
Perspectives

Autophagy and Macropinocytosis: Keeping an Eye on the
Corneal/Limbal Epithelia

Han Peng, Jong Kook Park, and Robert M. Lavker

Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States

Correspondence: Robert M. Lavker,
Department of Dermatology, Fein-
berg School of Medicine, North-
western University, 303 E. Chicago
Avenue, Chicago, IL 60611, USA;
r-lavker@northwestern.edu.

HP and JKP contributed equally to the
work presented here and should
therefore be regarded as equivalent
authors.

Submitted: November 14, 2016
Accepted: December 5, 2016

Citation: Peng H, Park JK, Lavker RM.
Autophagy and macropinocytosis:
keeping an eye on the corneal/limbal
epithelia. Invest Ophthalmol Vis Sci.
2017;58:416–423. DOI:10.1167/
iovs.16-21111

Autophagy and macropinocytosis are processes that are vital for cellular homeostasis, and
help cells respond to stress and take up large amounts of material, respectively. The limbal
and corneal epithelia have the machinery necessary to carry out both processes; however,
autophagy and macropinocytosis are relatively understudied in these two epithelia. In this
Perspectives, we describe the basic principles behind macropinocytosis and autophagy,
discuss how these two processes are regulated in the limbal and corneal epithelia, consider
how these two processes impact on the physiology of limbal and corneal epithelia, and
elaborate on areas of future research in autophagy and macropinocytosis as related to the
limbal/corneal epithelia.
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The term ‘‘autophagy’’ is attributed to the venerable
morphologist and cell biologist Christian de Duve.1

However, this term has been in the scientific literature as early
as 1860 (see the literature of Karaqnasios and Ktistakis2).
Nonetheless, Christian de Duve coined the term ‘‘autophagic
vacuoles’’ to describe the self-eating function of lysosomes,1

which still is the operative definition used today. Christian de
Duve won the Nobel Prize in Physiology and Medicine in 1974
for the discovery of the lysosome, and the same prize was
awarded in 2016 to Yoshinori Ohsumi for his work in yeast
identifying genes essential for autophagy.3 Ohsumi’s work has
led to our current understanding that autophagy regulates
numerous physiologic processes where cellular components
must be degraded and recycled. Examples of such processes are
the cell’s response to starvation and other stresses,4 removal of
bacteria and viruses,5 elimination of damaged proteins and
organelles that occur during aging,6 and maintenance of stem
cell homeostasis.7 Given the numerous ways that autophagy
impacts cellular homeostasis, it is not remarkable that this
cellular process has been implicated in ocular health and
disease (see prior reviews8,9). Surprisingly, scant attention has
been directed at dissecting autophagy in the corneal and limbal
epithelia.

Macropinocytosis was described first by Lewis in 193110 and
enables cells to nonselectively engulf and take up large volumes
of fluid and membrane via the closure of plasma membrane
protrusions.11 In addition to enabling cells to ‘‘gulp’’ large
amounts of fluids, macropinocytosis is now recognized as a
means of pathogen egress into cells as well as having important
roles in tumorigenesis and cancer therapeutics.12 Similar to
autophagy, macropinocytosis has been markedly understudied
in the corneal/limbal epithelia. We offer a view of how the
regulation of autophagy and macropinocytosis differs between

limbal and corneal epithelia, and discuss areas that are ripe for
future investigation.

AUTOPHAGY

Autophagy is a highly evolutionary conserved cellular process
by which cytoplasmic material (e.g., mitochondria, Golgi,
nuclei) is segregated into double membrane vesicles (autopha-
gosomes) that fuse with lysosomes for degradation.13,14

