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Simple Summary: Milk proteins are one of the most valuable milk components. The objective of
the present study was to assess sources of variation of detailed protein composition predicted from
infrared spectra in milk of dairy and dual-purpose cattle breeds. Results showed that protein fractions
were primarily influenced by days in milk, and the relative proportion of each fraction through
lactation was not constant. Protein fractions correlated with crude protein, total casein, fat and milk
urea nitrogen. In perspective, mid-infrared predictions of milk fractions could be useful for the dairy
sector to improve nutritional and technological properties of milk.

Abstract: This study aimed to investigate factors affecting protein fractions, namely α-casein (α-CN),
β-casein (β-CN), κ-casein (κ-CN), β-lactoglobulin (β-LG) and α-lactalbumin (α-LA) predicted from
milk infrared spectra in milk of dairy and dual-purpose cattle breeds. The dataset comprised 735,328
observations from 49,049 cows in 1782 herds. Results highlighted significant differences of protein
fractions in milk of the studied breeds. Significant variations of protein fractions were found also
through parities and lactation, with the latter thoroughly influencing protein fractions percentage.
Interesting correlations (r) were estimated between β-CN, κ-CN and β-LG, expressed as percentage
of crude protein, and milk urea nitrogen (r = 0.31, −0.20 and −0.26, respectively) and between
α-LA and fat percentage (r = 0.41). The present study paves the way for future studies on the
associations between protein fractions and milk technological properties, and for the estimation of
genetic parameters of predicted protein composition.
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1. Introduction

Milk proteins are one of the most valuable components among milk constituents. This is mainly
due to the wide array of nutritional, nutraceutical and technological properties they are endowed
with. First, milk and dairy products are major sources of proteins in the human diet, both in terms of
recommended daily intake and biological value [1]. Second, milk and whey proteins, and peptides
derived from their metabolic hydrolysis, have nutraceutical properties, such as antibacterial, antiviral,
antifungal and antioxidant activity [2]. Adequate milk protein intake, together with calcium and
vitamin D, results in decreased bone fracture and osteoporosis risk [3]. Third, caseins are primarily
involved in the cheese-making process, since they are the only milk constituents reacting to rennet
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and are mainly responsible for milk coagulation properties and yield, retaining also other milk
components and water in the caseinate complex [4]. Casein fractions influence milk coagulation
properties; in particular, κ-casein (κ-CN) and α-casein (α-CN) proportions have positive effects on curd
firming time and curd firmness [5]. At the same time, whey proteins have been reported to influence
curd properties, for example, α-lactalbumin (α-LA) has been demonstrated to improve the rate of
firming and curd firmness, contrary to β-lactoglobulin (β-LG) [6].

For all these reasons, milk protein content is included in the quality-based payment systems of
many dairy companies [7] as well as in the selection indexes of different breeds and countries [8].
Accordingly, the possibility of characterizing not only total protein or total casein content but
also specific protein fractions at population level could be of great interest in order to genetically
improve the milk aptitude to coagulate, considering the influence that milk proteins have on milk
coagulation properties and cheese yield [5]. Quantification of total milk proteins and caseins is
based on the Kjeldahl method, whereas qualitative and quantitative analyses of detailed milk protein
composition are based on High Performance Liquid Chromatography (HPLC) [9–11]. Such techniques,
commonly recognised as reference or gold standard methods, are not adequate for the acquisition
of phenotypic information at population level due to their high demand in terms of costs, time and
trained personnel [12]. For these reasons, large-scale collection of protein fractions is still partially
hampered, thus preventing their inclusion in breeding programmes and in quality-based payment
systems. Mid-infrared spectroscopy (MIRS) has been recognized as a reliable, fast and cost-effective
tool for the prediction of milk phenotypes, including total protein and casein content [13]. Moreover,
an advantage of MIRS is the possibility to retroactively apply calibration models and thus study the
temporal variation of novel traits when spectra are properly stored and standardized [14]. Recently,
the feasibility of characterizing detailed milk protein composition using mid-infrared prediction models
has been investigated [11], and population-level studies have been conducted [15,16].

