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Abstract: A prototype of a family of at least nine members, cellular Src tyrosine kinase is a
therapeutically interesting target because its inhibition might be of interest not only in a number
of malignancies, but also in a diverse array of conditions, from neurodegenerative pathologies to
certain viral infections. Computational methods in drug discovery are considerably cheaper than
conventional methods and offer opportunities of screening very large numbers of compounds in
conditions that would be simply impossible within the wet lab experimental settings. We explored
the use of global quantitative structure-activity relationship (QSAR) models and molecular ligand
docking in the discovery of new c-src tyrosine kinase inhibitors. Using a dataset of 1038 compounds
from ChEMBL database, we developed over 350 QSAR classification models. A total of 49 models
with reasonably good performance were selected and the models were assembled by stacking with
a simple majority vote and used for the virtual screening of over 100,000 compounds. A total of
744 compounds were predicted by at least 50% of the QSAR models as active, 147 compounds were
within the applicability domain and predicted by at least 75% of the models to be active. The latter
147 compounds were submitted to molecular ligand docking using AutoDock Vina and LeDock,
and 89 were predicted to be active based on the energy of binding.

Keywords: c-src-tyrosine kinase; QSAR; molecular descriptors; virtual screening; drug discovery;
cancer; molecular docking

1. Introduction

Src (c-src, pp60-src, or p60-src) is a nonreceptor, cytoplasmic tyrosine kinase, the first of its kind to
be discovered (in the 1970s) in the living world, whereas the corresponding gene was the first oncogene
to be uncovered [1]. It is the prototype of a larger family, comprising at least nine members, most of
them with little activity in normal cells in the absence of stimulatory signals [2]. Src kinases have been
suggested to be involved in the exacerbation of neurodegenerative pathologies, whereas their inhibition
would diminish microgliosis and mitigate inflammation, findings that are in line with experimental
effects seen for nonspecific src inhibitors such as bosutinib or LCB-03-0110 [3]. Nonclinical evidence
has pointed to the inhibition of src kinases as a possible method of therapy for the pulmonary vascular
remodeling and right ventricular hypertrophy in pulmonary hypertension [4], although several reports
indicate that dual Abl/src inhibitor dasatinib may actually induce pulmonary hypertension [5–7]; it was
more recently suggested that this dasatinib effect may in fact be independent of the src inhibition [7].
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This family of kinases has been recently shown to be involved in the subgenomic RNA translation and
replication of alpha-viruses, their inhibition being put forward as a potentially effective way of treating
infections with such viral particles [8]. A constant interest for understanding the pharmacology of
this class of compounds, as well as for developing new src inhibitors, may open the doors wide for
multiple therapeutic applications for these inhibitors in a variety of pathologies.

The first member of this family (c-src) may play a more significant role than other members of
the same family in certain pathologies or clinical contexts. For instance, c-src, but not Lyn and Fyn
src kinases, is upregulated by hypoxia and has an important part in prostate cancer metastasis of
hypoxic tumors (hypoxia is a negative prognostic factor in this malignancy) [9]. Furthermore, c-src
tyrosin kinase has been shown to be abnormally activated or overexpressed in a number of different
malignancies and to stimulate processes associated with tumor progression, such as proliferation,
angiogenesis, or metastasis [10]. Src tyrosin kinase inhibitors have been explored as potential new
therapeutic agents in a variety of malignancies such as melanoma (one such inhibitor demonstrating
in vitro activity on a variety of melanoma cells, including some BRAFV600 mutant cells [11], but a
report that src inhibition would induce melanogenesis in melanoma cells has also been published [12]),
papillary thyroid carcinoma [13], clear-cell renal carcinoma [14], pancreatic [15], or ovarian cancer [16].

The space of the universe is expanding, but so is the “chemical space”. Currently PubChem
includes some 96 million different chemical compounds [17], an impressive number, but minuscule
when compared with the number of chemical compounds that might be synthesized in the coming years.
GDB-17, probably the largest database of molecules up to date, included in 2015 no less than 166 billion
compounds, and these are limited to only a few types of atoms (C, N, O, S, and halogens) and a maximum
of 17 atoms per molecule [18]. Theoretical calculations using constraints for circumscribing the drug-like
chemical space have suggested that the number of molecules obeying to the Lipinsky’s rules is about
1033 [19], an estimate intermediary between 1060 (as proposed earlier by R.S. Bohacek et al. [20]) and
1023 (as advanced later by P. Ertl. [21]). This raises questions regarding how to assess all these substances
for their pharmacological, toxicological, or biological effects (in all contexts, for all targets etc.). While
it is simply “mission: impossible” by the traditional route of wet lab experiments, the relatively cheap
computing power available today may offer surprisingly good results (although far from perfect).

Built on three pillars (biological data, chemical knowledge, and modeling algorithms),
QSAR (quantitative structure-activity relationship) [22] methodologies allow the development of
computational tools for predicting with reasonable confidence (when validated appropriately) a
wide variety of biological activities from the molecular structure of chemical compounds. Although
the QSAR approaches have not gained in popularity as fast as the molecular docking modeling,
the field has been far from being inert in the last decade or so, with various new approaches to the
mathematical algorithms used or the biological activities explored [23]. The models developed and
validated may then be applied for virtual screening of a large number of substances, allowing the
quick identification of a sizeable number of compounds of interest (with certain activities or biological
properties). Such virtual screening exercises may be further coupled with other computational
methods, such as ligand-target docking for confirmation of activity [24,25]. Whereas the classical drug
development process is very costly and tedious, computational methods have a high efficiency and are
inexpensive [26]. In this context, we developed a set of QSAR models with different descriptors and
machine learning classification algorithms, integrated by stacking, to be used for virtual screening
of c-src tyrosin kinase inhibitors. A number of 49 QSAR models with reasonably good performance
were selected and applied for the virtual screening of over 100,000 chemical compounds from the
ZINC database [27]. A total of 147 compounds with the highest probability of being active were also
assessed by molecular docking resulting in 89 compounds where the docking data were consistent with
a hypothesis of activity. Data from ChEMBL and PubChem externally validated the virtual screening
results for a number of compounds.
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2. Results

2.1. Dataset Analysis

In our study, the final dataset included 1038 small organic molecules with a molecular weight
varying from 188 to 1032 Da, a range usual in the QSAR modeling, with a median value of 390 Da and
75% of the values smaller than 440 Da. The number of atoms per molecule varied between 14 and
143, the median and mean values being 46 and 46.6, respectively. All molecules had at least one ring
system and a maximum of six rings (with a median of three). Only 46 of the 1038 molecules satisfied
the Lipinsky’s rule of five, of which 32 were labeled as “active” (ki < 1000 nM), and 14 as “inactive”
(ki ≥ 1000 nM). The variability of the dataset by several simple constitutional descriptors or molecular
properties is presented in Figure 1.
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Figure 1. Variability of the dataset illustrated by several simple constitutional descriptors or molecular
properties. Blue—inactive compounds; red—active compounds. For the Lipinsky rule, “No” indicates
compounds not obeying to the Lipinsky’s rule of five, and “Yes” compounds satisfying the rule; among
the latter the active compounds are more frequent. C% indicates the percentage of carbon atoms,
N% the percentage of nitrogen atoms, whereas ALOGP is the Ghose-Crippen octanol-water partition
coeff. (logP).

