries, suggesting that IOP augmentation affects the vascular function 

B
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TCF/LEF T-cell factor/lymphoid enhancer factor;
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194. Gęgotek, A.; Ambrożewicz, E.; Jastrząb, A.; Jarocka-Karpowicz, I.; Skrzydlewska, E. Rutin and Ascorbic Acid Cooperation in
Antioxidant and Antiapoptotic Effect on Human Skin Keratinocytes and Fibroblasts Exposed to UVA and UVB Radiation. Arch.
Dermatol. Res. 2019, 311, 203–219. [CrossRef]

195. Pertwee, R.G. The Pharmacology of Cannabinoid Receptors and Their Ligands: An Overview. Int. J. Obes. 2005 2006, 30 (Suppl.
1), S13–S18. [CrossRef]

196. Wang, S.; Xu, Q.; Shu, G.; Wang, L.; Gao, P.; Xi, Q.; Zhang, Y.; Jiang, Q.; Zhu, X. N-Oleoyl Glycine, a Lipoamino Acid, Stimulates
Adipogenesis Associated with Activation of CB1 Receptor and Akt Signaling Pathway in 3T3-L1 Adipocyte. Biochem. Biophys.
Res. Commun. 2015, 466, 438–443. [CrossRef] [PubMed]

197. Wang, Y.; Mukhopadhyay, P.; Cao, Z.; Wang, H.; Feng, D.; Haskó, G.; Mechoulam, R.; Gao, B.; Pacher, P. Cannabidiol Attenuates
Alcohol-Induced Liver Steatosis, Metabolic Dysregulation, Inflammation and Neutrophil-Mediated Injury. Sci. Rep. 2017, 7, 12064.
[CrossRef]

198. Hou, Y.; Moreau, F.; Chadee, K. PPARγ Is an E3 Ligase That Induces the Degradation of NFκB/P65. Nat. Commun. 2012, 3, 1300.
[CrossRef]

199. Lee, C.-H.; Olson, P.; Evans, R.M. Minireview: Lipid Metabolism, Metabolic Diseases, and Peroxisome Proliferator-Activated
Receptors. Endocrinology 2003, 144, 2201–2207. [CrossRef] [PubMed]

200. Marx, N.; Duez, H.; Fruchart, J.-C.; Staels, B. Peroxisome Proliferator-Activated Receptors and Atherogenesis: Regulators of Gene
Expression in Vascular Cells. Circ. Res. 2004, 94, 1168–1178. [CrossRef]

201. Cunard, R.; Ricote, M.; DiCampli, D.; Archer, D.C.; Kahn, D.A.; Glass, C.K.; Kelly, C.J. Regulation of Cytokine Expression by
Ligands of Peroxisome Proliferator Activated Receptors. J. Immunol. Baltim. Md 1950 2002, 168, 2795–2802. [CrossRef]

202. Ricote, M.; Li, A.C.; Willson, T.M.; Kelly, C.J.; Glass, C.K. The Peroxisome Proliferator-Activated Receptor-Gamma Is a Negative
Regulator of Macrophage Activation. Nature 1998, 391, 79–82. [CrossRef]

203. Giannini, S.; Serio, M.; Galli, A. Pleiotropic Effects of Thiazolidinediones: Taking a Look beyond Antidiabetic Activity. J.
Endocrinol. Investig. 2004, 27, 982–991. [CrossRef]

204. Vallée, A.; Lecarpentier, Y. Crosstalk Between Peroxisome Proliferator-Activated Receptor Gamma and the Canonical WNT/β-
Catenin Pathway in Chronic Inflammation and Oxidative Stress During Carcinogenesis. Front. Immunol. 2018, 9, 745. [CrossRef]
[PubMed]

205. Vallée, A.; Lecarpentier, Y.; Guillevin, R.; Vallée, J.-N. Thermodynamics in Gliomas: Interactions between the Canonical
WNT/Beta-Catenin Pathway and PPAR Gamma. Front. Physiol. 2017, 8, 352. [CrossRef] [PubMed]