To our knowledge, there is a paucity of information on the fine protein composition of cow milk
predicted from mid-infrared spectra at population level. Therefore, the objectives of the present study
were to (i) assess sources of variation of detailed milk protein composition predicted by MIRS in a
large database of dairy and dual-purpose cattle breeds, and (ii) estimate the correlations between the
milk content of protein fractions and other milk traits.

2. Materials and Methods

2.1. Data Collection

Data and spectra information of 2,119,143 milk analyses of fat, crude protein (CP) and casein
percentage, and milk urea nitrogen (MUN, mg/dL) collected between January 2011 and December
2017 were provided by the South Tyrolean Dairy Association (Bolzano, Italy). Milk yield (kg/day) and
somatic cell count (SCC, cells/µL) were also available. Information on herds and cows were provided
by the Breeders Association of Bolzano Province (Bolzano, Italy). Milk samples were from 128,328
Holstein-Friesian (HF), Brown Swiss (BS), Simmental (SI), Alpine Grey (AG) and Pinzgauer (PI) cows
farmed in 4453 single-breed herds. The average size of herds under milk recording in this mountainous
area is small and animals are fed forage or hay and concentrates. Between 15% and 20% of the farms
move their cows to highland pastures in late spring or early summer, and during the highland sojourn
animals have access to grazing.

Immediately after collection, 50 mL of milk samples were added with 200 µL of preservative
(Bronysolv; ANA.LI.TIK Austria, Vienna, Austria) and processed in the laboratory of the South Tyrolean
Dairy Association according to the guidelines of the International Committee for Animal Recording
for milk quality analyses. Fat, CP and casein percentages, and MUN content were determined using
MilkoScan FT6000 or MilkoScan FT7 (FOSS Electric A/S, Hillerød, Denmark). To offset changes
in instrumental response and ensure the comparability of spectra between MilkoScan FT6000 and
MilkoScan FT7, the two instruments were routinely calibrated using a standard sample, according to
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the manufacturer instructions [17]. Principal component analysis on spectra did not show significant
differences between the two instruments. Somatic cell count was determined using a Cell Fossomatic
(FOSS Electric A/S, Hillerød, Denmark) and transformed to somatic cell score (SCS) with the following
formula: SCS = log2 (SCC/100) + 3. Spectral data from 5000 to 900 cm−1 were used to develop MIRS
models to predict detailed milk protein composition.

2.2. MIRS Calibration Models

Detailed milk protein composition was predicted using equations developed by Niero et al.
(2016) [11]. Briefly, 114 samples from the same area of the present study were collected and analysed
for α-CN, β-casein (β-CN), κ-CN, β-LG and α-LA contents through HPLC (Agilent 1260 Series;
Agilent Technologies, Santa Clara, CA, USA). Samples preparation and protein fractions separation
were carried out following the procedure of Maurmayr et al. (2013) [18]. Spectral regions corresponding
to water noise absorption (1700 to 1600 cm−1 and 3660 to 3040 cm−1) were discarded. Calibrations
were developed using SAS software ver. 9.4 (SAS Institute Inc., Cary, NC, USA). Partial least
squares regression analysis coupled with uninformative variable elimination procedure was performed
following the approach developed by Gottardo et al. (2015) [19]. Ratio performance deviation in
leave-one-out cross-validation (root mean square error in cross-validation) was 2.86 (1.05 mg/mL)
for α-CN, 1.60 (0.53 mg/mL) for β-CN, 2.03 (0.88 mg/mL) for κ-CN, 1.34 (1.10 mg/mL) for β-LG and
1.30 (0.10 mg/mL) for α-LA [11]. For the purpose of the present study, protein fractions were expressed
in absolute concentration (mg/mL) and as a percentage of CP.