Autophagy can be divided into early and late stages (Fig. 1).
The early stages involve the formation of a phagophore
(autophagosome) via the sequential activation of a series of
complexes, which results in the formation of an isolation
membrane that ultimately engulfs the cytoplasmic material to
be digested. Initiation starts with a stress signal, releasing the
inhibitory effects of the mechanistic target of rapamycin
(mTOR) on the UNC51-like kinase (ULK1), which then
phosphorylates its substrates Atg13, Fip200, and Atg101 (Fig.
1). Nucleation involves the recruitment of Beclin-1, which
ultimately results in recruitment of WIPI via PtdIns3P leading to
the formation of a nascent phagophore. The last stage is
autophagosome elongation and closure involving Atg12 conju-
gation to Atg5 via Atg7. This complex facilitates the lipidation
of LC3I to LC3II onto forming double-membrane autophago-
somes. Ultimately, the autophagosome fuses with a lysosome
forming the autolysosome, which degrades the ingested
material. Until recently, most of the research on autophagy
has focused on delineating these early stages.15 Less attention
has been directed toward understanding the late stages of
autophagy, which involve autolysosome clearance and lyso-
some reformation.15,16
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MACROPINOCYTOSIS

Macropinocytosis is an endocytic process resulting in the
formation of large (0.2–2 lm) macropinosomes (see the
reports of Lim and Gleeson,11 and Maltese and Overmeyer,17

and references therein). Macropinocytosis is initiated as a
response to growth factor stimulation, such as epidermal
growth factor (EGF), platelet-derived growth factor (PDGF), or
the tumor promotor tissue plasminogen activator (TPA).11,18,19

Such stimulation results in actin-mediated membrane ruffling
(lamellipodia) at the plasma membrane (Fig. 2). Most
lamellipodia retract back into the cell; however, a subset fold
back upon themselves and fuse with the membrane, which
generates large vesicles termed macropinosomes.11 Membrane
ruffling with its associated remodeling of the cytoskeleton
appears to be required for macropinocytosis, but not sufficient
for macropinosome formation (Fig. 2).20,21 Once formed,
macropinosomes undergo a maturation process, are either
degraded via a late endosome/lysosome process, or recycled
back to the plasma membrane.11 Precise signaling events and
how components of macropinocytosis are coordinated are
unclear; however, macropinocytosis is likely to be distinctive
in different cell types.11,12,17 When the process of macro-
pinocytosis becomes dysregulated, one of the morphologic

features is the appearance of large cytoplasmic vacuoles.17,22

Recently, there has been renewed interest in macropincytosis
due to the observations that cancer cells possess increased
macropinocytotic activity to enhance metabolism, signal
transduction, and metastasis (see the report of Ha et al.12 and
references therein). Consequently, there has been high interest
in the use of macropinocytosis for targeted therapy develop-
ment using macropinocytosing antibodies.23 Given that vary-
ing cell types can have wide ranges in macropinocytotic
activity,11,12,17 determining how macropinocytosis is regulated
in limbal and corneal epithelia seems warranted.

CORNEAL/LIMBAL EPITHELIA: DISTINCTIONS PROVIDE

INSIGHTS

From a morphogenetic perspective it is well established that
the limbal and corneal epithelia are fundamentally distinct (see
prior reviews24–26). Such a diversity for two adjacent stratified
squamous epithelia has made the corneal/limbal epithelia a
valuable model for interrogating a variety of biologic processes.
Perhaps the most consequential distinction is that the limbal
epithelial basal cells are the preferential site of the corneal

FIGURE 1. A schematic representation of the stages of autophagy. Autophagy begins with the formation of the phagophore (initiation stage). The
expansion of the phagophore results in an autophagosome. Autophagosomes can engulf cytoplasmic materials. When an autophagosome fuses with
a lysosome, it forms an autolysosome where the sequestered material is degraded in autolyosome (fusion/degradation stage). Finally, autolysosome is
recycled to form new lysosome (late stages).
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epithelial stem cells.27–29 As such, the limbal epithelium has
been recognized to have major roles in maintaining corneal
epithelial homeostasis, serving as the source for epithelial cells
to aid in tissue regeneration following wound healing, and
acting as a barrier to the egress of the conjunctival epithelium.
Thus, for the past three decades much research has been
directed toward understanding the structural, biochemical,
molecular, and cell biological aspects of the limbal versus
corneal epithelial basal cells and their microenvironments
(niches). Broad conclusions drawn from these studies are that
limbal epithelial basal cells are less differentiated than corneal
epithelial basal cells28; have a subpopulation of cells that are
mitotically quiescent27; exhibit a greater proliferative capacity
than corneal epithelial basal cells30; express distinct cell
proteins, such as transporters,31,32 transcription factors,33,34

