

Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

Rachel P. Rosovsky MD

Division of Hematology, Department of Internal Medicine, Massachusetts
General Hospital, Boston, MA, United States of America
Harvard Medical School, Boston, MA, United States of America
E-mail address: rprosovsky@mgh.harvard.edu.

Jennifer S. Andonian MPH Division of Emergency Preparedness, Massachusetts General Hospital, Boston, MA, United States of America E-mail address: jandonian@mgh.harvard.edu.

Bryan D. Hayes PharmD Department of Pharmacy, Massachusetts General Hospital, Boston, MA, United States of America Harvard Medical School, Boston, MA, United States of America E-mail address: bdhayes@mgh.harvard.edu.

13 December 2019

https://doi.org/10.1016/j.ajem.2019.12.051

References

- Regulatory Focus. House committee seeks FDA briefing on heparin supply. Available at https://www.raps.org/news-and-articles/news-articles/2019/7/house-committeeseeks-fda-briefing-on-heparin-supp, Accessed date: 22 December 2019.
- [2] The Washington Post. African swine fever has killed millions of Chinese pigs around the world and U.S. pork producers fear they could be hit next. Available at https:// www.washingtonpost.com/business/2019/10/16/terrible-pandemic-is-killing-pigsaround-world-us-pork-producers-fear-they-could-be-next/, Accessed date: 22 December 2019.
- [3] ASHP. Drug shortage list. Current drug shortage bulletins. Available at https://www.ashp.org/Drug-Shortages/Current-Shortages/Drug-Shortages-List?page= CurrentShortages&sort=1#, Accessed date: 22 December 2019.
- [4] Koopman MM, Prandoni P, Piovella F, Ockelford PA, Brandjes DP, Meer Van Der, et al. Treatment of venous thrombosis with intravenous unfractionated heparin administered in the hospital as compared with subcutaneous low-molecular-weight heparin administered at home. New England Journal of Medicine 1996;334(11):682–7.
- [5] Agnelli G, Buller HR, Cohen A, Curto M, Gallus AS, Johnson M, et al. Oral apixaban for the treatment of acute venous thromboembolism. New England Journal of Medicine 2013;369(9):799–808.
- [6] Einstein Investigators. Oral rivaroxaban for symptomatic venous thromboembolism. New England Journal of Medicine 2010;363:2499–510.
- [7] Kabrhel C, Rosovsky R, Baugh C, Connors J, White B, Giordano, et al. Multicenter implementation of a novel management protocol increases the outpatient treatment of pulmonary embolism and deep vein thrombosis. Acad Emerg Med 2019;26(6):657–69.
- [8] Prucnal CK, Jansson PS, Deadmon E, Rosovsky RP, Zheng H, Kabrhel C. Analysis of partial thromboplastin times in patients with pulmonary embolism during the first 48 hours of anticoagulation with unfractionated heparin. Acad Emerg Med 2019.
- [9] Erlinge D, Omerovic E, Fröbert O, Linder R, Danielewicz M, Hamid M, et al. I. Bivalirudin versus heparin monotherapy in myocardial infarction. New England Journal of Medicine 2017;377(12):1132–42.
- [10] Eikelboom JW, Anand SS, Malmberg K, Weitz JL, Ginsberg JS, Yusuf S. Unfractionated heparin and low-molecular-weight heparin in acute coronary syndrome without ST elevation: a meta-analysis. Lancet 2000;355:1936–42.
- [11] Ferguson JJ, Califf RM, Antman EM, Cohen M, Grines CL, Goodman S, et al. Enoxaparin vs unfractionated heparin in high-risk patients with non-ST-segment elevation acute coronary syndromes managed with an intended early invasive strategy: primary results of the SYNERGY randomized trial. JAMA 2004;292(1):45–54.
- [12] Fauchier L, Philippart R, Clementy N, Bourguignon T, Angoulvant D, Ivanes F, et al. How to define valvular atrial fibrillation? Arch Cardiovasc Dis 2015;108(10):530–9.
- [13] Misra UK, Kalita J, Chandra S, Kumar B, Bansal V. Low molecular weight heparin versus unfractionated heparin in cerebral venous sinus thrombosis: a randomized controlled trial. Eur I Neurol 2012;19:1030–6.
- [14] Primignani M. Portal vein thrombosis, revisited. Dig Liver Dis 210;42:163–70.
- [15] Hanafy AS, Abd-Elsalam S, Dawoud MM. Randomized controlled trial of rivaroxaban versus warfarin in the management of acute non-neoplastic portal vein thrombosis. Vascul Pharmacol 2019;113:86–91.
- [16] Potze W, Adelmeijer J, Lisman T. Decreased in vitro anticoagulant potency of rivaroxaban and Apixaban in plasma from patients with cirrhosis. Hepatology 2015;61:1435–6.
- [17] Lansberg MG, O'Donnell MJ, Khatri P, Lang ES, Nguyen-Huynh MN, Schwartz NE, et al. Antithrombotic and thrombolytic therapy for ischemic stroke: antithrombotic therapy and prevention of thrombosis: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012;141(2):e6015–36S.
- [18] Martin K, Beyer-Westendrof J, Davidson BL, Huisman MV, Sandest PM, Moll S. Use of direct oral anticoagulants in obese patients: guidance from the SSC of the ISTH. J Thromb Haemost 2016;14:1308–13.

