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Squeezed vacuum interaction 
with an optomechanical cavity 
containing a quantum well
H. Jabri1* & H. Eleuch2,3,4

We investigate a hybrid system consisting of an optomechanical resonator and an optical cavity 
containing a quantum well. The system is coupled to a squeezed vacuum reservoir. We analyze the 
effect of the injection of squeezed photons inside the cavity on the intensity spectrum. The system 
reaches a regime of hybrid resonance where mechanical, excitonic and cavity modes are intermixed. 
Despite that the optomechanical interaction is the source of the nonlinearity in the system, the 
optimum squeezing is obtained at the hybrid resonance frequencies. However, when the squeezed 
vacuum is applied, at these frequencies the minimum squeezing is realized as well as an increase 
of fluctuations is observed. We show that the squeezed vacuum transforms the coherent states 
into highly squeezed states of light, and offers a great flexibility to obtain maximal squeezing. 
Furthermore, a perfect squeezing is predicted.

During the last decade, considerable efforts have been dedicated to optomechanical systems. These investiga-
tions explore the nonlinear interaction between an optical cavity and a mechanical oscillator through a radiation 
pressure  force1–6. Such systems have several applications including creation of mechanical motion and non-
classical states of light, highly sensitive measurement and quantum  information1,3,7–9. Interest, of both applied 
and fundamental aspects, is also justified by numerous proposals and experimental observations that includes 
the optical cooling of a resonator to its quantum mechanical ground  state10 and observation of its zero-point 
 motion11, photon blockade and single-photon  emission12,13, optomechanical  entanglement14,15, the observation 
of back-action  effects16, optical  bistability17, optomechanically induced  transparency18,19, detection of possible 
quantum gravitation  effects20, and many others.

Among these interests, generation of squeezed states of light using optomechanical devices is still one of the 
most interesting fields of quantum optics over the recent  years1,2,21. This property of light is an important resource 
for many applications, such as in ultra-sensitive  measurements19,20, quantum  cryptography24–26, gravitational wave 
 detection27–30, quantum  computing31–36, sub-shot-noise  interferometry37–39 and quantum limited displacement 
 sensing40. Generally, nonlinear interactions in a quantum system are responsible for the appearance of squeezed 
states. Excitonic nonlinearity in quantum wells is an illustrative  example41–45. In this perspective, via a new emerg-
ing setup namely the dipolariton cavity, we can achieve a high amount of squeezing with an excellent resistance 
to thermal excitations. This system combines two interacting quantum wells, where additional nonlinearities 
enhance the degree of  squeezing46–49.

In this paper, we explore the correlations of photons and the quantum statistics of an optomechanical cavity 
containing a quantum well and coupled to a squeezed vacuum reservoir. By determining intensity and squeez-
ing spectra, we analyze the properties of light produced by the system. The effect of the quantum well and the 
squeezed vacuum are discussed in details. We show that the presence of excitons tends to break the bistable 
behavior. Our study reveals the existence of hybrid resonances appearing in the system, a mixture of states of 
excitonic, mechanical and cavity modes. Moreover, in this hybrid system, the squeezed vacuum greatly affects 
the intensity spectrum especially at the hybrid resonant regime. More interestingly, we show that the system 
produces a good amount of squeezing due to the nonlinear optomechanical coupling. This squeezing can be 
strongly enhanced and rigorously stabilized by applying the squeezed vacuum. The studied scheme would give 
more possibilities and alternatives in the field of the squeezing generators.
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The paper is organized as follows. In Sect. “Model Hamiltonian and dynamics”, the system’s Hamiltonian is 
presented and the time evolution equations are derived. In the third section, we determine the steady-state solu-
tions and discuss the photonic intensity and the optical bistability. Section “Fluctuation dynamics” is devoted to 
the quantum fluctuation analysis of the cavity field. The intensity power spectrum is studied in Sect. “Intensity 
spectrum and hybrid resonances”. In the last section, we focus on the squeezing of light as a function of the 
frequency, the frequency detuning, the squeeze parameter and the optomechanical coupling.