and keratins,28,35 to name a few; are regulated by microRNAs
that are distinct from corneal epithelia basal cells36–40; and are
supported by a unique basement membrane/stromal inter-
face.26,41–43 Despite this impressive examination of limbal
versus corneal epithelial basal cells, negligible attention has
been directed to macropinocytosis and autophagy, cellular
processes recently demonstrated to be coordinately regulated
(Fig. 3).44

REGULATION OF MACROPINOCYTOSIS AND AUTOPHAGY

IN LIMBAL EPITHELIAL BASAL CELLS

During studies focused on defining the microRNA (miRNA)
expression profiles in limbal versus corneal epithelial basal
cells, we reported that the miRs-103/107 family, which was
preferentially expressed in the limbal epithelium,37 targeted
p90RSK2 to arrest cells in the G0/G1 phase of the cell cycle,
thereby contributing to quiescence; Wnt3a and MAP3K7 to
increase proliferative capacity; NEDD9, which mediates
degradation of E-Cadherin, leading to a loss of cell–cell
contacts; and PTPRM, which controls gap junctions via
repression of Connexin-43, which is a feature of stem cell-
enriched epithelia.37,45 Collectively these findings indicated
that miRs-103/107 regulate key processes associated with stem
cell behavior.

We investigated the global effects of miRs-103/107 on gene
expression in an unbiased manner using antagomirs-103/107 to
knock down endogenous miRs-103/107 in human limbal
epithelial keratinocytes (HLEKs) and conducted an mRNA
profiling study.45 In this analysis, apoptosis, metabolic pro-
cesses and response to stress were major biological events

FIGURE 2. A schematic representation of macropinocytosis. Ras and Src activates Rac1 and cdc42, leading to actin cytoskeleton rearrangement at
the plasma membrane and consequently membrane ruffling. Ruffles may close and trap bulk fluid. Maturation of macropinosomes involve
recruitment of rabankyrin5.

FIGURE 3. A schematic representation of how miRs-103/107 coordinately regulate aspects of both macropinocytosis and autophagy. Loss of miRs-
103/107 has two effects: (1) Such loss upregulates macropinocytosis via targeting NEDD9, SHC3, and ANKFY1, which collectively activates Src/Ras.
This yields numerous vacuoles. (2) Such loss upregulates PLD1 and PLD2, as well as CDK5R1, which inactivates dynamin 1 causing vacuole
retention. Red, direct targets of miRs-103/107; green, key factors; green arrows, upregulation; V, vacuoles; Ly, lysosomes; Nu, nucleus; m,
mitochondria. Reprinted with permission from Park JK, Peng H, Katsnelson J, et al. MicroRNAs-103/107 coordinately regulate macropinocytosis and
autophagy. J Cell Biol. 2016;215:667–685.
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predicted to be affected by this miRNA family.37 Interestingly,
we noted that HLEKs deficient in miRs-103/107 rapidly
developed large vacuoles that originated, in part, from a
dysregulation in macropinocytosis.44 miRs-103/107 regulate
macropinocytosis, in part, at two stages. First, by targeting
NEDD9 and SHC3, Src, and Ras activation are attenuated and
the initiation of macropinocytosis is blocked. Secondly, by
targeting ANKFY1 (Rabankyrin5), miRs-103/107 also inter-
feres with the formation of the macropinosome, which
contributes to the large vacuoles (Fig. 3). It is important to
recognize that these target genes, while functioning in
macropinocytosis, also can impact other cellular processes.