206. Vallée, A.; Lecarpentier, Y.; Guillevin, R.; Vallée, J.-N. Demyelination in Multiple Sclerosis: Reprogramming Energy Metabolism
and Potential PPARγ Agonist Treatment Approaches. Int. J. Mol. Sci. 2018, 19, 1212. [CrossRef]

207. Park, K.S.; Lee, R.D.; Kang, S.-K.; Han, S.Y.; Park, K.L.; Yang, K.H.; Song, Y.S.; Park, H.J.; Lee, Y.M.; Yun, Y.P.; et al. Neuronal
Differentiation of Embryonic Midbrain Cells by Upregulation of Peroxisome Proliferator-Activated Receptor-Gamma via the
JNK-Dependent Pathway. Exp. Cell Res. 2004, 297, 424–433. [CrossRef] [PubMed]

208. Vallée, A.; Lecarpentier, Y.; Vallée, J.-N. Thermodynamic Aspects and Reprogramming Cellular Energy Metabolism during the
Fibrosis Process. Int. J. Mol. Sci. 2017, 18, 2537. [CrossRef]

209. Vallée, A.; Lecarpentier, Y.; Guillevin, R.; Vallée, J.-N. Reprogramming Energetic Metabolism in Alzheimer’s Disease. Life Sci.
2018, 193, 141–152. [CrossRef]

210. Grimes, C.A.; Jope, R.S. The Multifaceted Roles of Glycogen Synthase Kinase 3beta in Cellular Signaling. Prog. Neurobiol. 2001, 65,
391–426. [CrossRef]

211. Jeon, M.; Rahman, N.; Kim, Y.-S. Wnt/β-Catenin Signaling Plays a Distinct Role in Methyl Gallate-Mediated Inhibition of
Adipogenesis. Biochem. Biophys. Res. Commun. 2016, 479, 22–27. [CrossRef]

http://doi.org/10.1124/jpet.105.085779
http://doi.org/10.1016/j.phrs.2016.01.033
http://doi.org/10.1038/s41398-018-0232-5
http://www.ncbi.nlm.nih.gov/pubmed/30177808
http://doi.org/10.3390/ijms18122772
http://doi.org/10.1016/j.jacc.2010.07.033
http://doi.org/10.1016/j.ejphar.2006.11.006
http://www.ncbi.nlm.nih.gov/pubmed/17157290
http://doi.org/10.1016/j.toxlet.2010.02.012
http://www.ncbi.nlm.nih.gov/pubmed/20184945
http://doi.org/10.1007/s00403-019-01898-w
http://doi.org/10.1038/sj.ijo.0803272
http://doi.org/10.1016/j.bbrc.2015.09.046
http://www.ncbi.nlm.nih.gov/pubmed/26365347
http://doi.org/10.1038/s41598-017-10924-8
http://doi.org/10.1038/ncomms2270
http://doi.org/10.1210/en.2003-0288
http://www.ncbi.nlm.nih.gov/pubmed/12746275
http://doi.org/10.1161/01.RES.0000127122.22685.0A
http://doi.org/10.4049/jimmunol.168.6.2795
http://doi.org/10.1038/34178
http://doi.org/10.1007/BF03347546
http://doi.org/10.3389/fimmu.2018.00745
http://www.ncbi.nlm.nih.gov/pubmed/29706964
http://doi.org/10.3389/fphys.2017.00352
http://www.ncbi.nlm.nih.gov/pubmed/28620312
http://doi.org/10.3390/ijms19041212
http://doi.org/10.1016/j.yexcr.2004.03.034
http://www.ncbi.nlm.nih.gov/pubmed/15212945
http://doi.org/10.3390/ijms18122537
http://doi.org/10.1016/j.lfs.2017.10.033
http://doi.org/10.1016/S0301-0082(01)00011-9
http://doi.org/10.1016/j.bbrc.2016.08.178