2.3. Data Editing and Statistical Analyses

In the present study, days in milk (DIM) between 5 and 305 days, and parity between 1 and 15
were considered. Lactations with less than three test day records were discarded from the dataset.
Observations from cows that changed herd during the investigated period were removed. The final
dataset consisted of 735,328 records from 49,049 cows and 1782 single-breed herds, collected between
January 2011 and December 2017 during the official monthly test day recording. Records were from two
dairy (HF, n = 6271 cows; BS, n = 15,556 cows) and three dual-purpose cattle breeds (SI, n = 16,836 cows;
AG, n = 9202 cows; PI, n = 1184 cows). Spectra outliers were identified by calculating the Mahalanobis
distance between the data point (spectrum) and the centroid of the spectra cluster. Predicted milk
protein fractions were set to missing if outside the range of the reference data used for calibrations.
For all studied traits, values deviating more than 3 standard deviations from the corresponding trait
mean were set to missing.

Sources of variation of detailed milk protein composition and traditional milk traits were
investigated using the HPMIXED procedure of SAS software ver. 9.4 (SAS Institute Inc., Cary, NC,
USA), according to the following linear model:

yijklmno = µ + Bi + Mj + Yk + Sl + Pm + (B ×M)ij + (B × S)il + (B × P)im + (S × P)lm + Hn(Bi) + Co(Bi) + eijklmno

where yijklmno is the analysed trait; µ is the overall intercept of the model; Bi is the fixed effect of the
ith breed (i = HF, BS, AG, SI, PI); Mj is the fixed effect of the jth month of sampling (j = 1 to 12); Yk is
the fixed effect of the kth year of sampling (k = 2011 to 2017); Sl is the fixed effect of the lth DIM class
of the cow (l = 1 to 30; 10-day classes); Pm is the fixed effect of the mth parity of the cow (m = 1 to 5,
with class 5 including cows of parity ≥ 5); (B ×M)ij is the fixed interaction effect between breed and
month of sampling; (B × S)il is the fixed interaction effect between breed and DIM class; (B × P)im is the
fixed interaction effect between breed and parity; (S × P)lm is the fixed interaction effect between DIM
class and parity; Hn(Bi) is the random effect of the nth herd nested within the ith breed ~N(0,σ2

H(B));
Co(Bi) is the random effect of the oth cow nested within the ith breed ~N(0,σ2

C(B)); and eijklmno is the
random residual ~N(0,σ2

e). Because of the data structure (herd nested within breed), the significance
of the breed effect was tested on herd within breed variance. A multiple comparison of means was
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performed for the main effect of breed, using Bonferroni’s test (p < 0.05). Finally, Pearson correlations
between residuals of milk production traits and detailed protein composition were assessed using the
CORR procedure of SAS.

3. Results and Discussion

In the present study, only data from single-breed herds were available for statistical investigation.
No detailed information on diet and management of the cows was available; however, feeding strategies
of the herds were based on requirements and production levels of their breeds, and thus the
breed-estimated effect could also include a part of the farming conditions (herd) effect. For this
reason, a nested approach has been used, similarly to previous papers [20,21].

3.1. Descriptive Statistics

Descriptive statistics and proportion of phenotypic variance accounted by cow and herd effects
for milk yield, composition, SCS, MUN and detailed milk protein composition are reported in Table 1.
Milk yield averaged 23.45 kg/day, and means of fat, CP, casein, SCS and MUN were 4.03%, 3.46%,
2.72%, 2.48 and 21.19 mg/dL, respectively. Averages of milk yield and composition traits observed
in the present study were comparable with values reported by Penasa et al. (2014) [22], who studied
milk coagulation properties of HF, BS and SI cows in multi-breed herds, and Visentin et al. (2018) [21],
who assessed the phenotypic variation of major milk mineral content in HF, BS, AG and SI cows in
single-breed herds.

Table 1. Mean, standard deviation (SD), range, coefficient of variation (CV) and percentage of
phenotypic variance accounted by cow (σ2

c) and herd (σ2
h) for milk yield, milk composition, somatic

cell score (SCS), milk urea nitrogen (MUN) and detailed protein composition of cow milk.