Once formed, why were the large vacuoles retained and not
recycled back to the membrane? The morphology of the
vacuoles was similar to autophagy-related structures. There-
fore, we considered the possibility that a defect in autophagy
was involved in their retention. LC3 is a marker commonly
associated with autophagosomes46 and Rab11 is a marker of
autophagosome maturation.47 Both of these markers colocal-
ized with Lysotracker (a lysosomal marker) on the large
vacuoles, strongly implicating an involvement with autophagy.
Pharmacologic and genetic studies strongly suggested that
large vacuole retention was due to a defect in the end stages of
autophagy and that miRs-103/107 functioned to positively
regulate this aspect of autophagy. This provided us with an
opportunity to unravel the mechanisms underlying the end-
stage defect. In a series of experiments, we focused on the
dynamin/AP2/clathrin complex since this combination has
been implicated in lysosome reformation and clearance.48–50

Dynamin 1 is a GTPase enzyme that functions in endocytosis,
lysosomal reformation, and vacuole clearance. When dynamin
is phosphorylated, phospholipid binding is blocked, effectively
attenuating endocytosis.49,50 Loss of miRs-103/107 inactivated
(phosphorylate) dynamin, which resulted in vacuole retention.
This occurred via two pathways: (1) miRs-103/107 target
CDK5R1,51 which is an activator of CDK5. CDK5 is a kinase for
dynamin52 and, thus, inactivates (phosphorylation) this pro-
tein. By targeting CDK5R1, miRs-103/107 enable dynamin to
be activated. (2) miRs-103/107 target PLD1 and PLD2 which
downregulate phosphatidic acid (PA) and diacylglycerol (DAG)
synthesis and diminishes protein kinase C (PKC) activity.53

Such attenuation of PKC activity dephosphorylates (activates)
dynamin enabling proper end-stage autophagy. Collectively,
our findings reveal that miRs-103/107 coordinately suppress
macropinocytosis and preserve end-stage autophagy, which is
the first demonstration that these two processes can be linked
(Fig. 3). The only other connection between autophagy and
macropinocytosis has been the observation that autophagy-
related proteins (LC3, ATG5, ATG7, and a class III PIP-3-kinase)
can be recruited to macropinosomes and phagosomes.54

However, these investigators suggested that macropinocytosis
and autophagy were independent. The significance of the
commonalities between macropinocytosis and autophagy
needs further investigation.

THE BIOLOGICAL SIGNIFICANCE OF AUTOPHAGY AND

MACROPINOCYTOSIS IN CORNEAL/LIMBAL EPITHELIA

Previous work on autophagy and the ocular surface revealed 15
autophagy-related proteins associated with ocular pathology
(see prior review9); however, many of these proteins are
associated with lysosomal storage disease and/or in keratoco-
nus corneas. Consequently, their involvement in limbal/
corneal epithelial physiology is questionable. An exception is
recent studies in cultured human corneal epithelial cells,
demonstrating that lacritin, a tear-derived epithelial mitogen,55

acetylates FOXO3.56 Such acetylation results in a coupling with

the autophagy-related protein 101 (ATG101) and the subse-
quent initiation of autophagy.56 Lacritin-induced stimulation of
autophagy appears to be a relatively rapid and transient event56

having the potential to enable corneal epithelial cells to quickly
respond to stress.

Preferential expression of a miRNA family in the limbal
epithelium that is involved with maintenance of autophagy
implies that this digestive process may differ in the limbal
versus corneal epithelium. Using mice that transgenically
express a green fluorescent protein (GFP)-labeled LC3 to
assess autophagy,57 we noted that limbal epithelial basal cells
had significantly greater amounts of LC3-positive puncta than
corneal epithelial basal cells44 suggesting greater autophagic
activity in limbal basal cells. Since autophagy is essential for
survival, having a miRNA family that maintains proper end-
stage autophagy, preferentially expressed in the stem cell-
enriched limbal epithelium makes excellent biological sense.
This is particularly germane to stem cells, which require active
elimination of unnecessary proteins and organelles that
accumulate during their quiescence. It is well established that
a subpopulation of stem cells in the limbal basal epithelium
results in this tissue having a high proliferative capacity.27,29