A dissimilarity matrix based on the Gower distance was computed (the Gower distance is
appropriate for data of a heterogeneous nature), using 783 most relevant descriptors (that remained
after removing autocorrelated and quasi-constant features). Although Gower distance takes values
between 0 and 1, because it tends to give larger weights to binary variables [28], we rescaled the
distance matrix and plotted it as a dissimilarity plot (Figure 2). Before rescaling the maximum value
of the Gower distance was 0.404, following rescaling it became 1. The median (scaled) dissimilarity
values were mostly around 0.2–0.3, suggesting that the chemical diversity in the dataset was rather
limited (Supplementary Figures S1–S3).
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2.2. Performances of Models in Nested Cross-Validation

Using a variety of classification algorithms (random forests, support vector machines, adaboost
M1, Bayesian Additive Regression Trees, C5.0, and binomial regression), of feature selection methods
(17), and numbers of features (between 3 and 40—for instance, for binomial regression we used models
with 3, 5, 10, and 20 features, and thus the number of models built for this classifier was 68), a total
number of over 350 models were built and their performance was assessed by nested cross-validation.
Only models with an acceptable performance (defined as having both a balanced accuracy higher than
70% and a positive predictive value higher than 70% in the nested cross-validation) were selected
(Table 1). In instances when several models (with different numbers of features) had good performance
for the same classifier and selection algorithm (over the threshold of 70%), we only tabulated the model
we judged as best (highest average between balanced accuracy and positive predictive value (PPV),
and for equal value of the average giving preference to higher PPV). Numbers of true positives, true
negatives, false positives, and false negatives, allowing computation of other performance metrics are
available in Supplementary Table S2.

As the dataset includes 1038 compounds, of which 286 are active and 752 inactive, the most
probable random accuracy (Q2, rnd) [29,30] may be estimated to 60.08% (286 × 286 + 752 × 752)/(1038
× 1038). As shown by the last column in Table 1, our models have a superiority of about 20–24% over
random accuracy. However, the concept of random accuracy assumes that the correct classification
of the two classes is of equal importance; in fact, in our case, we were more interested in correctly
predicting the active compounds (i.e., optimizing the PPV was more important than Q2). The models
were thus not optimized to increase the global accuracy, but rather both balanced accuracy and PPV.

As the models applied in the nested cross-validation are always based on only a subset of the
data, the estimation of performance should be conservative (i.e., applying the selected models on the
whole dataset has better performance).
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Table 1. Performance of the quantitative structure-activity relationship (QSAR) models selected.

Model * BA (%) PPV (%) MMCE (%) AUC (%) TPR (%) TNR (%) Q2 − Q2, rnd

RF_anova_23 70.24 78.26 18.60 82.56 45.39 95.08 21.33
RF_auc_20 70.07 78.08 18.69 82.85 45.04 95.09 21.23
RF_cforest_13 70.07 79.39 18.60 82.96 44.80 95.34 21.33
RF_kruskal_30 70.52 77.42 18.60 82.61 46.35 94.68 21.33
RF_RFimp_30 71.54 80.04 17.73 86.03 47.69 95.39 22.19
RF_RF.SRCimp_20 71.01 77.44 18.31 83.76 47.18 94.83 21.62
RF_RF.SRCvarselect_10 72.93 78.72 17.34 86.01 51.29 94.56 22.58
RF_impurity_15 70.67 76.43 18.69 83.72 46.91 94.43 21.23
RF_permutation_10 71.53 80.51 17.83 83.63 47.86 95.20 22.10
RF_univariate_30 71.48 83.49 17.44 84.31 46.80 96.16 22.48
SVM_anova_30 71.83 71.26 19.07 82.08 51.60 92.05 20.48
SVM_auc_30 72.02 71.56 18.98 83.25 51.99 92.05 20.94
SVM_cforest_30 75.11 74.96 17.05 85.60 57.65 92.57 22.87
SVM_chi.sq_30 71.91 75.44 18.59 82.45 50.86 92.97 21.33
SVM_gainratio_30 72.03 72.78 18.98 82.85 51.99 92.07 20.94
SVM_information_30 72.44 73.34 18.59 83.91 52.54 92.35 21.33
SVM_kruskal_20 72.06 72.29 18.98 82.06 52.06 92.05 20.94
SVM_oneR_30 72.49 78.08 17.73 81.16 50.68 94.31 22.19
SVM_RFimp_30 74.74 74.71 17.25 86.92 57.16 92.32 22.68
SVM_RF.SRCimp_30 75.92 77.07 16.28 86.20 58.57 93.28 23.64
SVM_RF.SRCvarselect_20 76.33 76.22 16.28 86.75 60.10 92.56 23.64
SVM_impurity_30 73.96 73.86 17.82 84.27 55.61 92.30 22.10
SVM_permutation_20 72.14 73.82 18.59 84.37 51.58 92.71 21.33
SVM_relief_30 72.42 71.93 19.08 82.15 53.57 91.26 20.84
SVM_sym.uncertain_20 71.91 73.31 18.69 83.33 50.99 92.84 21.23
Adabm1_RFimp_30 71.06 73.50 19.08 83.49 49.11 93.00 20.84
Adabm1_RF.SRCvarselect_20 71.15 70.36 19.56 81.96 50.36 91.95 20.36
Adabm1_impurity_20 71.22 73.34 18.80 83.66 49.18 93.26 21.13
Adabm1_univariate_30 70.50 74.30 19.27 82.36 47.61 93.39 20.65
BartM_chi.sq_30 73.15 73.28 18.11 83.54 53.87 92.42 21.81
BartM_gainratio_20 71.61 70.19 19.37 82.45 51.57 91.64 20.56
BartM_information_20 73.56 73.52 17.92 84.08 54.68 92.44 22.00
BartM_RFimp_25 74.24 71.45 18.02 85.28 57.13 91.36 21.90
BartM_impurity_20 73.48 70.94 18.50 83.79 55.74 91.22 21.42
BartM_permutation_22 74.70 71.64 17.82 85.04 58.17 91.23 22.10
BartM_sym.uncertain_30 73.59 71.19 18.31 84.36 55.69 91.49 21.62
C50_anova_30 75.96 72.56 17.05 84.73 60.70 91.23 22.87
C50_auc_20 74.00 72.03 18.12 83.75 56.80 91.19 21.81
C50_cforest_20 75.08 71.62 17.73 85.06 59.32 90.84 22.19
C50_chi.sq_30 75.55 70.40 17.73 83.55 60.79 90.32 22.19
C50_gainratio_30 75.26 70.85 17.82 84.43 60.08 90.45 22.10
C50_kruskal_30 74.56 71.35 18.02 84.52 58.03 91.10 21.90
C50_oneR_30 73.91 72.78 18.41 83.62 57.06 90.76 21.52
C50_RFimp_30 78.56 75.39 15.32 87.24 65.23 91.89 24.60
C50_RF.SRCimp_30 76.21 72.82 17.05 85.45 61.32 91.10 22.87
C50_RF.SRCvarselect_20 77.64 72.08 16.76 87.84 65.43 89.86 23.16
C50_impurity_20 76.40 76.14 16.10 86.70 60.13 92.66 23.83
C50_permutation_30 75.93 72.28 16.96 86.29 60.51 91.36 22.96
C50_univariate_30 75.44 70.55 17.73 85.47 60.46 90.43 22.19

* Each model name is formed by three parts separated by an underscore: the first part of the name indicates
the classifier, the second part the feature selection algorithm (in an abbreviated form), and the third part the
number of features used to build the model. The names of the classification and feature selection algorithms are
provided in Section 4. For instance, RF_anova_20 was a random forest based on features selected based on ANOVA
(as implemented in “anova.test” within “mlr” R package) and the number of features used was 20. BA: balanced
accuracy; PPV: positive predictive value; MMCE: mean misclassification error; AUC: area under the ROC curve; TPR:
true positive rate; TNR: true negative rate; Q2 – accuracy; Q2, rnd - most probable random accuracy (as explained in
the text).