Model Hamiltonian and dynamics
We consider a mechanical resonator with moveable Bragg reflectors and a quantum well embedded in a single-
mode cavity as shown in the schematic representation of Fig. 1. The cavity is coherently pumped by a field of 
frequency ωp . The mechanical resonator undergoes a force related to the mean number of photons inside the 
cavity. By using a high quality factor mirror, it is possible to attain the regime of strong coupling between cavity 
photons and excitons. The study is restricted to a single mechanical mode ωm . It is obtained when the detection 
bandwidth includes only one single mechanical resonance and a negligible mode-mode  coupling50. This is justi-
fied by the adiabatic limit in which the frequency of the moveable mirror is much smaller than the free spectral 
range of the  cavity49. We should note that in this limit, the photon number produced by the Doppler, Casimir 
and retardation effects is  negligible52,53.

We neglect the spin degrees of freedom. In the plane of the semiconductor layers, we have a translational 
invariance. This property means that excitons having a wavevector K‖ is only coupled with radiation possessing 
an equal wavevector k‖ . Additionally, the exciton and cavity modes are quantized in the direction normal to the 
layers. Then, a strong coupling can take place by considering the interaction between an excitonic mode and a 
photonic mode only. We also consider that the modes of interest are weakly coupled to the other exciton modes 
form a thermal  reservoir43.

Additionally, we consider that a squeezed vacuum reservoir, with a squeeze parameter r, acts on the cavity. 
The assumption of the single cavity-mode is justified by the adiabatic limit, i.e., ωm ≪ πc/L where L represents 
the cavity length in the absence of the cavity field and c denotes the speed of light in  vacuum50.

The total Hamiltonian of the system, in a frame rotating at the drive frequency ωp , is given by:

where a† (a), b† (b) and c† (c) represent the creation (annihilation) operators of cavity, excitonic and mechanical 
modes, respectively. The parameter g characterizes the strength of the photon-exciton coupling. g0 is the single-
mode optomechanical coupling rate of the optomechanical interaction. The amplitude of the drive laser is given 
by ε =

√

κP/�ωp , where κ and P are the cavity damping rate and the laser power, respectively. �a = ωp − ωc and 
�b = ωp − ωex represent the frequency detunings between laser pump, exciton and cavity modes. The evolution 
equations of the three modes of our hybrid system are written as:

where γm is the decay rate of the mechanical oscillator, and γ represents the spontaneous emission rate of exci-
tons. ain , bin , and cin denote the Langevin noise operators for cavity, exciton, and mechanical modes, respectively.

(1)
H =−�aa

†a−�bb
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(4)ċ = −
(γm

2
+ iωm

)

c + ig0a
†a+√

γmcin,

Figure 1.  Scheme of the system. A cavity formed by two distributed Bragg reflectors (DBR), in which is placed 
a quantum well (QW). The mirror is subject of a mechanical motion x. GaAs (black stripes) and AlAs (white 
stripes) layers are used. The cavity is coherently driven by an external laser of amplitude ε and coupled to a 
squeezed reservoir with parameters N and M. The injected squeezed light interacts with the quantum well and 
affects the mechanical resonator. κ represents the damping rate of the cavity photon.
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Steady‑state solutions and stability analysis
The evolution of the mean fields can be derived from the set (2)-(4), then the steady-state solutions for mechani-
cal and excitonic modes are written as:

while the cavity mean-field is given by:

where Ia = �a†��a� is the photonic intensity, and the other terms are defined by:

From this, we can deduce a simple relation linking photonic, excitonic and mechanical modes intensities as:

where βb = g2/(( γ2 )
2 +�2

b) and βm = g20 /((
γm
2 )2 + ω2

m) . From Eq. (6), we deduce the following cubic equation 
in Ia:

To study the bistability property, we should calculate ∂|ε|2/∂Ia = 0 . From which we deduce the bistability 
condition for our system as �2

a0 − 3κ20 > 0 . Using the terms defined in Eq. (7), this condition becomes:

Even though the nonlinear optomechanical interaction is responsible of the bistable behavior, the previous 
equation does not contain any information concerning the mechanical part of the system. The bistability is 
governed by photonic and excitonic parameters. In the absence of the quantum well ( βb = 0 ), Eq. (10) reduces 
simply to the condition for the optomechanical cavity, �2

a − 3( κ2 )
2 > 0.