Since numerous studies have shown a positive relationship
between autophagy and stem cell proliferative capacity,7,58–61

we investigated whether modulating autophagy affected the
proliferative status of the limbal epithelium. Indeed, HLEKs
treated with the autophagy inhibitor Bafilomycin, showed a
marked decrease in the ability to form holoclone colonies,
which is an accepted marker of proliferative capacity.37,62

Furthermore, we studied the corneal epithelial wound-induced
proliferative response of mice deficient in Beclin 1, which is
required for the early stages of phagophore formation,13 and
noted a significant reduction in cells in the S phase of DNA
synthesis in these mice, compared to littermate controls. This
suggests that autophagy may be a necessary component for
activation of the limbal epithelial stem cell/transit amplifying
cell populations. Autophagy also may explain, in part, why
stem cell-enriched epithelia, such as the limbal epithelium and
the bulge region of the hair follicle, are relatively connexin 43
(Cx43) poor.63–65 A recent study demonstrated that Cx43 is
degraded by the autophagy machinery.66 Our observations that
autophagy is enhanced in the basal limbal epithelial cells,44

plus the fact that miRs-103/107 are preferentially expressed in
the limbal epithelium,37 is consistent with the idea that this
miRNA family might regulate Cx43 expression by positively
regulating autophagy and targeting the protein tyrosine
phosphatase receptor type M (PTPRM), which negatively
regulates connexin 43-based gap junctions.37

Less clear is the biological significance of macropinocytosis
in corneal/limbal physiology. Since the limbus is highly
vascularized, we speculated that the epithelial cells may not
need macropinocytosis as a means of obtaining nutrients and,
thus, miRs-103/107 serve to prevent dysregulation of this
process. Additionally, as stem cells are believed to be relatively
quiescent, their energy needs might not be as extensive as the
more differentiated corneal epithelial cells, hence a minimal
requirement for rapid uptake of fluids. Our work indicated that
dysregulation of miRs-103/107 in HLEKs or the limbal-derived
corneal cell line (hTCEpi) leads to a rapid and massive
induction of macropinocytotic-derived vacuoles concomitant
with ineffective protein metabolism.44 Human limbal epithelial
keratinocytes and hTCEpi seem to tolerate such large vesicles,
as we did not detect evidence of cell death or necrosis in these
cells. However, macropinocytotic-derived vacuoles in other
cell types and cell lines have been associated with cell
death.17,67 Whether limbal keratinocytes are more resistant to
macropinocytotic-induced cell death is not apparent. None-
theless, our work and that of others17,44,67 indicates that the
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induction of macropinocytosis also can negatively affect cell
metabolism and cell survival when macropinosomes are
involved in vacuole formation.

INGESTION/DIGESTION: GAPS IN KNOWLEDGE FROM

AN ANTERIOR OCULAR SURFACE PERSPECTIVE

Ingestion (Macropinocytosis)

As macropinocytosis has largely been ignored in the anterior
ocular segment, opportunities abound for fruitful research. We
speculated above on why the highly vascularized limbal stroma
might not require the ability of the epithelium to internalize
large quantities of solutes. The question remains does the
corneal epithelium participate in and/or require active macro-
pinocytosis? The lack of miRs-103/107 in the corneal
epithelium implies that regulation against massive or dysreg-
ulated macropinocytosis is absent. It is tempting to think that
the avascular nature of the corneal stroma might require a
macropinosomal mechanism for nutrient uptake by the corneal
basal cells. However, the dogma is that the adult resting
corneal stroma is relatively desiccated, particularly in the
anterior portion,68,69 which would argue against macropino-
cytosis in corneal basal cells. Another source of corneal
epithelial nutrients is the tears, which supply oxygen, as well
as immunologic and growth factors that are critical for
epithelial homeostasis and repair. Conceivably, macropinocy-
tosis could be a means by which superficial and wing cells
‘‘gulp’’ tear fluid for nutrition thereby bypassing the tight
junctions, which serve as a barrier to the diffusion of molecules
by sealing the intercellular space.70 Another role for macro-
pinocytosis might be in response to corneal perturbations. For
example, following wounding the corneal epithelium becomes
compromised and one consequence is stromal swelling.71 In
such a scenario, newly reepithelialized corneal epithelial cells
might use macropinocytosis to uptake excess stromal fluid and
thereby aid in stromal restitution.