2.3. Y-Randomization Test

As expected, despite following the same steps in building the models, scrambling the activity
labels had a strong impact on the performance of the models, which was clearly inferior to those based
on the initial (unscrambled) data: the average balanced accuracy of all 10 y-scrambling tests (nested
cross-validation performed in the same conditions and following the same pre-processing as the true
data) was 50.23%, with a standard deviation of 0.59% (minimum value 49.73% and maximum 51.45%).
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In a similar way, the mean value of the positive predictive (PPV) was 20.38%, and its value varied
between 0.00% and 30.00%. This provides reassurance that the performance of the models is not the
result of mere chance, but rather reflects a true relationship between the descriptors and the inhibitory
activity on c-src tyrosine kinase.

2.4. Descriptors Associated with c-src Inhibitory Activity

While for all models the number of features was relatively high (in most cases between 20 and
30), the largest predictive effect could be attributed to no more than five features. For instance, in the
case of random forest, using ANOVA as a feature selection (filtering) algorithm, with 23 features,
the area under the receiver operating characteristic (ROC) curve (AUC) was 82.56% and the balanced
accuracy 70.24%; however, using only the first most important five molecular descriptors, the AUC
was 77.53%, and the balanced accuracy 66.39%. Although there was an improvement for the higher
number of features (23), the first five explained the largest part of the variability in the training and
testing datasets. We therefore focused on the first five descriptors selected by each of the 17 selection
algorithms and found that most algorithms identified the same features as being the most important.
These are shown in Table 2 (and descriptor values in Supplementary Table S3).

Table 2. The most important molecular descriptors associated with the inhibition of the c-src
tyrosine kinase.

Name Interpretation Descriptor Block
(Group)

Frequency Occurring
among the First Five

Most Important Features

SpMax4_Bh(m) Largest eigenvalue n. 4 of Burden matrix
weighted by mass Burden eigenvalues 14

DECC Eccentric topological index Topological indices 11

SpMax5_Bh(m) Largest eigenvalue n. 5 of Burden matrix
weighted by mass Burden eigenvalues 8

SpMax3_Bh(m) Largest eigenvalue n. 3 of Burden matrix
weighted by mass Burden eigenvalues 8

J_D Balaban-like index from topological distance
matrix (Balaban distance connectivity index)

2D matrix-based
descriptors 6

F06[C–N] Frequency of C–N at topological distance 6 2D Atom Pairs 5

Chi1_EA(dm) Connectivity-like index of order 1 from edge
adjacency mat. weighted by dipole moment Edge adjacency indices 4

P_VSA_MR_6 P_VSA-like on Molar Refractivity, bin 6 P_VSA-like descriptors 3

SpMax6_Bh(m) largest eigenvalue n. 6 of Burden matrix
weighted by mass Burden eigenvalues 3

N-073 Ar2NH/Ar3N/Ar2N-Al/R..N..R Atom-centered
fragments 2

F05[C–N] Frequency of C–N at topological distance 5 2D Atom Pairs 2

A total of 19 other descriptors occurred only once among the five most important features identified by each of the
17 feature selection algorithms.

2.5. Virtual Screening and External Validation

We applied the models to the 104,619 ZINC compounds and ranked them based on the percentage
of models predicting the compounds as active. Using a threshold of 50% (i.e., compounds predicted to
be “active“ by more than 50% of all models applied) 744 compounds were identified. Our validation
data (using the predictions on the test sets from the nested cross-validation) indicated that the PPV
for this threshold was 78.57%. Increasing the decision threshold to 75% the number of compounds
decreased to 158, but after eliminating the compounds that had been part of the training set and the
duplicates (multiple ZINC ids may correspond to the same substance), their number decreased to 115
(Table S2); the validation data indicated a PPV value for this threshold of 85.43%. For a threshold of
90% the PPV in the validation was also close to 90% (90.1%), but the number of unique compounds
was limited to 37.

For external validation purposes, we searched PubChem and ChEMBL for biological data related
to the activity of the predicted compounds on the src tyrosine kinase, so as to have at least partial
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confirmation on the accuracy of the predictions. We found that among the 115 substances predicted as
being active, for nine compounds (i.e., 7.83%) there is available evidence that they are active on the
c-src tyrosine kinase. We could not find ki values for the nine compounds, but in most cases rather
mean inhibition (as a percentage) at 1.0 or 0.1 µM was available. Taking into account that IC50 values
are always higher than ki values for a competitive inhibitor, and the fact that percent inhibition is
dependent on both substrate and inhibitor concentration, we considered as active compounds those
with inhibition values of at least 30%. When a compound was labeled as “active” on the src target in
one of the two public databases without further information on the endpoint or bioassay used, we
also considered that compound as active (that was the case for balamapimod, reported by PubChem).
Of the nine compounds labeled by us as “active”, three had a mean inhibition higher than 50%, one had
a ki less than 1000 nM (20 nM to be precise), one was stated as “active” by PubChem with no further
information and four had a mean% inhibition between 30% and 42.23% at 1 µM). A total of 34 additional
substances (29.56%), predicted by the large majority of models as being active, were in fact proven to
be inactive on src-tyrosine kinase, whereas 72 of the substances (62.61%) predicted to be active, seem to
have never been tested for their effect on src tyrosine kinase. If the 43 compounds that were indeed
tested were representative for the rest, the rate of success for the predictions would be 20.93%.

2.6. Applicability Domain

The “applicability domain” (AD) is a concept meant to evaluate if a model may be validly applied
to predict the effect of a candidate compound; such validity is conditioned on the satisfaction of the
assumptions applied in the construction of the model [31]. If the new substance whose activity we
are trying to predict differs substantially from those on which a QSAR a model was based, such a
prediction cannot be trusted. Therefore, assessing the AD for model is of paramount importance if that
model is to be used for predictions, and a wide range of methods have been proposed in the literature
for this purpose, each with its own advantages and flaws [32].

We used a variety of algorithms to assess the applicability domain for the predictions of the
QSAR virtual screening by different models. Using the method by Roy et al. (2015) [33], which
considers as an outlier each compound with a value outside the mean ± standard deviation, none of
the compounds predicted by more than 50% of our models to be active were outside of the applicability
model. This was not very surprising, because that method uses a decision tree based on three standard
deviations, whereas we capped, centered, and scaled values to two standard deviations. Using the
Kernel Density Estimation Outlier Score (KDEOS) algorithm (with a minimum of three and a maximum
of 10 neighbors), which is based on a number of k-nearest neighbors, the number of outliers among the
744 compounds predicted as active by the majority of the QSAR models was small for each model,
and not higher than 15% of the total number (with a median proportion toward 5%). Selecting the
compounds after filtering them based on the applicability model did not change the hierarchization
of the compounds predicted as active. The Influenced Outlierness (INFLO) algorithm (with k = 5),
which is also based on a number of k-nearest neighbors, but taking into account a “a reverse nearest
neighborhood set”, and that of F. Sahigara et al. (2013), which not only uses k-nearest neighbors,
but also individual decision threshold for each data point of the training sample [34], identified a
much larger proportion of compounds as outside the applicability method: for the latter, for instance,
the proportion of outliers varied (for the different models) between 1.75% and 44.35%, with a median of
32.39% of the total of 744 compounds (Figure 3). A number of 147 compounds (of which five had been
in the training dataset) were predicted by 75% of the models as being active, after limiting the votes to
those compounds that were within the applicability domain estimated with the F. Sahigara et al. (2013)
method [34]. All compounds identified by the virtual screening (before checking the applicability
domain) fell for at least some of the models within the applicability domain, but the degree of confidence
in the predictions changed after checking for the applicability domain.
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2.7. Molecular Docking