In all plots of this work, we choose physical parameters that are experimentally realizable and used in opto-
mechanical systems possessing high quality factor Qm = ωm/γm ≈ 10654. Furthermore, we suppose that the 
mechanical mode frequency ωm is greater than the cavity damping rate κ . This corresponds to the good cavity 
limit, a prerequisite for resolved sideband cooling of micromechanical  resonators55.

The photonic intensity against the frequency detuning is plotted in Fig. 2. In Fig. 2a we assume that 
�a = �b = � . The solid line representing the photonic intensity in the absence of the quantum well indicates 
that Ia shows a signature of the optical bistability. When excitons come into play, a second peak appears in the 
positive detuning region, relative to polaritons (dashed line). Considering a resonant interaction between the 
excitonic mode and the coherent drive ( �b = 0 ), the bistable behaviour disappears. In this case, the intensity 
is formed by a single peak around total resonance (Fig. 2b). This is interesting due to the fact that the bistabil-
ity depends on the value of �b . To focus on this aspect, we plot in Fig. 3 the mean intracavity photon number 
against the amplitude of the coherent drive. It is clearly shown that the bistability appears for a certain value of 
�b . Before this limit, the system is stable essentially near zero pump-exciton detuning. This can be explained by 
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Figure 2.  Cavity photonic intensity Ia as a function of the detunings for γm = 40 Hz, κ = 2π × 10
5 Hz, 

g0 = 300 Hz, ωm = 2π × 2.7 MHz, ε = 12.74× 10
6κ and γ = 3.6 MHz. (a) Equal detunings �a = �b = � . 

(b) Photon-exciton resonance �b = 0.
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the contribution of the last term in Eq. (10). If it is less than zero, �2
b < 3( γ2 )

2 , the bistable behavior is reduced 
or even disappears. The presence of excitons in the cavity tends to vanish this bistability. We also note that 
the inequality �2

b > 3( γ2 )
2 is nothing else than the bistability condition for semiconductor microcavity with 

a quantum  well56. The effect of the excitonic mode on the bistability behavior can be explained as follows; the 
quantum well is an additional degree of freedom for the system. A part of the injected photons are involved in 
the exciton-photon interaction as the coherent pump increases (especially for resonant excitation, �b = 0 ). For 
this, Ia varies monotonously and no appearance of the hysteresis. This means that the quantum well needs more 
pumped light that is consumed in the light-matter interaction. Based on this assertion, in the following we work 
with the assumption �b = 0 , where the system is fully stable.

Fluctuation dynamics
To linearize the quantum Langevin equations, each field operator can be presented as the sum of a mean-field 
value and a fluctuation part. Then, we have a = �a� + δa , b = �b� + δb and c = �c� + δc . From there, the evolu-
tion of the fluctuations is given by:

where G0 = g0
√

�a��a†� = g0
√
Ia represents the optomechanical coupling strength. For simplicity, the phase of 

the driving laser has been chosen such that �a� = −i|�a�| . When the system interacts with a squeezed vacuum, 
the noise operator of the cavity field ain , appearing in Eq. (11), satisfies:

where M = eiϕsinh(r)cosh(r) and N = sinh2(r) . M is the two-photon correlation of the squeezed reservoir 
and N denotes the mean photon number. r is the squeezing parameter and ϕ being the phase of the squeezed 
radiation. Then, the parameters M and N can be linked simply by M =

√
N(N + 1)e−iϕ55. For simplicity, we 

consider that ϕ = 0 . Furthermore, the only non-zero fluctuation correlations relative to excitonic noise is given 
by �bin(t)b†in(t ′)� = δ(t − t ′) . The mechanical mode is affected by a viscous force with a damping rate γm and also 
by a Brownian stochastic force having a zero mean value ξ and obeys the following correlation  function51,58–60:

where kB denotes the Boltzmann constant and T represents the temperature of the reservoir of the mechani-
cal oscillator. This Brownian noise ξ(t) is, in general, a non-Markovian Gaussian noise, but in the limit of 
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Figure 3.  Cavity photonic intensity Ia as a function of the amplitude of the coherent drive ε for γm = 40 Hz, 
κ = 2π × 10