Traits Mean SD Range CV (%) σ2
c (%) σ2

h (%)

Milk yield (kg/day) 23.45 7.41 44.70 31.61 24.63 35.09

Milk composition (%)
Fat 4.03 0.65 4.49 16.16 25.58 7.65
Crude protein 3.46 0.38 2.45 11.06 40.62 17.48
Casein 2.72 0.30 1.90 10.93 41.78 17.40

SCS 2.48 1.78 11.18 72.02 29.52 8.88

MUN (mg/dL) 21.19 7.17 43.60 33.83 14.70 20.27

Protein fractions (mg/mL)
α-casein 14.30 1.78 10.88 12.43 35.67 18.12
β-casein 10.45 1.64 10.03 15.71 37.56 10.50
κ-casein 7.30 0.96 5.91 13.18 36.53 11.57
β-lactoglobulin 1.82 0.77 4.29 42.45 44.76 7.22
α-lactalbumin 0.70 0.15 0.22 21.43 22.67 6.98

Protein fractions (% of crude protein)
α-casein 41.36 1.90 35.80 4.59 21.46 9.58
β-casein 30.48 3.69 47.81 12.12 36.15 9.63
κ-casein 21.25 2.12 34.34 9.97 28.30 13.18
β-lactoglobulin 5.23 2.13 18.64 40.82 45.63 6.83
α-lactalbumin 2.02 0.31 3.25 15.47 8.11 2.62

Means for protein fractions were 14.30, 10.45, 7.30, 1.82 and 0.70 mg/mL of milk for α-CN, β-CN,
κ-CN, β-LG and α-LA, respectively, and the corresponding means for protein fractions expressed as
percentage of CP were 41.36%, 30.48%, 21.25%, 5.23% and 2.02%, respectively (Table 1). Quantifications
of milk proteins obtained in the present study were consistent with detailed protein composition
determined by HPLC in the milk of HF and Jersey breeds [23]. The amount of total κ-CN was slightly
greater than that reported by other authors, and this was probably due to the high incidence of BS cows
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in the present study (32% of total animals) and to farming systems that favoured milk composition
rather than milk yield [24].

The greatest proportion of phenotypic variance explained by herd effect was estimated for milk
yield (35.09%) and MUN (20.27%), meaning that farm management and feeding system were important
for these features. For all other traits, the cow was more important than the herd effect in explaining
the phenotypic variation; in particular, values ranged from 25.58% (fat percentage) to 41.78% (casein
percentage) for milk quality traits, and among milk protein fractions they were lowest for α-LA
and greatest for β-LG, regardless of the unit of measurement (Table 1). Overall, the result for β-LG
reflects the fact that protein and its fractions are only partially affected by variations in nutrition and
management [25]. Considering that this protein fraction has been identified as one of the major milk
allergens, strategies such as genetic selection might be of particular interest to decrease its content in
milk and develop hypoallergenic milk and functional foods [26].

3.2. Breed Effect

To our knowledge, this is one of the first studies that has used historical spectra information to
predict protein composition in different dairy and dual-purpose cattle breeds. Bonfatti et al. (2017) [9]
studied milk protein composition using predicted protein phenotypes from a large spectra database of
Italian SI cows. Even if some studies about milk protein composition have been published recently,
all of them investigated the phenotypic and genetic variation of milk protein composition using HPLC
on a limited number of samples. Moreover, concerning the two dual-purpose breeds (AG and PI),
their detailed protein composition has been characterized for the first time in the present study.

Table 2 reports the least squares means (LSMs) of milk yield, composition, SCS, MUN and detailed
protein fractions for HF, BS, SI, AG and PI breeds. Alpine Grey and HF had the lowest (17.10 kg/day)
and the highest milk yield (28.43 kg/day), respectively. Regarding chemical composition, fat, CP and
casein percentages were greater for BS cows than for other breeds, and SI cows had significantly lower
SCS (2.45) than other breeds, with SCS from 2.62 (AG) to 2.85 (BS). Milk urea nitrogen ranged from
19.04 mg/dL (HF) to 21.74 mg/dL (AG). Overall, detailed milk protein composition varied significantly
across breeds. In particular, BS cows showed the greatest amount of all casein fractions and the lowest
amount of β-LG when expressed as mg/mL (p < 0.05), whereas HF exhibited the lowest amount of
caseins, even if not significantly different from PI, and α-LA. The greatest β-LG content (mg/mL) was
observed in the milk of SI cows (p < 0.05).