In order to assess the performance of docking for the two software programs used (AutoDock
Vina [35] and LeDock [36]) we first compared the estimated energies of binding for 175 compounds of
the training set, with known activities on the target enzyme. With LeDock, the mean binding energy
in the active compound group was −8.02 kcal/mol, whereas in the inactive compound group it was
−7.29 kcal/mol (p < 10−7, Welch t-test). For the very active compounds (ki < 20 nM), the mean binding
energy was −8.43 kcal/mol (p < 10−8 versus all inactive compounds, Welch t-test). Using the “cutpointr”
package, an optimal cut-off was found at an energy of binding of −7.17 kcal/mol, which ensured an
accuracy of 70.29%, with high sensitivity (90%), but low specificity (44%). In order to minimize the false
positive, a cut-off point of −9.21 kcal/mol was necessary; at this level the specificity was 100% (i.e., none
of the inactive compounds had such a low energy of binding in the docking runs), but with a very low
sensitivity (only 9% of the active compounds had this low estimated energy of binding) (Figure 4).
As our interest was to minimize the false-positive rate, we docked the 147 compounds predicted by the
QSAR models to be active and within the applicability domain and somewhat surprisingly no less than
89 of them (61.22%) had such a low energy of binding, in other words they could be considered as active
(Table 3). Considering that in our training subset, the sensitivity at this cut-off point (−9.21 kcal/mol)
was only 9%, this high value does suggest that an important proportion of the compounds predicted
by the QSAR models to be active might be indeed active, although when using docking one must be
very cautious [37]. The root-mean-square deviation (RMSD) computed for the first cluster of poses of
the ANP was 1.25, under the conventional threshold of 2.0, which may be considered reasonably well.
The visual examination of the pose indicated that the ring pose was very well predicted, whereas the
side chain prediction was less accurate (Figure 5). Of the 89 compounds of Table 3, 34 (38.20%) have
already been reported to inhibit one or multiple tyrosine kinases.

Following the suggestion of one of the reviewers of this paper, we also submitted the 89 compounds
to the online version of PASS [38], a software that predicts potential activities for chemical compounds.
A total of 24 out of the 89 compounds (26.97%) were predicted to be active on the src tyrosine kinase
and 62 of the 89 compounds were predicted to be active on at least one or multiple kinases (Table S4,
Supplementary Information). Nevertheless, PASS predictions are also affected by limitations, because
Pf-562271, a compound that was in our training set, was not detected at all as a src-tyrosine kinase
inhibitor. Gw683134a, which based on the ChEMBL data causes a 36.99% inhibition of c-src tyrosine
kinase at 1 µM, was not predicted as an inhibitor at all. Bx-795, which also at 1 µM causes a 27–30%
inhibition of human c-src and 77–90% inhibition of Gallus gallus c-src, was also not predicted as an
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inhibitor. As for lapatinib, the probabilities to be active and to be inactive predicted by PASS were only
0.086 and 0.053, respectively.
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AutoDock Vina performance was inferior to that of LeDock: on the same 175 compounds from
the training set, the mean energy of binding was −10.30 kcal/mol for the active compounds and
−10.03 kcal/mol for the inactive (p = 0.21, Welch t-test). An optimal cut-off for the AutoDock Vina
compounds was at −9.26 kcal/mol, which ensured an accuracy of only 62.86%, with a sensitivity of
87.00% and a specificity of only 30.67%. As the performance of Vina was inferior to that of LeDock, we
preferred to use only LeDock for virtual screening.

Computing various ligand efficiency metrics did not improve the predictions in the case of LeDock
results: the accuracy rather decreased with all ligand efficiency measures attempted. In the case of
AutoDock Vina, using different ligand efficiency measures changed the values of accuracy, sensitivity,
and specificity, with no spectacular improvement. For instance, dividing the energy of binding to
the molecular weight decreased sensitivity (from 87% to 43%), increased specificity (from 30.67%
to 81.33%), and slightly increased the AUC (from 56.85% to 62.87%), but it also slightly decreased
the accuracy (from 62.86% to 59.43%). Of the different ligand efficiency measures, for the AutoDock
Vina results the best was obtained by dividing the energy of binding to the squared Ghose–Crippen
octanol-water partition coefficient: 78% sensitivity, 49.33% specificity, 65.71% accuracy, and 65.05%
AUC. Even with this ligand efficiency measure, the results were inferior to those obtained with LeDock
based on the energies of binding.
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Table 3. Compounds predicted to be active by both the assembled QSAR models and ligand docking.

ZINC Code Substance Name Confirmation in Wet
Lab Experiments *

Activity Confirmed on
Other Tyrosin Kinases *

Presence in the
Training Set Energy of Binding **

ZINC000001550477 Lapatinib Yes Yes Yes −10.07 (0.67)

ZINC000034638188 Pf-562271 Yes Yes Yes −9.3 (0.74)

ZINC000063298074 Ilorasertib Yes Yes Yes −10.09 (0.66)

ZINC000034800096 Gw583373a No Yes No −11.02 (1.01)

ZINC000027184814 Vibriobactin NA No No −9.77 (0.74)

ZINC000034800093 Gw580496a No Yes No −9.33 (1.09)

ZINC000150528975 Vedroprevir NA No No −11.51 (1.04)

ZINC000034800112 Gw576484x No Yes No −10.36 (0.84)

ZINC000072190218 Avatrombopag NA No No −9.28 (0.43)

ZINC000034800091 Gw576609a No Yes No −11.38 (0.69)

ZINC000044418656 Gw784684x No Yes No −10.77 (0.93)

ZINC000042804069 Gsk-182497a No Yes No −9.57 (0.37)

ZINC000103297739 Defactinib No Yes No −10.23 (0.40)

ZINC000004215255 Cefpimizole NA No No −10.54 (0.70)

ZINC000042834127 Gsk1751853a No Yes No −10.34 (1.40)

ZINC000014945166 Gw830365a No Yes No −9.53 (0.29)

ZINC000150339466 Ciluprevir NA No No −10.95 (0.88)

ZINC000043195317 Golvatinib No Yes No −14 (1.06)

ZINC000042201866 Gw566221a No Yes No −10.06 (0.71)

ZINC000095615094 Patellamide G NA No No −9.32 (0.79)

ZINC000003604326 Vaneprim NA No No −11.01 (0.79)

ZINC000002007399 Gw458787a No Yes No −10.95 (0.76)

ZINC000028639340 Posaconazole NA No No −10.92 (1.01)

ZINC000072122048 Gsk259178a No Yes No −12.44 (0.49)
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Table 3. Cont.

ZINC Code Substance Name Confirmation in Wet
Lab Experiments *

Activity Confirmed on
Other Tyrosin Kinases *

Presence in the
Training Set Energy of Binding **

ZINC000068204830 Daclatasvir NA No No −10.75 (0.42)

ZINC000043131420 Fostamatinib NA Yes No −10.77 (1.11)

ZINC000169289453 Simeprevir NA No No −11.45 (0.88)

ZINC000042834162 Gw869810x No Yes No −12.11 (0.76)

ZINC000049709569 Asperazine NA No No −11.6 (0.82)

ZINC000096928979 Deleobuvir NA No No −10.2 (0.68)

ZINC000042201868 Gw568377a No No No −9.36 (0.60)

ZINC000014945147 Gw809897x Yes Yes No −10.44 (0.71)

ZINC000014945171 Gw830263a Yes Yes No −10.53 (0.57)

ZINC000014945045 Gw569530a No Yes No −9.52 (0.55)

ZINC000003925087 Gw806742x Yes Yes No −10.43 (0.78)

ZINC000095618748 Candesartan O-Glucuronide NA No No −9.71 (0.58)

ZINC000098052868 Olcegepant NA No No −9.55 (0.48)

ZINC000049833405 Preulicyclamide NA No No −11.13 (0.62)

ZINC000034800110 Gw574782a No Yes No −10.42 (0.60)

ZINC000014965596 Gw683134a Yes Yes No −10.91 (0.80)

ZINC000034800112 Gw576484x No Yes No −9.93 (0.36)

ZINC000019862646 Fedratinib Yes Yes No −10.23 (0.64)

ZINC000150377731 Bms-247243 NA No No −10.42 (0.83)

ZINC000003986669 Bx-795 Yes Yes No −9.28 (0.69)

ZINC000095615898 Tyrokeradine A NA No No −11.14 (0.76)

ZINC000003919988 L-766892 NA No No −9.59 (0.67)

ZINC000095544067 Ulithiacyclamide F NA No No −9.76 (0.52)
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Table 3. Cont.