5 Hz, g0 = 300 Hz, � = ωm = 2π × 2.7 MHz, γ = 3.6 MHz and g = 14γ . The regime of the 
optical bistability appears from a certain value of the photon-exciton detuning �b (dotted line). Before this 
threshold, the bistability disappears and the system is fully stable for �b = 0 (solid line).
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high-temperature mechanical reservoir, it is possible to make the following Markovian approximation to the 
quantum Brownian noise ξ(t):

where nth = {exp[�ωm/(kBT)] − 1}−1 represents the thermal phonon number of the mechanical oscillator. Then, 
via suitable transformations and in the limit of large ωm

61, the mechanical noise operators satisfy to:

Generally, it is more appropriate to work in frequency domain. For this, the set of Eqs. (11)–(13) can be 
rewritten in Fourier space, in matrix form as M(ω)H(ω) = K(ω) , where H(ω) = (δa, δb, δc, δa†, δb†, δc†)T , 
K(ω)=(

√
κain,√γ bin , √γmcin,

√
κa†in , √γ b†in,√γmc

†
in)T and

where µ∓ = κ
2 + i(ω ∓ (�a − αmIa)) , ν∓ = γ

2 + i(ω ∓�b) and ξ∓ = γm
2 + i(ω ∓ ωm) . Solving such a matrix 

equation for the fluctuation operator of the cavity field δa yields:

where the coefficients αi(ω) are defined by:

and

Intensity spectrum and hybrid resonances
In order to examine the intensity power spectrum of the cavity field, we need to calculate the Fourier transform 
of the two-time correlation �δa†(t + τ)δa(t)�:

The term appearing on the right side of Eq. (28) is given by 2πCa†a(ω)δ(ω + ω′) = �δa†(ω)δa(ω′)� . Then, 
with the help of Eq. (22), we get:

Light outgoing the cavity is received by photodetectors, then analyzed. Thus, it is more appropriate to determine 
the intensity spectrum outside the cavity S(ω) . Indeed, the standard input-output relation δaout =

√
κδa− ain62, 

allows us to obtain S(ω) = Cout
a†a
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Before studying the effect of the squeezed vacuum, we should first understand the intensity spectrum in the 
absence of external squeezed photons. The number and nature of peaks of the spectrum can be explained based 
on of the eigenvalues of the system provided by Eqs. (11)–(13). These eigenvalues can be written as:

where �̃ is the effective detuning given by �̃ = �a − αmIa . These six eigenvalues correspond to six peaks in the 
spectrum. As we can see, the six peaks appear on the intensity spectrum of Fig. 4 for g = 14γ . Now, we have to 
distinguish the optomechanical and polaritonic resonances. The peaks centered around ω − ω0 ≈ ±ωm ≈ ±16.95
MHz, are for the optomechanical resonances. However, according to Eqs. (30) and (31), and for large coupling 

g, we should observe two peaks around ω − ω0 ≈ ±(�̃+
√

�̃2 + 4g2)/2 ≈ g , signature of the photon-exciton 
coupling (polaritons). By reducing the coupling, �̃ becomes larger and these last peaks are split, leading to four 
hybrid peaks of mechanical, excitonic and cavity modes (Fig. 4a). Two of the hybrid peaks are centered around 

ω − ω0 ≈ ±(�̃−
√

�̃2 + 4g2)/2 ≈ 41MHz. By applying the external squeezed field ( r = 0.3 ), the whole system 
gains in photonic intensity. The optomechanical resonances are no more dominant in the spectrum, with an 
increasing relative intensity of two of the hybrid peaks. In counterpart, the two other hybrid peaks correspond 
to minimal intensity (Fig. 4b). Such a behavior can be explained as follows. As the number of photons increases 
in the cavity due to the squeezed injection, this generates considerable photon pressure on the resonator. In turn, 
this enhances the amplitude of the mechanical mode and leads to optomechanical resonance, at the expense of 
decreased amplitudes of a part of the hybrid resonances.