Another potential role for macropinocytosis revolves
around interactions with pathogens on the corneal epithelial
surface. We hypothesize a possible involvement of EphA2 with
macropinocytotic activation leading to corneal infections. This
idea is based, in part, on the observation of EphA2 expression
on the surface of corneal epithelial cells.72 The EphA2 receptor
is a member of the Eph receptor tyrosine kinase family and in
many tissues upon interacting with its ligand, ephrin A1, has
been implicated in regulating proliferation, differentiation,
migration, and boundary formation.73 Specifically in the
corneal epithelium, the Eph/ephrin complex affects migra-
tion.72 Importantly, in other tissues and cancer cell lines, the
EphA2 receptor has been implicated as a positive inducer of
macropinocytosis.23,74 For example, the malarial parasite
Plasmodium’s P36 protein activated the extracellular ligand-
binding region of the hepatocyte EphA2 receptor, which was
central in the formation of a protective vacuole made of
hepatocyte membrane.74 Macropinocytosing antibodies target-
ing EphA2 have been shown to be effective in killing a panel of
EphA2-positive tumor cell lines.23 These studies raise the
question of whether corneal epithelial EphA2 may be involved
in macropinocytotic events? One potential role could be in the
Pseudomonas- or Acanthamobea-mediated cell death of
corneal epithelial cells under certain conditions, such as tear
gland insufficiency, where the ocular defense system (e.g., the
surfactant in the tear fluid) is compromised.75 While much
work has been done to identify the binding and epithelial
traversal of these organisms (see prior reports76,77 and
references therein), our understanding of the binding to
specific corneal epithelial receptors is incomplete. We suggest

that during colonization and adherence to the corneal surface,
these organisms may cause clustering of EphA2 receptors,
which can activate macropinocytosis,78,79 and/or secrete
proteins that can activate an EphA2-mediated macropinocy-
totic entry into corneal epithelial cells.74 In support of this
idea, transmission electron microscopy (TEM) of corneal
epithelium from eyes of mice infected with P. aeruginosa

revealed the presence of bacteria within membrane-bound
vacuoles; whether these vacuoles arose via macropinocytosis
was not determined.80 Given the availability of EphA2 null
mice, the idea that macropinocytosis has a role in aiding
pathogen entry into the cornea can be easily tested.

Digestion (Autophagy)

With respect to digestion, while we are beginning to
understand how this process is regulated in the limbal
epithelium, there still are several areas that need attention.
For example, knowledge of the early stages of autophagy has
not been defined from either a regulatory or biochemical
perspective. Does the degradation of intracellular and extra-
cellular material follow the canonical autophagy pathway or
the phagocytic pathway? There is emerging evidence for an
autophagosome-independent role for autophagy proteins in
lysosome fusion and turnover of extracellular substrates (see
the report of Florey et al.54 and references therein). Since
corneal and limbal epithelia have distinct physiologies, are the
degradation processes similar for both epithelia? As mentioned
previously, based on LC3 expression, corneal epithelial basal
cells appear to be less active than their limbal counterparts.44