Int. J. Mol. Sci. 2021, 22, 3798 18 of 18

212. Gustafson, B.; Eliasson, B.; Smith, U. Thiazolidinediones Increase the Wingless-Type MMTV Integration Site Family (WNT)
Inhibitor Dickkopf-1 in Adipocytes: A Link with Osteogenesis. Diabetologia 2010, 53, 536–540. [CrossRef] [PubMed]

213. Osborne, A.L.; Solowij, N.; Babic, I.; Lum, J.S.; Newell, K.A.; Huang, X.-F.; Weston-Green, K. Effect of Cannabidiol on Endo-
cannabinoid, Glutamatergic and GABAergic Signalling Markers in Male Offspring of a Maternal Immune Activation (Poly I:C)
Model Relevant to Schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 2019, 95, 109666. [CrossRef] [PubMed]

214. Piomelli, D. The Molecular Logic of Endocannabinoid Signalling. Nat. Rev. Neurosci. 2003, 4, 873–884. [CrossRef] [PubMed]
215. Campos, A.C.; Fogaça, M.V.; Scarante, F.F.; Joca, S.R.L.; Sales, A.J.; Gomes, F.V.; Sonego, A.B.; Rodrigues, N.S.; Galve-Roperh,

I.; Guimarães, F.S. Plastic and Neuroprotective Mechanisms Involved in the Therapeutic Effects of Cannabidiol in Psychiatric
Disorders. Front. Pharmacol. 2017, 8, 269. [CrossRef]

216. Viveros, M.P.; Llorente, R.; Suarez, J.; Llorente-Berzal, A.; López-Gallardo, M.; de Fonseca, F.R. The Endocannabinoid System in
Critical Neurodevelopmental Periods: Sex Differences and Neuropsychiatric Implications. J. Psychopharmacol. Oxf. Engl. 2012, 26,
164–176. [CrossRef]

217. McPartland, J.M.; Duncan, M.; Di Marzo, V.; Pertwee, R.G. Are Cannabidiol and ∆(9) -Tetrahydrocannabivarin Negative
Modulators of the Endocannabinoid System? A Systematic Review. Br. J. Pharmacol. 2015, 172, 737–753. [CrossRef] [PubMed]

http://doi.org/10.1007/s00125-009-1615-1
http://www.ncbi.nlm.nih.gov/pubmed/19943155
http://doi.org/10.1016/j.pnpbp.2019.109666
http://www.ncbi.nlm.nih.gov/pubmed/31202911
http://doi.org/10.1038/nrn1247
http://www.ncbi.nlm.nih.gov/pubmed/14595399
http://doi.org/10.3389/fphar.2017.00269
http://doi.org/10.1177/0269881111408956
http://doi.org/10.1111/bph.12944
http://www.ncbi.nlm.nih.gov/pubmed/25257544

	Introduction 
	Pathophysiology of Glaucoma 
	Oxidative Stress, Inflammation and Glutamate in Glaucoma 
	WNT/-Catenin Pathway 
	WNT/-Catenin Pathway in Glaucoma 
	WNT/-Catenin Pathway and the Altered Pathways in Glaucoma 
	WNT/-Catenin Pathway and Oxidative Stress 
	WNT/-Catenin Pathway and Inflammation 
	WNT/-Catenin Pathway and Glutamatergic Pathway 

	Cannabidiol 
	Cannabinoids in Glaucoma 
	Activation of the Canonical WNT Pathway by Cannabidiol: A Potential Therapeutic Strategy for the Altered Pathways in Glaucoma 
	Cannabidiol and WNT Pathway 
	Cannabidiol and Oxidative Stress 
	Cannabidiol and Inflammation 
	Cannabidiol and Glutamatergic Pathway 

	Conclusions 
	References