Cipolat-Gotet et al. (2018) [27] determined detailed milk protein composition of 1264 Italian BS
samples through reversed phase HPLC and results showed that protein fraction contents were similar
to those reported in the current study, except for κ-CN, which will be discussed more in details later
on, and β-LG. Differences in the latter were probably determined by the wider lactation range in the
study of Cipolat-Gotet et al. (2018) [27] compared with the present work.

In order to investigate differences in the relative proportion of protein fractions, LSMs were
estimated for proteins expressed as g/100 g of CP. As a result, α-CN differed slightly among breeds,
with values between 41.12% (AG) and 41.75% (SI), whereas β-CN, κ-CN and α-LA were significantly
greater in BS (31.81%, 21.99% and 2.10%, respectively) compared with other breeds. The lowest
concentration of β-CN (29.28%) was estimated for SI, and the lowest concentration of κ-CN was
obtained for HF (20.76%) and SI (20.81%). Finally, β-LG ranged from 4.34% (BS) to 5.91% (HF).

Relative proportions of α-CN and β-LG percentage in HF breed (41.64% and 5.91%, respectively)
were lower compared with results of Schopen et al. (2009) [28] in first-parity Dutch HF cows,
whereas β-CN was higher compared with the same study (30.44% and 27.17%, respectively).
Such differences can be attributed to the different cow parities and lactation stages included in
the sampling, to diversities in farming system and area, and to the lower relative amount of κ-CN
observed in the study of Schopen et al. (2009) [28]. Those authors determined only non-glycosylated
mono-phosphorylated κ-CN using capillary zone electrophoresis, and this can explain the lower κ-CN
percentage compared with that obtained in our study. Such hypothesis is corroborated by κ-CN
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determined in the study of McDermott et al. (2017) [15], which is consistent with the κ-CN reported
in the present study. Previous reports predicted protein fractions content of the SI cattle breed from
infrared spectra. Compared with Bonfatti et al. (2017) [9], lower α-CN and β-LG and higher β-CN and
κ-CN were found in the present study. Such differences could be attributed to the same factors already
discussed for HF.

Table 2. Least squares means (SE in parentheses) of milk yield, milk composition, somatic cell score (SCS),
milk urea nitrogen (MUN) and detailed protein composition of different cow breeds 1.

Traits Brown Swiss Holstein-FriesianSimmental Alpine Grey Pinzgauer

Milk yield (kg/day) 23.33 (0.13) a 28.43 (0.26) b 23.19 (0.14) a 17.10 (0.17) c 19.99 (0.55) d

Milk composition (%)
Fat 4.20 (0.01) a 4.02 (0.01) b 4.05 (0.01) b 3.84 (0.01) c 4.00 (0.03) b

Crude protein 3.58 (0.01) a 3.27 (0.01) b 3.45 (0.01) c 3.44 (0.01) d 3.40 (0.02) d

Casein 2.81 (0.01) a 2.56 (0.01) b 2.71 (0.01) c 2.70 (0.01) c 2.67 (0.02) c

SCS 2.85 (0.02) a 2.73 (0.04) ab 2.45 (0.02) c 2.62 (0.03) b 2.79 (0.09) ab

MUN (mg/dL) 21.64 (0.13) a 19.04 (0.26) b 20.22 (0.14) c 21.74 (0.16) a 20.19 (0.54) abc

Protein fractions (mg/mL)
α-casein 14.85 (0.03) a 13.62 (0.05) b 14.41 (0.03) c 14.13 (0.03) d 13.96 (0.11) bd