In contrast, high expression of LC3 was noted in the corneal
wing and superficial cell layers. These regions are in relatively
close approximation to the surface and are the first areas to
experience environmental stresses. Thus, it is not surprising
that autophagy would be active in wing and superficial cells.
Another consideration is the idea that autophagy might have a
role as a mediator of early differentiation. In many tissues,
autophagy is highly active during differentiation (see the study
of Mizushima and Levine,81 and references therein). Thus, we
reason that the marked LC3 expression in superficial cells may,
in part, reflect a role for autophagy-related proteins as initiators
of early differentiation in these cells. When HaCaT cells (a
keratinocyte cell line) were induced to differentiate, release of
Beclin 1 and enhancement of ATG12 and LC3II were noted,
suggestive that autophagy might have a role in the early stages
of differentiation.82 Recently, the molecular machinery in-
volved in the removal of nuclei (nucleophagy) during the end-
stages of keratinization have been detailed and this form of
autophagy was demonstrated to be induced when keratino-
cytes differentiate.83,84 Taken together these observations raise
questions of how autophagy is regulated in the corneal
epithelium and the role of autophagy and nucleophagy in
corneal epithelial differentiation. We have preliminary evi-
dence implicating a regulatory role for miR-184, which is the
most highly expressed corneal epithelial miRNA.38 miR-184
was initially shown to function in the corneal epithelium by
inhibiting miR-205, which targeted the tumor suppresser
SHIP2.40 By preserving SHIP2 levels in the corneal epithelium,
proper Akt signaling was assured, which maintained corneal
epithelial survival.40 More recently, miR-184 was shown to
have angiostatic properties and, thus, functioned in maintain-
ing corneal avascularity.85,86 Other functions for miR-184 in the
corneal epithelium have been lineage specification,39 control-
ling familial severe keratoconus as well as cataract forma-
tion.87,88 We now have evidence (unpublished observations)
that miR-184 targets the Nogo-B receptor (NUS1). The Nobo-B
receptor stabilizes Neimann-Pick Type C2 protein (NPC2),89

which is required for the proper clearance of autophagosomes
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and, thus, has a role in regulation of autophagy-lysosomal
activity.90,91 We posit that miR-184 targeting of NUS1 leads to a
failure of NPC2 to maintain proper autophagic flux, which is
detected by a decrease in LC3 activity in corneal epithelial
basal cells.44 In support of this idea is the reciprocal
association of miR-184 and LC3 expression in the corneal
epithelium. miR-184 is primarily detected in corneal epithelial
basal cells, with little expression in wing and superficial cells.38

Conversely, LC3 pucta are low to absent in basal cells and high
in wing and superficial cells. It is important to remember that
all cells have autophagic capability, including corneal epithelial
basal cells. A major gap in our knowledge is the mechanism(s)
that corneal epithelial basal cells use to invoke autophagy
during normal and pathologic conditions.

CONCLUSIONS

The corneal/limbal epithelial system has enhanced our
understanding of the biology of epithelial stem cells and their
transient amplifying cell progeny, due, in part, to the distinct
morphogenetic characteristics of these adjacent tissues. We
believe there is an equal opportunity for similar advances to be
made in our fundamental knowledge of autophagy and
macropinocytosis using the corneal/limbal epithelia as a
model. For example, we showed that aspects of autophagy
and macropinocytosis are regulated by miRs-103/107 and
others have shown biochemical commonality.54 The biological
significance of this interrelationship requires a more in depth
interrogation. It is apparent that aspects of each of these
processes are regulated differently in the corneal and limbal
epithelia. We also know that within either the limbal or corneal
epithelium the activity of these processes may vary from basal
to the outermost cells. Many of the observations have been
made using submerged culture systems. While this has been a
logical starting point, we live in a three-dimensional world and
much work must be done using 3D-organotypic raft culture
systems and/or mouse models. Ultimately, our concepts
concerning autophagy and macropinocytosis must be investi-
gated in the context of common pathologies of the corneal/
limbal epithelia, such as pathogenic infections, dry eye,
aberrant wound healing, and diabetic keratopathies. With the
library of mouse models for human disease steadily increasing,
we anticipate answers to many of these questions in the not
too distant future.
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