ZINC Code Substance Name Confirmation in Wet
Lab Experiments *

Activity Confirmed on
Other Tyrosin Kinases *

Presence in the
Training Set Energy of Binding **

ZINC000049889335 Edulirin A NA No No −11.45 (1.04)

ZINC000003995140 Gw621823a No Yes No −10.63 (0.63)

ZINC000040379218 Gw684626b No Yes No −10.46 (0.87)

ZINC000034800121 Gw567808a No Yes No −10.42 (0.53)

ZINC000169306513 Hydroxyitraconazole NA No No −9.78 (1.02)

ZINC000169368380 Kni-1039 NA No No −10.13 (0.41)

ZINC000150601177 Ombitasvir NA No No −10.07 (0.69)

ZINC000040404350 Gsk-969786a No Yes No −10.2 (0.75)

ZINC000150592451 Micromide NA No No −12.96 (1.00)

ZINC000028249631 Pd-170292 NA No No −10.1 (0.73)

ZINC000169366333 Porphyrin NA No No −11.05 (0.71)

ZINC000034800119 Gw576924a No Yes No −10.18 (0.92)

ZINC000150362888 Pyropheophytin B NA No No −10.23 (0.73)

ZINC000100057121 Tegobuvir NA No No −10.55 (0.58)

ZINC000103213128 Heptamethylene 1,7-Bis-Imadacloprid NA No No −9.58 (0.47)

ZINC000169291993 Sansanmycin F NA No No −9.5 (0.56)

ZINC000230052516 Urobilin NA No No −10.9 (0.85)

ZINC000003994828 Brecanavir NA No No −10.41 (0.86)

ZINC000169363931 Ansacarbamitocin C NA No No −10.56 (0.52)

ZINC000095535868 Rwj-58259 NA No No −10.09 (0.77)

ZINC000003921862 Tallimustine NA No No −9.76 (0.67)

ZINC000063933734 Rebastinib No Yes No −9.73 (0.57)

ZINC000095615652 Patellamide C NA No No −9.46 (0.73)

ZINC000197688172 S-[(3e,5z)-3,5-Octadienoate NA No No −9.6 (0.67)
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Table 3. Cont.

ZINC Code Substance Name Confirmation in Wet
Lab Experiments *

Activity Confirmed on
Other Tyrosin Kinases *

Presence in the
Training Set Energy of Binding **

ZINC000014965588 Gw709042a No Yes No −9.89 (0.89)

ZINC000085537136 Barixibat NA No No −9.72 (0.56)

ZINC000169291499 Kibdelomycin NA No No −10.99 (0.66)

ZINC000003946578 Mitratapide NA No No −10.41 (0.62)

ZINC000001481922 Setipafant NA No No −10.05 (0.62)

ZINC000072173092 Deoxyvobstusine Lactone NA No No −9.66 (0.64)

ZINC000006717126 Quarfloxin NA No No −9.85 (0.78)

ZINC000077301904 Losartan N2-Glucuronide NA No No −10.86 (1.27)

ZINC000150609364 Pseudoceratinazole A NA No No −11.38 (0.97)

ZINC000095616246 Ulithiacyclamide E NA No No −9.35 (0.69)

ZINC000068151111 Narlaprevir NA No No −9.96 (0.44)

ZINC000150351429 Phytosulfokine B NA No No −9.7 (0.70)

ZINC000003989268 Ceftaroline Fosamil NA No No −9.84 (0.62)

ZINC000008552132 Stafac NA No No −11.01 (0.91)

ZINC000095618880 Clofazimine Glucuronide NA No No −9.65 (0.58)

ZINC000096006065 Xv638 NA No No −9.56 (0.57)

ZINC000169292535 Rifapentine NA No No −12.81 (0.92)

ZINC000150341961 Mafodotin NA No No −9.32 (0.71)

* Based on ChEMBL and PubChem data for each substance (“Yes” means that there are at least limited confirmatory data in one of the public databases, “No” means that there is no such
confirmatory data; NA—data not available at all). ** For an estimation of the docking error we provided in brackets the standard deviation of the energy of binding computed from the
value of the different clusters of 20 poses.
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3. Discussion

Several studies of QSAR models for c-src tyrosine kinase inhibitors have been published up
to date in the scientific literature. Five such studies have explored the use of 3D-QSAR, and all
of them used a relatively small number of compounds (80, 42, 156, and 39, respectively), with the
same basic chemical structure within each study (pyrrolo-pyrimidine, quinazoline, anilinoquinazoline
and quinolinecarbonitrile, quinolinecarbonitrile, and 4,6-substituted-(diaphenylamino)quinazolines);
they could, therefore, be considered “local” models [39–42]. In the QSAR field, the term “local” is
used to designate models based on a data set consisting of compounds related by their chemical
structure, unlike global models, that are based on data sets consisting of structurally diverse chemical
substances [43]. Another paper reported on the use of 2D-QSAR for c-src inhibitors, but these models
were also local, focused on ethynyl-3-quinolinecarbonitriles [44]. Therefore, our study is the first one
focused on global QSAR models for inhibitors targeting the c-src tyrosine kinase. It has been argued
(and it stands to reason) that local models tend to have limited predictive power, even when their
apparent performance indicates that they are robust [43]. Our global models are expected to have a
higher predictive power, as partially confirmed in our external validation.

By far the most important descriptor in our work, identified by multiple feature selection
algorithms, was SpMax4_Bh(m), the largest eigenvalue n. 4 of Burden matrix weighted by mass.
This has not generally been reported in previous works as correlating with pharmacological activities.
Other two Burden eigenvalues (SpMax3_Bh(m), SpMax5_Bh(m)) have also been among the most
important descriptors correlating with the inhibition of c-src. SpMax3_Bh(m) has been used in
predicting depuration rate constants for environmental pollutants of the polychlorinated biphenyls
group [45], and the less relevant (in our case) SpMax6_Bh(m) has been used to predict chronic
toxicity of substances to Pseudokirchneriella subcapitata [46]. The second most important descriptor
for our data set was DECC (eccentric topologic index), which has been previously reported to be
important in the prediction of monoamine oxidase A (MAO-A) activity [47,48], placental barrier
permeability [49], and gas chromatographic retention times [50]. F06[C-N] was used in a model to
describe the anti-proliferative effect of phenyl 4-(2-oxoimidazolidin-1-yl)-benzenesulfonates (local
QSAR model) [51], antimalaric effect [52], or skin permeability of substances [53]. P_VSA_MR_6 has also
been used for modeling of skin permeability [53], whereas we identified the use of Chi1_EA(dm) only
for the QSPR modeling of fluorescence properties of a number of fluorescent dyes [54]. The aromatic
nitrogen (N-073) has been shown to correlate positively with HIV-1 integrase activity inhibition [55]
and negatively with the inhibition of the fibroblast growth factor (FGFR) [56]. We found no previous
reports on the use of the Balaban distance connectivity index (J_D) in other models in the biological
field, neither of the F05[C-N].