β-casein 11.27 (0.02) a 9.93 (0.04) b 10.09 (0.02) c 10.69 (0.02) d 10.18 (0.08) bc

κ-casein 7.81 (0.01) a 6.77 (0.02) b 7.16 (0.01) c 7.40 (0.01) d 7.24 (0.05) cd

β-lactoglobulin 1.56 (0.03) a 1.94 (0.02) b 2.05 (0.01) c 1.62 (0.01) d 1.70 (0.04) d

α-lactalbumin 0.75 (0.01) a 0.66 (0.01) b 0.71 (0.01) c 0.69 (0.01) d 0.69 (0.01) cd

Protein fractions (% of crude protein)
α-casein 41.59 (0.02) a 41.64 (0.04) ab 41.75 (0.02) b 41.12 (0.03) c 41.18 (0.09) c

β-casein 31.81 (0.04) a 30.44 (0.09) b 29.28 (0.05) c 31.25 (0.06) d 30.08 (0.18) b

κ-casein 21.99 (0.03) a 20.76 (0.05) b 20.81 (0.03) b 21.63 (0.03) c 21.46 (0.11) c

β-lactoglobulin 4.34 (0.02) a 5.91 (0.05) b 5.89 (0.02) b 4.66 (0.03) c 4.97 (0.10) c

α-lactalbumin 2.10 (0.01) a 2.01 (0.01) bc 2.05 (0.01) d 2.00 (0.01) b 2.03 (0.01) cd

1 Least squares means with different superscript letters within a row are significantly different (p < 0.05).

3.3. Effects of Parity, Lactation Stage and Season

Variations of protein fractions across different parities and breeds are depicted in Figure 1.
All caseins andα-LA, expressed as mg/mL of milk, followed a trend similar to that of CP (Supplementary
Figure S1), with the greatest amount in second-parity cows and a decreasing content in later parities.
The same trend was not so clear for β-LG, which showed only slight variations across different parities.
Switching to protein fractions expressed as percentage of CP, α-CN and κ-CN increased in milk of
older compared with first- and second-parity cows, with a more obvious trend for specialized dairy
breeds (HF and BS). Conversely, β-CN and α-LA decreased with parity order, and β-LG remained
almost stable.

Figure 2 depicts the LSMs of predicted protein composition across lactation for HF, BS, AG, SI and
PI breeds. Overall, the trend of milk protein composition measured as mg/mL across DIM mirrored
that of CP (Supplementary Figure S2). Interestingly, protein fractions percentages showed important
variations across DIM. In particular, α-CN decreased from 5 to 45 DIM and then slightly increased
until 305 DIM, with different trends among breeds, and β-CN increased until 125 to 155 DIM and
slightly decreased thereafter. A constant decrease of κ-CN was observed through the entire lactation,
with a more gradual slope for HF. The variation of milk protein fractions across lactation may explain
the trend of milk technological properties described in previous reports on the same breeds and study
area [29,30]. Finally, β-LG and α-LA decreased until 75 DIM and increased during the remaining part
of the lactation. Such trends for β-LG and α-LA resemble those recorded by Niero et al. (2016) [24] and
Maurmayr et al. 2018 [31] who measured β-LG and α-LA using HPLC. Higher percentage of β-LG
in early lactation could be associated with the biological function of this protein fraction in newborn
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calves, with particular regard to its ability to increase the absorption of small hydrophobic ligands
such as retinol and fatty acids [32].Animals 2019, 9, x 7 of 14 