The impending storm: COVID-19, pandemics and our overwhelmed emergency departments

Previously, I have written about the national crisis in emergency care [1]. As many of us know, emergency departments (EDs) are being overwhelmed by untenable patient volumes and care requirements. As my prior article titled "A Brewing Storm: Our Overwhelmed Emergency Departments" noted, this problem has been well known for many years and, yet, generally ignored by the lay press and public [1]. In 2006, fourteen years ago, the Institute of Medicine (IOM) warned of this in a report titled "Hospital-Based Emergency Care: At the Breaking Point," In that report, the IOM noted that EDs were already overwhelmed and that our patient visits per year were significantly increasing [2]. The report stated that patient visits from 1993 to 2003 had grown from 90.3 million per year to 113.9 million per year [2]. Also, the number of EDs had actually decreased and the patients being seen were reportedly sicker [2]. Disaster preparedness was a significant concern and the report noted that most city hospitals were operating at or near capacity and even a multiple car crash would create havoc in most of these EDs [2]. In the years since that report, our volumes have continued to climb.

In 2017, a National Hospital Ambulatory Medical Care survey reported ED patient visits reached over 138 million in that year [3]. That was a 21% increase from 113.9 million visits in 2003 and an average annual growth of 1.7% per year. That number represents 42.8% of the entire U.S. population of 329 million [4]. These high volumes and the resulting crowding in the ED do and continue to compromise care. Of note, prior studies have shown that ED crowding is linked to increased patient mortality, decreased patient satisfaction and treatment delays [5-7].

In addition to the daily crowding issues, U.S. disaster preparedness is currently in poor condition. The ED is the frontline medical response to any disaster and, yet, it is already stretched to its limit. Currently, one of the federal government's strategies to deal with a potentially overwhelming catastrophic disaster that outstrips resources is to engage in "crisis standards of care" [8,9]. That is, if overwhelmed, the federal government has advised states to create guidelines for hospitals to allocate scarce resources to save the greatest number of lives [8,9]. Such strategies are to be utilized in only the most dire of situations (e.g., severe pandemic, catastrophic event) in which medical resources are completely outstripped. Our current problem with ED volumes predisposes the system to cross this threshold during a disaster.

1. An impending infectious disease disaster – COVID-19

Enter COVID-19, the current coronavirus epidemic that threatens to pose a serious infectious disease risk to the country and the world. This virus, which began in Wuhan, China, is believed to have a 2.3% mortality rate by the Chinese epidemiologic data [10,11]. COVID-19 has a similar mortality rate compared to the great influenza pandemic of 1918, which killed over 1 million people in the United States and over 100 million worldwide [12]. More concerning, EDs in the United States are already stretched to capacity and are likely to receive massive influxes of patients with both COVID-19 and concern for this disease. If the volume reaches pandemic proportions, it is doubtful that we can muster the required resources to weather the impending storm of this infectious disease disaster. This is because we have no additional capacity to work with. In addition, much of our supply chain is "just-in-time" and we do not have stockpiles of necessary equipment [13]. Beyond supplies, we can expect healthcare providers to fall ill as well. In fact, during the SARS epidemic, healthcare workers were disproportionately affected [14]. In some case, healthcare personnel may not report to duty for fear of becoming infected [15,16]. This will predictively result in shortages of doctors, nurses and technicians, among others in the healthcare system.

A 1918-type pandemic would likely disrupt supply chains and cause severe shortages in supplies and equipment. In fact, we have already seen this with prior influenza epidemics [13]. Of note, the COVID-19

outbreak significantly disrupted Chinese manufacturing in February 2020 and resulted in the worst monthly production numbers ever recorded in China [17]. Given the potential volume of patients, the lack of resources and likely shortages of material and personnel, we may need to use crisis standards of care in order to accommodate all the additional patients [8,18]. We may be forced to clean and re-use equipment that is typically disposable. We may need to change our standards of care, expand the responsibilities of unqualified or underqualified personnel and change our practices [18]. Will this be good medicine? I think the answer is clearly no. As noted above, crowding in the ED results in prolonged time to antibiotics, increased mortality and generally poorer care and outcomes [5-7]. However, we will do our best, with what we have, to save as many lives as possible.