Rarely, the 49 QSAR models with similarly good performance converged in their predictions.
Only eight compounds were predicted by all models to be active, and half of them (n = 4) were already
in the training data set; for the large majority of compounds at least one or more of the models had
contradictory results. This illustrates the need to avoid making decisions based on the results of a
single or a small number of models.

As shown in the results section, for nine compounds (7.83% of the 115 substances with the best
predictions) it has been confirmed that they are active. How good is such a measure for a virtual
screening exercise? If we compare it with the PPV value in the nested cross-validation, the results
are rather disappointing and indicate that one should always be cautious in interpreting results even
when using double cross-validation, because the real world data are likely to be different from the
data set used for training and testing. For instance, it is likely that the proportion of actives in the
available data set used for the construction of the models is higher than the proportion of actives in the
“real world“ (i.e., the wide chemical space used for virtual screening), and this may lead to a decrease
in the positive predictive value in the real world. However, if we compare the results of the virtual
screening with those of the most costly high throughput screening (HTS), the results are noteworthy.
It has been reported that the hit rate of HTS should be expected to be less than 1% [57] and even less
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than 0.1% or 0.01% [58]. In one study, adding a computer-aided virtual screen was able to increase
the screening hit proportion to 5.8% [57]. Thus, our success rate of at least 7.83% is reasonably good.
If we compute the confirmation rate against the compounds that were assessed for their effect on
src-tyrosine kinase (20.93%), the results are even better. As another positive aspect, more than a quarter
of our predictions were supported by the PASS online software. Our virtual screening results showed,
however, additional interesting facts.

A total of 16 additional false positives were in fact reported to be active on other members of
the src family members, particularly Yes1 tyrosine kinase. This suggests that although our virtual
screening exercise failed in multiple cases, the failure was often not far from the true target. Thus,
from a total of 43 molecules that were tested for their effects on the src and other tyrosine kinases,
58.14% (25 compounds) were inhibitors of one or several members of the src-tyrosine kinase family
(most often Yes1, sometimes also LCK or LYN tyrosin kinase).

Other false positives of the virtual screening exercise are inhibitors of proteins that src tyrosine
kinase interacts directly, either activating them or being activated by them. It is known, for instance,
that EGFR (epidermal growth factor receptor) can be activated by src without the presence of the
EGFR ligand and that there is a direct correlation between EGFR overexpression and src activation [59].
Rather surprisingly for us, 13 compounds wrongly predicted by our models to be src tyrosine kinase
inhibitors, are in fact inhibitors of EGFR, and 10 additional compounds that were inactive on src or
other members of src family, were reported to be inhibitors of EGFR. Most of these 10 additional
compounds (as well as most of the compounds active on src or Yes1 tyrosine kinase) are also active
on ErbB4, and it has been reported that ErbB4-derived phosphopeptides are able to interact with the
SH2 domain of src [60], that following stimulation by EGF, c-src is rapidly recruited to ErbB receptor
complexes [61] and that activated src binds to ERBB4s80 (E4ICD), a cleaved fragment of ERBB4 [62].
Moreover, dasatinib, described often as a src inhibitor [63], has also shown to be one of the most potent
ligands of ErbB4 [64]. Defactinib, apparently a false positive of our virtual screening is a potent FAK
(focal adhesion kinase) inhibitor; it is known that FAK and nonreceptor src tyrosin kinase are both part
of a focal adhesion complex (together with other structural, enzymatic, or adapter proteins), where
they interact directly [65]. Three false positives of the virtual screening results were KIT and PDGFR
inhibitors; KIT promotes phosphorylation of src and is activated by src [66], while src and PDGFR
interact and phosphorylate each other at certain Tyr positions [67].

Such findings (compounds inactive on c-src tyrosine kinase, but active on kinases from the same
kinase family or signaling pathway) tend to suggest that where the QSAR virtual screening fails is
often not far from the target (but this is nonetheless a failure). How could these failures be explained,
considering that multiple models converge in predicting a certain molecule as active on the target of
interest (src tyrosine kinase)? It seems that the models manage to predict the tyrosine kinase properties
of certain compounds, without having sufficient specificity to always separate those active on src
from those active on other tyrosine kinases. We hypothesize that the training set is too small and
does not include (a sufficient number of) molecules with selective src inhibitory properties; we intend
to evaluate whether extending the data set with additional molecules inactive on src but active on
other tyrosine kinases may improve the results of the virtual screening. It is also worth exploring the
combining of more diverse descriptor sets in the final assembly of models with a view of improving
the performance of the virtual screening.

Among the results produced by our virtual screening there is a sizeable number of antiviral
molecules (vedroprevir, daclatasvir, ciluprevir, deleobuvir, ledipasvir, faldaprevir, tegobuvir, elbasvir,
ombitasvir, narlaprevir), all of them approved or developed against hepatitis C viruses. They either
target the NS3/NS4A (vedroprevir, ciluprevir, faldaprevir, narlaprevir) [68] or NS5A (daclatasvir,
elbasvir, ombitasvir, ledipasvir) [69] or NS5B (deleobuvir, tegobuvir) [70] nonstructural proteins of the
virus. It is not very surprising to see inhibitors of NS5A and NS5B here, considering that is already
known that NS5A protein binds to tyrosine kinases from the src-family [71], and c-src is an essential
host protein involved in the formation of the HCV replication complex, together with NS5A and
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NS5B [72]. It was less expected to see also inhibitors of the NS3/NS4A among the results of the virtual
screening, because no direct interaction was reported between the Ns3/NS4A complex and src tyrosine
kinase. This list of HCV antivirals might consist only of false positives, but it is worth testing in wet
lab experiments.

The docking applied to 147 compounds predicted with a high probability by the QSAR models
to be active, reduced their number to about 61% of the initial size. For a number (27.78%) of these
89 compounds, predicted by both QSAR and docking to be active, data available in ChEMBL or
PubChem (from a single wet lab test) indicate that they are inactive, and for others (6.67%), that they
are active, as discussed for the QSAR models. This suggests that computational results have to be
interpreted with caution even when different models, with different methodologies and assumptions,
converge in their predictions. On the other hand, the last decade has witnessed a growing realization of
what has been dubbed “the reproducibility crisis”, ascribed to the inappropriate quality of antibodies
used as reagents [73], insufficiently described methodologies or simply to the biology itself [74].
Whereas positive findings have often not been reproduced when experiments were repeated in other
laboratories, it is not impossible that negative findings could also not be replicable and some of the
compounds shown by databases to be inactive might, as a matter of fact, be active. However, in the
absence of contrary evidence, such compounds have to be considered inactive.

Virtual screening results are also influenced by potential errors affecting the input data: if the wet
lab data that were used to generate the models are affected by errors, they will propagate forward in
the models built and in the predictions made on new compounds. The estimated docking energies are
also potentially affected by errors (in our estimation the accuracy was about 70%, but the large number
of compounds used in screening may differ more from our data set, and thus accuracy might be lower).
Moreover, docking methods are also prone to errors, there are often discrepancies between docking
results and ligand-based studies, and there are multiple cases where top compounds identified by
docking methods failed in wet lab experiments [37].