For g = 11γ , the optomechanical resonances are highly reduced and the hybrid peaks of the previous situ-
ation completely vanish. We observe two dominant peaks in the spectrum (Fig. 4c). This picture corresponds 
to the first stage before the total disappearance of the pure polaritonic and optomechanical resonances, and the 

(30)�1,2 =
1

4
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i

4

(

2�̃±
√

16g2 + (2�̃− i(γ − κ))2

)

,
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4
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i

4

(

2�̃±
√

16g2 + (2�̃− i(γ − κ))2

)

,

(32)�5,6 =
1

2
(−γm ± 2iωm),

Figure 4.  Intensity spectrum of the transmitted field S(ω) as a function of the frequency ω − ω0 for γ = 3.6 
MHz, γm = 40 Hz, κ = 2π × 10

5 Hz, g0 = 300 Hz, nth ≃ 833 corresponding to a reservoir temperature T = 0.4 
K, � = ωm = 2π × 2.7 MHz, ε = 1.6× 10

8κ and �b = 0 . (a) and (b) The peaks correspond to mechanical, 
excitonic and optical modes. (c) and (d) The system approaches the hybrid resonance regime. In both cases, the 
squeezed vacuum affects the intensity peaks and provokes a dissymmetry in the spectrum.
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emergence of the hybrid resonance regime. Keeping the same parameters values as in Fig. 4c and increasing r to 
0.7, we observe that the intensity of the negative relative-frequency peak decreases. The other resonant peak is 
unaffected, and the spectrum is asymmetric (Fig. 4d).

Squeezing spectrum: injected vs intracavity squeezing
Here, we explore the squeezing of the transmitted radiation due to the optomechanical coupling and the effect 
of the injected squeezed photons on the dynamical behavior. The squeezing spectrum of the field outside the 
cavity is defined  as63:

where Xout
θ (ω) = e−iθ δaout(ω)+ eiθ δa†out(ω) is a quadrature of the cavity field, whereas θ designs its con-

trollable phase. Indeed, Eq. (33) becomes Sθ (ω) = Cout
aa (ω)e−2iθ + Cout

a†a†
(ω)e2iθ + Cout

aa†
(ω)+ Cout

a†a
(ω) , 

where Cout
aa (ω) is given by, 2πCout

aa (ω)δ(ω + ω′) = �δaout(ω)δaout(ω′)� . As we are seeking optimal values of 
squeezing, we should optimize the spectrum by solving dSθ (ω)/dθ = 0 . Then, the optimal value θopt satis-
fies e2iθopt = −Cout

aa (ω)/|Cout
aa (ω)| . Consequently, the optimized squeezing spectrum can be expressed as 

Sopt(ω) = 1+ 2[Cout
a†a

(ω)− |Cout
aa (ω)|] . Using the input-output relation given above we get:

where Caa(ω) reads:

The covariance function, Cout
a†a

(ω) , is already determined in Sect. “Intensity spectrum and hybrid resonances”. 
Then, we obtain the spectrum for optimum output fields:

Experimentally, to measure the squeezing spectrum using a quantum-well cavity can be realized as follows. 
A high finesse microcavity with GaAs/AlAs samples is needed. The cavity contains an InGaAs quantum well 
possessing a low indium  content64,65. Via a homodyne detection system, the produced light by the system is 
detected in the normal direction to the  sample66,67. Then, emitted photons are mixed with a local oscillator on 
a beamsplitter. After that, beams outgoing the beamsplitter are focused on two photodetectors. By means of an 
RF spectrum analyzer, the frequency spectrum is  analyzed68.

Squeezing and frequency. We choose first the situation where the system exhibits six peaks in its inten-
sity spectrum as shown in Fig. 4a. In Fig. 5a, we plot Sopt(ω) as a function of ω − ω0 for g = 14γ and r = 0 . 
The squeezing spectrum is formed of six distinct peaks corresponding to squeezed radiation. We observe weak 
squeezing at the optomechanical frequencies and a little stronger squeezing at the hybrid peaks reaching 6% . 
When the squeezed photons come into play, the situation profoundly changes (Fig.  5b). First, the coherent states 
are transformed to squeezed ones. Then, the hybrid peaks correspond now to minimal squeezing and are accom-
panied with small fluctuations. However, the optomechanical peaks present a little higher squeezing.