Darren P. Mareiniss

Department of Emergency Medicine, Einstein Health Network, Philadelphia, PA, United States of America

E-mail address: howls_castle@mynet.com (S. Akay).

https://doi.org/10.1016/j.ajem.2020.03.033

References

- Mareiniss DP. A brewing storm: our overwhelmed emergency departments. Am J Emerg Med 2016;35(2):368.
- [2] Institute of Medicine. Hospital-based emergency care: at the breaking point. Washington, DC: National Academies Press2006 Available at https://www.nap.edu/read/11621/chapter/1. [Accessed last March 8, 2020].
- [3] CDC. National hospital ambulatory medical care survey: 2017 emergency department summary table. available at https://www.cdc.gov/nchs/data/nhamcs/web_tables/2017_ed_web_tables-508.pdf. [Accessed last March 6, 2020].
- [4] United States Census Bureau. Population clock. available at http://www.census.gov/popclock/. [Accessed last March 8, 2020].

- [5] Berstein SL, Aronsky D, Duseja R, et al. The effects of emergency department crowding on clinically oriented outcomes. Acad Emerg Med 2009;16:1–10.
- [6] Pines JM, Localio AR, Hollander JE, et al. The impact of emergency department crowding measures on time to antibiotics for patients with community-acquired pneumonia. Ann Emerg Med 2007;50(5):510–6.
- [7] Schull MJ, et al. Emergency department crowding and thrombolysis delays in acute myocardial infarction. Ann Emerg Med 2004;44:577–84.
- [8] Altered standards of care in mass casualty events. available at Agency for Healthcare Research and Qualityhttps://archive.ahrq.gov/research/altstand/; April 2005. [Accessed last March 8, 2020].
- [9] Stroud C, Altevogt BM, Nadig L, Hougan M. Rapporteurs, crisis standards of care: summary of a workshop series. Institute of Medicine. Washington, DC: National Academies Press: 2010.
- [10] Wu Z, McGoofan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVDI-19) outbreak in China. JAMA 2020 Published online February 24. [file:///C:/Users/Darren%20P.%20Mareiniss/Desktop/Covid%2019%20Commentary/Wu%20-%202020%20-%20JAMA-%20COVID%2019.pdf Accessed last March 8, 20201.
- [11] The epidemiological characteristics of an outbreak of 2019 novel coronavirus disease (COVID-19) – China, 2(8). Chinese Center for Disease Control and Prevention; 2020; 113–22 [available at file:///C./Users/Darren%20P.%20Mareiniss/Desktop/Covid% 2019%20Commentary/The+Epidemiological+Characteristics+of+an+Outbreak+ of+2019+Novel+Coronavirus+Diseases+(COVID-19)+—+China,+2%20(3).pdf Accessed last March 8, 2020].
- [12] Taubenberger JK, Morens DM. 1918 influenza: the mother of all pandemics. Emerg Infect Dis 2006;12(1):15–22.
- [13] Wendelbo M, Blackburn CC. A saline shortage this flu season exposes a flaw in our medical supply chain. Smithsonian Magazine; 2018 available at https://www. smithsonianmag.com/innovation/saline-shortage-this-flu-season-exposes-flaw-inour-medical-supply-chain-180967879/ [Accessed last March 7, 2020].
- [14] Lim S, Closson T, Howard G, Gardam M. Collateral damage: the unforeseen effects of emergency outbreak policy. The Lancet 2004;4:697–703.
- [15] Barry JM. The great influenza. New York: Penguin Books; 2005.
- [16] Balicer RD, Omer SB, Barnett DJ, Everly GS. Local public health workers' perception toward responding to an influenza pandemic. BMC Public Health 2006;6:99.
- [17] China posts weakest factory activity on record. Bloomberg News; February 28, 2020 available at https://www.bloomberg.com/news/articles/2020-02-29/china-feb-manufacturing-pmi-at-35-7-est-45-0 [Accessed last March 7, 2020].
- [18] Guidance for establishing crisis standards of care for use in disaster situations: a letter report. Institute of Medicine; 2010 Available at https://asprtracie.hhs.gov/technical-resources/resource/575/guidance-for-establishing-crisis-standards-of-care-for-use-in-disaster-situations-a-letter-report [Accessed last March 7, 2020].