4. Materials and Methods

4.1. Dataset

The dataset (Table S1) was downloaded from ChEMBL (https://www.ebi.ac.uk/chembl) and
included experimental data for c-src as a target (target code CHEMBL267). Only the records with
ki values expressed in nM were kept. Records with “=” values in the field “Relation” were kept for
analysis and labeled as “active” if ki < 1000 nM and “inactive” if ki ≥ 1000 nM; records with “>” or “<”
values in the field “Relation” were kept for analysis only if they allowed unequivocal classification
(e.g., records with ki > 5000 nM were kept and labeled as “inactive”, whereas those with ki > 100 nM
were discarded; similarly, records with ki < 5000 nM were discarded). A threshold of 1000 nM for the
formal discrimination between “active” and “inactive” compounds is usual in the field and has been
used in other publications [75]. We used classification rather than regression, because the data came
from different laboratories and experimental settings, and although ki values have less variability than
IC50, published experimental ki values still vary considerably (of the 75 compounds in our data set
with multiple ki values, the relative standard deviation (RSD) of ki varied from 0% to 103%; for the
first three quartiles, RSD was relatively low, under 13.85%, but for the last quartile it was quite high).
Inorganic compounds were removed. For the detection and removal of duplicate compounds we
proceeded in two steps: first, canonical SMILES (available in the downloaded dataset) were searched
for duplicates in R (v. 3.6.0) and their ki values were replaced by the average of the duplicates. We then
used ChemAxon Standardizer v. 18.8.0 (ChemAxon, Budapest, Hungary) for the standardization of the
molecules, and then employed the ISIDA/Duplicates software (http://infochim.u-strasbg.fr; University
of Strasbourg, Strassbourg, France) software for the identification of potential further duplicates. We
used Discovery Studio Visualizer v16.1.0.15350 (Dassault Systèmes BIOVIA, San Diego, CA, USA) to
convert the standardized SMILES to 2D chemical structures (sdf). Following the removal of duplication,

https://www.ebi.ac.uk/chembl
http://infochim.u-strasbg.fr
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our dataset decreased from an initial number of 1151 compounds to 1038, of which 286 were labeled as
“active” and 752 as “inactive”.

4.2. Descriptors

Molecular descriptors of the dataset molecules were computed using the Dragon 7 software
(version 7.0, https://chm.kode-solutions.net; Kode SRL, Milano, Italy). A total of 19 blocks of molecular
descriptors were computed: constitutional descriptors (n = 47), ring descriptors (n = 32), topological
indices (n = 75), walk and path counts (n = 46), connectivity indices (n = 37), information indices
(n = 50), 2D matrix-based descriptors (n = 607), 2D-autocorrelations (n = 213), Burden eigenvalues
(n = 96), P-VSA-like descriptors (n = 55), ETA indices (n = 23), edge adjacency indices (n = 324),
functional groups count (153), atom-centered fragments (n = 115), atom-type E-state indices (n = 172),
CATS 2D (n = 150), 2D atom pairs (n = 1596), molecular properties (n = 20), and drug-like indices
(n = 28). All descriptors thus computed were 3839.

4.3. Feature Selection

As the number of computed descriptors is very large (almost 4000), the “dimensionality curse”
precludes optimal operation of the classification or regression algorithms, which are generally designed
for a relatively small number of variables, and tends to result in overfitting [76]. Feature selection, which
is a process of filtering a high number of variables while keeping only the most relevant of them increases
the performance of machine learning algorithms, reduces the computational costs, and strengthens
the generalization ability of the models built [76]. Multiple algorithms of feature selection have been
proposed in the literature, with variable performance, often depending on the nature and particularities
of the data. We used 17 different feature selection algorithms, implemented directly in the “mlr” R
package [77] or through other R packages: based on an ANOVA test, on a Kruskal test, on the Area
Under the Curve (AUC), variance, and an univariate model performance score (‘mlr’), based on a
permutation importance of random forest (as implemented in the R package ‘party’, [78]), based on
a chi-square test, gain ratio, information gain, OneR classifier, RELIEF algorithm, and symmetrical
uncertainty (methods implemented in the ‘FSelector’ R package [79]), three algorithms based on random
forest importance (as implemented in the randomForest [80] and randomForestSRC [81] packages),
and two algorithms based on node impurity and permutation in random forests, as implemented
in the ‘ranger’ R package [82]. The feature selection algorithms were applied after pre-processing
consisting of removal of constant and quasi-constant features (i.e., those where less than 1% of the
observations differed from the mode value) and highly correlated features (defined as those with a
correlation coefficient higher than 0.9).

4.4. Machine Learning Algorithms and Model Building

For building the models we used the following algorithms: random forests, support vector
machines, ada Boosting M1, Bayesian additive regression trees, binomial regression, and C5.0 decision
trees and rule-based models.

Based on an arbitrary number of decision trees used as an ensemble with a majority vote to decide
on the most probable class assigned to each data point, random forests (RF) are a popular classification
algorithm often used with very good performance in QSAR models [83–85]. Each decision tree is
constructed using bootstrap sets of the training set and subsets of descriptors that are selected in a
random manner [86].

The support vector machines (SVM) algorithm is able to address data sets with high number
of variables and has often been used with very good performance in a variety of classification and
regression tasks, including QSAR applications [87,88]. It uses a variety of kernel functions (e.g., linear,
polynomial, radial, etc.) to project features in a vector space maximizing the partitioning boundary
between classes and to identify the hyperplane that best discriminates the classes [89].

https://chm.kode-solutions.net
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The adaboost M1 (Adaptive Boosting) algorithms were described as “widely used in QSAR
studies” [90], although they are probably less used than RF or SVM. AdaBoost is an iterative algorithm
that uses weights to improve the performance of “weak” classifiers (particularly decision tress), giving
higher weights to the trees with better performance (smaller misclassification rates) [90].

Bayesian Additive Regression Trees (BART) is nonlinear regression technique based on a Bayesian
approach, whose performance in QSAR modelling has been stated to be competitive with that of other
machine learning methods [91]. Unlike other decision trees, where decision is taken based on a majority
vote or with the help of empirical weights, BART makes use of prior knowledge and likelihood to
improve the performance of the decision trees.

Binomial regression (logistic regression), despite the term “regression” is a relatively simple
algorithm used for classification purposes, because it linearly models the probability that an observation
belongs to one of two categorical outcomes [92]. In other words, logistic regression computes the
probability P = 1/(1 + e−t), where t = a0 + a1x1 + a2x2 + ... + anxn [93].

C5.0 decision trees and rule-based models represent an extension of a classification algorithm
proposed by R. Quinlan in 1993, under the name “C4.5”, and builds models that can take either the
form of a decision tree or a set of rules (in simple or boosted versions) [94]. Although apparently less
used in QSAR modeling than other machine learning algorithms, when employed, it gave excellent
performance, comparable with that of random forests or support vector machines [95].

All models were built and their performance was assessed in the computing and programming
environment R, v. 3.6.0 [96], using ‘mlr’ package [77] coupled with “parallelMap” [97] for parallel
computing, and to a small extent, the “caret” package [98]. Classification algorithms were used
from the corresponding R packages implementing them: ‘randomForest’ [80], ‘e1071′ [99] (for SVM),
‘RWeka’ [100,101] (for adaboost M1), ‘bartMachine’ [102] (for BART), ‘stats’ [96] (for the logistic
regression), and ‘C50′ (for the C5.0 algorithm) [94]. Gower distances were computed with the “cluster”
R package [103]. Graphs were built in “ggplot2” [104] and (for the dissimilarity plot) “seriation” [105].
All values were standardized by centering and scaling, and values larger than two standard deviations
were capped to 2.