 
Figure 1. Least squares means of (A) α-casein (α-CN), (B) β-casein (β-CN), (C) κ-casein (κ-CN), (D) 
β-lactoglobulin (β-LG) and (E) α-lactalbumin (α-LA) across parity for Brown Swiss (-♦-), Holstein-
Friesian (-□-), Alpine Grey (-△-), Simmental (-●-) and Pinzgauer (-×-) cows, expressed as mg/mL of 
milk (on the left side) or percentage of crude protein (on the right side). 
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Figure 1. Least squares means of (A) α-casein (α-CN), (B) β-casein (β-CN), (C) κ-casein (κ-CN),
(D) β-lactoglobulin (β-LG) and (E) α-lactalbumin (α-LA) across parity for Brown Swiss (-�-),
Holstein-Friesian (-�-), Alpine Grey (-4-), Simmental (-�-) and Pinzgauer (-×-) cows, expressed as
mg/mL of milk (on the left side) or percentage of crude protein (on the right side).
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Figure 2. Least squares means of (A) α-casein (α-CN), (B) β-casein (β-CN), (C) κ-casein (κ-CN),
(D) β-lactoglobulin (β-LG) and (E) α-lactalbumin (α-LA) across lactation for Brown Swiss (-�-),
Holstein-Friesian (-�-), Alpine Grey (-4-), Simmental (-�-) and Pinzgauer (-×-) cows, expressed as
mg/mL of milk (on the left side) or percentage of crude protein (on the right side).

Regarding monthly variation of the amount of protein fractions (mg/mL of milk), caseins and
α-LA followed the same trend as CP (Supplementary Figure S3), with a general decrease during the
summer period and the minimum in June–July (Figure 3). Such trend was previously reported by
Bernabucci et al. (2015) [33] and was correlated to heat stress affecting cows during summer. On the
contrary, β-LG increased during the summer period, probably due to its immunomodulatory role.
Percentage of α-CN showed two major peaks in April and July, whereas κ-CN (%) slightly decreased
during summer, with a minimum in July, and β-CN (%) exhibited only small variations across months
of sampling. Finally, β-LG (%) slightly increased between May and September, and α-LA (%) had
an erratic trend, with the greatest percentage in November. Similar trends for protein fractions were
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reported by Bernabucci et al. (2015) [33]. Seasonal impacts on protein fractions could be the result of
the pasture system applied in alpine areas during summer [34].
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Figure 3. Least squares means of (A) α-casein (α-CN), (B) β-casein (β-CN), (C) κ-casein (κ-CN),
(D) β-lactoglobulin (β-LG) and (E) α-lactalbumin (α-LA) across month of sampling for Brown Swiss
(-�-), Holstein-Friesian (-�-), Alpine Grey (-4-), Simmental (-�-) and Pinzgauer (-×-) cows, expressed as
mg/mL of milk (on the left side) or percentage of crude protein (on the right side).
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3.4. Correlations

All Pearson correlations (r) between the studied traits were different from zero (p < 0.001; Table 3).
Correlations between protein fractions expressed as mg/mL ranged from −0.21 (β-LG and β-CN) to
0.56 (α-CN and β-CN, and β-CN and κ-CN). Moderate relationships were observed between α-CN and
κ-CN (r = 0.52), and α-CN and α-LA (r = 0.42), and weak correlations were observed between β-LG
and other protein fractions (r = −0.21 to 0.24). Regarding protein fractions expressed as percentage
of CP, correlations ranged from −0.53 (β-CN and β-LG) to 0.37 (β-CN and κ-CN). In particular,
β-LG was moderately negatively correlated with β-CN (r = −0.53) and κ-CN (r = −0.42), and κ-CN
was moderately positively correlated with β-CN (r = 0.37).

Protein fractions expressed as mg/mL were moderately to strongly associated with CP and total
casein (r = 0.32 to 0.89), and weakly negatively associated with milk yield (r = −0.16 to −0.06; Table 3),
which is consistent with a dilution effect of milk components at higher milk yield [35]. Overall,
milk protein fractions were also weakly associated with fat percentage, SCS and MUN (r = −0.24 to
0.26), except for a moderate correlation between α-LA and fat percentage (r = 0.41). Correlations
of protein fractions, expressed on CP, with milk yield, composition, SCS and MUN were generally
weak (r = −0.26 to 0.31), except for a moderate relationship between α-LA and fat percentage (r = 0.41;
Table 3). Differences in the magnitude of correlations between MUN and milk protein fractions probably
underline that each protein fraction has a different impact on nitrogen conversion efficiency [36].
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Table 3. Pearson correlations, calculated using linear model residuals, between milk yield (MY), milk composition, somatic cell score (SCS), milk urea nitrogen (MUN),
and detailed protein composition of cow milk.