Secondly, we consider the case of hybrid resonance regime. This is obtained by decreasing the exciton-photon 
coupling to g = 11γ (Fig. 5c). The spectrum of noise shows two hybrid resonant peaks of squeezed light. Away 
from these frequencies, light is coherent identified by Sopt = 1 . It is noteworthy to mention here that the optimum 
squeezing is realized at the hybrid resonance frequencies despite that the optomechanical coupling is the origin of 
the nonlinearity in our system. When the squeezed vacuum acts on the cavity, the peaks are completely inverted 
and the squeezing is minimal at hybrid frequencies, with increasing fluctuations above the shot noise. Interest-
ingly, the previous coherent states are transformed to strongly squeezed states in wide frequency windows with a 
80% of squeezing (Fig. 5d). This result seems very useful in the sense that we can achieve a very strong squeezed 
light, just we have to avoid the hybrid resonances and to tune to any other frequency.

Squeezing and detuning. Here, we investigate the effect of the detuning on the squeezed radiation. For 
this purpose, we focus on two particular situations. The first corresponds to zero frequency ω − ω0 = 0 , while 
the second is for ω − ω0 ≈ 31.02MHz = �m giving maximal (minimal) squeezing in Fig. 5c, d, which corre-
sponds to the hybrid resonance regime.

(33)
Sθ (ω) =

∫ +∞

−∞
�δXout

θ (t + τ)δXout
θ (t)�sse−i(ω−ω0)τdτ

= �δXout
θ (ω)δXout

θ (ω)�,

(34)
Cout
aa (ω) =κCaa(ω)− κM(α1(ω)+ α1(−ω))− κ(Nα4(ω)

+ (N + 1)α4(−ω))+M,

(35)

Caa(ω) =κMα1(ω)α1(−ω)+ κ(N + 1)α1(ω)α4(−ω)

+ κNα4(ω)α1(−ω)+ κMα4(ω)α4(−ω)

+ γα2(ω)α5(−ω)+ γm(nth + 1)α3(ω)α6(−ω)

+ γmnthα6(ω)α3(−ω).

(36)

Sopt(ω) =1+ 2N − 2|M + κCaa(ω)− κM(α1(ω)

+ α1(−ω))− κ(Nα4(ω)+ (N + 1)α4(−ω))|
+ 2κCa†a(ω)− 4κNRe(α1(−ω))

− 4κMRe(α4(−ω)).
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Figure 5.  Noise spectrum of the transmitted radiation Sopt(ω) as a function of the frequency ω − ω0 for 
γ = 3.6 MHz, γm = 40 Hz, κ = 2π × 10

5 Hz, g0 = 300 Hz, nth ≃ 833 corresponding to a reservoir temperature 
T = 0.4 K, � = ωm = 2π × 2.7 MHz, ε = 1.6× 10

8κ and �b = 0 . We considered two values of photon-
exciton coupling g = 14γ and g = 11γ . (a), (c) The squeezing due to the optomechanical coupling. (b), (d) 
show the effect of the squeezed vacuum. The resonant peaks correspond to the squeezed radiation frequencies, 
but also to some fluctuations that could appear in the field due to the squeezed vacuum.

Figure 6.  Noise spectrum Sopt(�) as a function of the detuning � . We have choose two particular frequencies. 
(a), (b) ω − ω0 = 0 . (c), (d) ω − ω0 = �m corresponding to the hybrid resonance regime. The other parameters 
are the same as in Fig. 4.
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When ω − ω0 = 0 , we observe very small variation of the squeezing, where the maximum is produced for a 
quasi-resonant excitation (Fig. 6a). When applying the squeezed vacuum, the whole spectrum is inverted and 
translated down, and we attain stronger levels of squeezed light, approaching 45% in the chosen range of the 
system parameters (Fig. 6b).

When the system reaches the hybrid resonance regime, ω − ω0 = �m , the spectrum is illustrated by Fig.  6c. 
As a first ascertainment, we observe two peaks of squeezing where the maximum corresponds to the frequency 
of the cooling regime close to the quantum ground state � = ωm , whereas the other to � ≈ 130MHz (solid line). 
For higher thermal bath temperature, nth = 1000 , the squeezing at � = ωm is reduced and is no longer maxi-
mal at this frequency. However, the other peak is still unaffected and exhibits a stronger resistance against the 
high thermal excitations (dashed line). Then, by injecting the squeezed photons inside the cavity, the frequency 
detunings � = ωm corresponds now to minimal squeezed radiation, and some fluctuations appear. The other 
peak is still under the shot noise level. Here, we also confirm the passage of the coherent states of light to highly 
squeezed states (Fig. 6d).