4.5. Performance Evaluation

Nested cross-validation using five folds in the inner loop and 10 folds in the outer loop was used
to evaluate the performance of the models selected, except for the Bayesian Additive Regression Trees,
for which five folds were also used in the external loop (due to the long time taken by this classifier).
The assessment of QSAR model performance should include both internal and external evaluations,
and the external validation is generally deemed as “the gold standard” [106,107]. However, the concept
of “external validation” has received different interpretations and most often is assumed to describe a
holdout data set, obtained by an initial one-time split (i.e., a set that has not been seen by the model
during any adjustments or hyperparameter optimization) [108]. Despite its apparent advantages
of objectivity and ability to assess the generalization of the selected model(s), the use of a hold-out
data set is fraught with thorny issues: the split may be simply fortunate, leading to overestimation
of performance (or of contrary, it may be unfortunate, leading to underestimation of performance),
it requires the holdout sample to be large (which in practice may be costly or a requirement impossible
to satisfy), and the sample size needed for holdout is larger than it is necessary for cross-validation to
estimate the prediction error with a similar degree of precision [106]. For these reasons, using nested
cross-validation (also known as double cross-validation) not only does not reject the idea of external
validation, but it extends it to the entire data set [109].

All models were assessed by computing (within the nested cross-validation) the balanced accuracy
(BA), mean misclassification error (MMCE), sensitivity (true positive rate, TPR), specificity (true
negative rate, TNR), area under the receiver operating characteristics curve (AUC), and positive
predictive value (PPV), with their widely known definitions and equations [75,110] (formulae for
their computation are available in the Supplementary Information). Particularly for virtual screening
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purposes PPV is important (because it indicates the likely proportion of positive values among the
values predicted as positive). We therefore selected only models with a PPV higher than 70% and BA
higher than 70%.

To make sure that the performance of the models is not consequential to chance, a Y-scrambling
procedure was applied, where for multiple models the dependent variable (in our case the ki values)
was shuffled through 1000 permutations (using the R package ‘gtools’ [111]), then the models were
rebuilt using the same procedure from the first steps (i.e., applying the same feature selection algorithms,
in the same order) and their performance evaluated. If there is a real relationship between the activity
and the descriptors, following the y randomization the performance of the new models thus built
should be worse.

4.6. Applicability Domain

We used two local density-based outlier methods implemented in the DDoutlier R package [112]—
the Kernel Density Estimation Outlier Score (KDEOS) algorithm with gaussian kernel [113], and the
INFLO algorithm (which compares the density in the neighborhood of an observed value with the
density in the “reverse neighborhood”) [114]—adding each new test observation one at a time and
computing whether it is or not an outlier in comparison with the reference (i.e., training) data set. We
also applied the KNN (k nearest neighbour) approach proposed by Sahigara et al. (2013) [34] and the
method advanced by Roy et al. (2015) [33] using R code written in house.

4.7. Virtual Screening by QSAR

The 49 best-performing QSAR models were used to predict the activity of a data set consisting
of 104,619 ZINC database compounds (the “named” subset, i.e., compounds that have names in the
ZINC 15 database [115]). The 49 models were stacked using a simple majority voting for the decision;
the performance of the stacking was assessed by applying the same majority voting to the independent
predictions in the nested cross-validation loops. The compounds were ranked in decreasing order,
from those predicted by 100% of the models to those predicted by only 51% of the models.

4.8. Molecular Docking Study

Crystallographic data available in the PDB database (PDB ID: 4MXO [116], PDB ID: 3QLG [117])
show that src-tyrosin kinase inhibitors engage the enzyme primarily at the hinge residues, a few
amino acid residues having a particular relevance: Val 281, Ala 293, Met 314, Ile 336, Met 341,
Leu 393 [118]. We intended to evaluate whether the molecules ranked in our virtual screening as
active with highest confidence bind in the back pocket of the src-tyrosin kinase in a similar way with
dasatinib or bosutinib. Docking was performed using AutoDock Vina [35] with default parameters
under Yasara (version 19.7.20), and LeDock. Human c-src protein (PDB ID: 2src [119]) was used as
a target. For Vina, the protein preparation was performed in Chimera (Resource for Biocomputing,
Visualization, and Informatics at the University of California, San Francisco, CA, USA) using the Dock
Prep module (deleting the ligand and water molecules, eliminating alternate locations of residues,
replacing selenomethionine with methionine, etc.); protonation states were assigned with the addH
module of Dock Prep, at physiological pH (about 7.4), using the default method. The active site for
the Vina docking was defined as a cubic cell of 5 Å around the selected residues (mentioned above).
The setup was performed with the YASARA molecular modeling software (YASARA Biosciences
GmbH, Vienna, Austria), the compounds being sorted by the program by the free energy of binding
(the best hit of 25 runs), this being used for post-analysis, as discussed below. For LeDock the protein
preparation was carried out using the LePro module (with the default values) and the docking was run
with the default values of the LeDock module; the binding pocket was also a rectangular box with a
radius of 5 Å. Clustering by RMSD (1.0 Å) was used to reduce redundancy, and the score of the first
cluster (obtained from 20 runs) was selected for each compound for post-analysis.
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The SMILES structures corresponding to the ZINC codes of the compounds predicted as active
in the virtual screening by at least 75% of the models were downloaded in Python with the help of
the smilite package; they were then converted to sdf format in DataWarrior (adding 3D coordinates)
and then to mol2 format (with hydrogens added) in Biovia Discovery Studio and batch split to
individual mol2 files with Open Babel. Ligand energy minimization was performed with Marvin
Sketch, v. 19.19. The mol2 files were used in the LeDock software (Lephar Research, Stockholm,
Sweden) for virtual screening.

To estimate the performance of the docking a subset of the training set comprising 175 compounds
(33 with ki < 20 nM, 67 with 500 < ki < 1000 nM, 32 with 1500 < ki < 2000 nM, and 43 compounds
with ki > 10,000 nM) was used and “cutpointr” R package was employed to define the best cut-off

point of computed energies of binding between actives and inactives, based on the sum of sensitivity
and specificity. We also computed various ligand efficiency metrics, which have been reported in the
literature to improve the docking scoring; they were computed by dividing the energy of binding to the
molecular weight, number of heavy atoms, number of carbon atoms, partition coefficient, and Wiener
index [120]. We also explored computing ligand efficiencies by dividing the energy of binding to
the squared value of the partition coefficient, to the total surface area, McGowan volume, van der
Waals volume from McGowan volume, and van der Waals volume from the Zhao–Abraham–Zissimos
equation (metrics not reported previously). The “cutpointr” R package [121] was used to define the
best cut-off point of computed energies of binding between active and inactive compounds, based on
the sum of sensitivity and specificity. For further validation we also docked the co-crystallized ligand
from the c-src protein (PDB ID 2csrc), namely the phosphoaminophosphonic acid-adenylate ester,
and RMSD was computed for the first cluster of poses predicted by LeDock. RMSD computation was
performed in R based on the well-known formula and the results were compared with those obtained
with the online DockRMSD [122], the values obtained being identical. Following the strong suggestion
of one of the reviewers of this paper, we tested the compounds predicted by both the QSAR models
and docking to be active and evaluate their potential effects using the online version of the program
PASS [38].

5. Conclusions

A total of 49 global QSAR models have been developed, predicting the c-src tyrosine kinase
inhibition with reasonable accuracy (>70%) and positive predictive value (>70%). The 49 models were
assembled by stacking and used for the virtual screening of over 100,000 named compounds from
the ZINC database. Several hundreds of compounds were predicted to be active, depending on the
decision threshold used. Those with the highest probability of being active were also subjected to
molecular docking and for the majority (about 61%) of them the energies of binding obtained were
consistent with a hypothesis of activity. External data from ChEMBL and PubChem confirmed that at
least 7.83% (in the case of QSAR) or 6.67% (in the case of integrated QSAR and molecular docking)
of the compounds are active on the c-src target; more than a quarter of the predictions were also
confirmed by prediction performed by the online version of PASS The ratio of active compounds is
smaller than what was to be expected from the nested cross-validation data, but still better than what
one should expect from any high-throughput type of screening experiments.
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