Trait 1 MY,
kg/d

Fat,
%

CP,
%

Casein,
% SCS MUN,

mg/dL
α-CN,
mg/mL

β-CN,
mg/mL

κ-CN,
mg/mL

β-LG,
mg/mL

α-LA,
mg/mL

α-CN,
%

β-CN,
%

κ-CN,
%

β-LG,
%

Fat, % −0.03
CP, % −0.18 0.14
Casein, % −0.14 0.17 0.98
SCS −0.11 0.08 0.10 0.07
MUN, mg/dL 0.02 0.04 0.02 −0.02 −0.02
α-CN, mg/mL −0.14 0.15 0.89 0.86 0.07 0.04
β-CN, mg/mL −0.06 −0.02 0.53 0.48 −0.01 0.26 0.56
κ-CN, mg/mL −0.06 0.20 0.58 0.55 0.09 −0.15 0.52 0.56
β-LG, mg/mL −0.16 −0.06 0.32 0.34 0.06 −0.24 0.24 −0.21 −0.11
α-LA, mg/mL −0.08 0.41 0.46 0.48 0.07 0.02 0.42 0.18 0.30 0.10
α-CN, % −0.02 0.11 0.23 0.20 −0.01 0.07 0.64 0.30 0.14 −0.04 0.13
β-CN, % 0.04 −0.11 −0.05 −0.10 −0.07 0.31 0.05 0.81 0.27 −0.49 −0.11 0.20
κ-CN, % 0.07 0.15 −0.12 −0.14 0.04 −0.20 −0.11 0.24 0.72 −0.41 −0.01 −0.04 0.37
β-LG, % −0.13 −0.09 0.12 0.15 0.04 −0.26 0.06 −0.35 −0.24 0.97 0.01 −0.09 −0.53 −0.42
α-LA, % −0.02 0.41 0.13 0.16 0.03 0.02 0.13 −0.01 0.11 −0.01 0.93 0.05 −0.10 0.03 −0.03

Abbreviations are as follows: CP, crude protein; α-CN, α-casein; β-CN, β-casein; κ-CN, κ-casein; β-LG, β-lactoglobulin; α-LA, α-lactalbumin. All correlations are different from zero
(p < 0.001).
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4. Conclusions

The prediction of detailed milk protein composition from milk mid-infrared spectra provided
the opportunity to characterize sources of variation and phenotypic correlations for such important
economic traits. The present study focused on five cow breeds, two dairy (BS, HF) and three
dual-purpose (SI, AG, and PI), in single-breed herds. As a result, breed and lactation stage largely
affected milk protein composition. Among the studied breeds, milk of BS showed the greatest amount
of caseins, in particular κ-CN, which is important due to its impact on cheese-making properties.
Further studies will focus on the estimation of genetic parameters for protein fractions and on the effect
of milk protein composition on technological traits at population level.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2615/9/4/176/s1,
Figure S1: Least squares means of (a) crude protein (CP), (b) casein and (c) milk urea nitrogen (MUN) across
parity for Brown Swiss (-�-), Holstein-Friesian (-�-), Alpine Grey (-4-), Simmental (-�-) and Pinzgauer (-×-) cows;
Figure S2: Least squares means of (a) crude protein (CP), (b) casein and (c) milk urea nitrogen (MUN) across
lactation for Brown Swiss (-�-), Holstein-Friesian (-�-), Alpine Grey (-4-), Simmental (-�-) and Pinzgauer (-×-)
cows, Figure S3: Least squares means of (a) crude protein (CP), (b) casein and (c) milk urea nitrogen (MUN)
across month of sampling for Brown Swiss (-�-), Holstein-Friesian (-�-), Alpine Grey (-4-), Simmental (-�-) and
Pinzgauer (-×-) cows.
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