Compared to the traditional quantum well cavity (polariton cavity), the comportment of the present scheme 
is quite different. Indeed, in the absence of any external squeezed source, and due to excitonic nonlinearity, the 
best squeezing of the polariton cavity is obtained at zero frequency, while in our system the squeezing is minimal 
at zero frequency.

Squeezing and squeeze parameter. To gain deep insight of the study, we need to see the effect of the 
squeeze parameter r more closer. In Fig. 7, we represent Sopt as a function of r by considering the two particu-
lar frequencies discussed in the previous section. It is clearly shown that at the hybrid resonant frequencies, 

Figure 7.  Noise spectrum Sopt(r) as a function of the squeeze parameter r for g = 11γ . Solid line for 
ω − ω0 = 0 , and dashed line for ω − ω0 = �m . The other parameters are the same as in Fig. 4.

Figure 8.  Noise spectrum Sopt(g0) as a function of the optomechanical coupling g0 for g = 11γ . (a), (b) and 
(c) ω − ω0 = 0 . (d), (e) and (f) ω − ω0 = �m . The other parameters are the same as in Fig. 4. In the hybrid 
resonance regime (Figs. (d), (e) and (f)), the spectrum is inverted and the squeezing peak is narrowed when 
increasing the squeeze parameter r.
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the transmitted radiation exhibits strong fluctuations (dashed line). However, at zero frequency the situation 
is always favorable to stronger squeezing as the squeeze parameter increases (solid line). Moreover, a perfect 
squeezing is predicted with sufficiently strong injection of squeezed photons.

Squeezing and optomechanical coupling. Now, we focus on the effect of the optomechanical coupling 
as it is the primal source of squeezing in this system. We conclude from the illustration of Fig. 8a that at zero 
frequency and for the chosen parameters, the squeezing varies very weakly as a function of g0 . The effect of the 
nonlinear optomechanical interaction is minor. By coupling the cavity to the squeezed reservoir, a much higher 
amount of squeezing is attainable (Fig. 8b, c). In this case, the effect of the squeezed vacuum dominates that of 
the nonlinear optomechanical coupling.

At the hybrid frequency �m , we observe first that for r = 0 the squeezing is more than 10% (Fig. 8d). By 
increasing r to 0.2, the squeezing may reach over than 30% . This elevation is accompanied with some fluctua-
tions appearing in a single peak form (Fig. 8e). For stronger squeeze parameter, the squeezing may approach 
80% , at the expense of increasing fluctuations above the shot noise level (Fig. 8f). We also notice a narrowing of 
the peaks each time that r increases.

It is important to mention here that except a certain range of g0 giving high fluctuations, we can achieve a 
strong and stable squeezing at any given value of optomechanical coupling.

The squeezed vacuum (external source) is used to improve the efficiency of the squeezing generated by the 
optomechanical coupling . For example, we plot in Fig. 9 the noise spectrum Sopt as a function of the optomechan-
ical coupling g0 for a fixed value of the squeeze parameter r = 0.05 . We observe that when g0 = 0 , the squeezing 
due to the squeezed vacuum is about 9.2% . As g0 increases, we can achieve higher squeezing that may reach 13% . 
In this situation, the squeezing of the output field is enhanced compared to the input of the squeezed reservoir.

Conclusion
We have studied the photon correlations and the noise properties of the transmitted radiation by a hybrid system 
composed of an optomechanical resonator and an optical cavity including a quantum well, where the cavity 
interacts with a squeezed vacuum. We have shown that the presence of excitons destroys the optical bistability. 
The application of the squeezed vacuum modifies the transmitted intensity spectrum and affects the charac-
teristic frequencies of the system. Away from the hybrid resonance regime, the squeezing spectrum consists of 
six peaks involving mechanical, excitonic and cavity modes. When the system attains the hybrid regime, the 
spectrum shows two hybrid resonant peaks corresponding to maximal squeezing. Interestingly, the coupling to 
the squeezed vacuum strongly enhances and stabilizes the degree of squeezing in the outgoing light. However, to 
obtain the maximal squeezing, we should avoid the characteristic resonant frequencies of the system which do not 
correspond anymore to the maximal squeezing, but to high fluctuations, in the presence of the squeezed vacuum.
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