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Modern health care has brought our society innumerable benefits but has also introduced

the experience of pain very early in life. For example, it is now routine care for newborns

to receive various injections or have blood drawn within 24 h of life. For infants who

are sick or premature, the pain experiences inherent in the required medical care are

frequent and often severe, with neonates requiring intensive care admission encountering

approximately fourteen painful procedures daily in the hospital. Given that much of the

world has seen a steady increase in preterm births for the last several decades, an ever-

growing number of babies experience multiple painful events before even leaving the

hospital. These noxious events occur during a critical period of neurodevelopment when

the nervous system is very vulnerable due to immaturity and neuroplasticity. Here, we

provide a narrative review of the literature pertaining to the idea that early life pain has

significant long-term effects on neurosensory, cognition, behavior, pain processing, and

health outcomes that persist into childhood and even adulthood. We refer to clinical

and pre-clinical studies investigating how early life pain impacts acute pain later in

life, focusing on animal model correlates that have been used to better understand

this relationship. Current knowledge around the proposed underlying mechanisms

responsible for the long-lasting consequences of neonatal pain, its neurobiological and

behavioral effects, and its influence on later pain states are discussed. We conclude by

highlighting that another important consequence of early life pain may be the impact it

has on later chronic pain states—an area of research that has received little attention.
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INTRODUCTION

Newborn babies inevitably experience pain as a part of routine neonatal care, such as vitamin K
injections and heel sticks to obtain blood for screening tests. These painful experiences are more
frequent in infants who are sick or premature. In recent decades, much of the world has experienced
a continued increase in preterm births with an estimated 15 million babies born prematurely each
year globally (1). Preterm birth is defined as a baby born before 37 weeks of gestation and is further
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sub-categorized based on gestation age: extremely preterm (<28
weeks), very preterm (28–<32 weeks), and moderate to late
preterm (32–<37 weeks) (2). A 2010 study of 184 countries
found that the preterm birth rate, expressed as a percentage
of livebirths, ranged between 5 and 18% and that this rate did
not correlate directly to the economic development level of
the country, e.g., northern European countries have a 5% rate
whereas the United States is at 13% (3, 4). In the Unites States
alone, the medical care, loss of productivity, maternal delivery,
early intervention, and special education services are estimated
to have cost $26.2 billion in 2005 (5). Furthermore, prematurity
is the leading cause of death in children under the age of 5 years
(1). Together, these factors make prematurity a modern global
health crisis.

Though preterm births continue to increase, medical
advancements in neonatal medicine have led to improved
survival rates for preterm babies. This increase is associated
with intense medical and surgical management over an
extended hospital stay. Babies born at term (39–41 weeks)
spend 4.9 days in the neonatal intensive care unit (NICU)
(6). However, when adjusted for risk (i.e., birth weight, sex,
small for gestational age status, ethnicity, fetal distress, and
maternal stress), the average length of stay in the NICU
for extremely preterm infants is 81 days (7). During this
period, newborns may undergo multiple painful procedures
each day for care and treatment. The demographics of the
NICU is predominately premature newborns (24–36 weeks)
when compared to term newborns (37–42 weeks)-−72.3 and
27.7% of NICU babies, respectively (8). Therefore, although
preterm babies are at a higher risk for neonatal pain
exposure, term newborns are not exempt. In fact, in the
United States, ∼460,000 neonates require NICU admission
each year, and thus experience procedural, medical, or surgical
pain (9).

The neonatal nervous system is very plastic because it
is immature and undergoing major developmental changes;
therefore, neonates may be vulnerable to neurodevelopmental
changes from painful stimuli (10). Nociceptive input during early
neurodevelopment is typically deleterious, increasing the risk
of neurodevelopmental impairments, including short- and long-
term physical and psychological disability (4, 11, 12), adverse
changes in brain development and processing (13–15), and
alterations in somatosensory function that lead to pain (16,
17). Such damage may have significant long-term effects that
persist into childhood and even adulthood; a notion increasingly
supported by the literature (17, 18).

The purpose of this report is to describe the current
understanding of the relationship between early life pain and
its implications on pain later in life, via a narrative review
of clinical and pre-clinical studies. To this end, we highlight
common painful procedures that occur early in life and the
important consequences of these pain events to humans later
in life. In each section we discuss the preclinical work that
has advanced our understanding of these consequences and the
potential mechanisms underlying them. We then review the
animal model correlates used to investigate the effects of early life
injury and discuss future directions for research.

METHODS

The literature review was performed by searching the following
databases, including PubMed, CAB Abstracts, and Google
Scholar. Search was conducted using the following keywords:
early life injury, early life pain, neonatal injury, neonatal pain,
repetitive needle prick, heelstick, consequences, impairment,
behavior, cognition, pain response, central nervous system,
mechanisms, pain models, animal models, chronic pain,
osteoarthritis, and inflammatory pain. For articles generated
from this search, the abstracts were read, and then those relevant
were downloaded and read in full. Those fitting in topic of
relevance were human studies or rodent models of neonatal
pain. Rat studies and behavioral studies were emphasized for
the review. Studies investigating the effects of stress and other
environmental factors were excluded from the review.

PAINFUL EVENTS OCCURRING DURING
EARLY LIFE IN NEONATES

Newborns routinely experience invasive, painful procedures,
such as blood collection, immunization, vitamin K injections,
and/or circumcision. Preterm or sick term newborns in theNICU
experience a much higher frequency of invasive and painful
procedures (8, 18). On average, premature babies requiring
NICU admission encounter about 14 painful procedures daily
in the hospital (19, 20). These invasive procedures range from
repetitive heel sticks to minimally invasive or open surgery
(Table 1) (21–24).

One of the most frequently performed invasive procedures
in the NICU is a heel stick, or heel lance/needle prick (8, 25).
This procedure is a pinprick puncture into the heel of a newborn
used to obtain blood samples for screening laboratory tests,
glucose levels, general chemistries, complete blood counts, and
toxicology screening. Generally, to obtain adequate amounts of
blood for testing, the heel must be squeezed, which is more
painful for newborns than venipunctures (26). Despite this
fact and the recommendation to use less invasive alternatives

TABLE 1 | Painful procedures commonly performed in the NICU.

Diagnostic

Heel stick

Venipuncture

Arterial puncture

Bronchoscopy

Endoscopy

Lumbar puncture

Retinopathy of

prematurity exam

Therapeutic

Bladder catheterization

Central line insertion/removal

Chest physiotherapy

Umbilical vessel catheterization

Dressing change

Gavage tube insertion

Intramuscular injection

Peripheral venous catheterization

Mechanical ventilation

Postural drainage

Removal of adhesive tape

Suture removal

Tracheal intubation/extubation

Tracheal suctioning

Ventricular tap

Surgical

Circumcision

Cardiac surgery

Congenital

anomaly repairs

Minimally invasive

surgeries

(laparoscopy,

thoracoscopy)

Information taken and adapted from Anand and International Evidence-Based Group for

Neonatal (21) and Johnston et al. (22).
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(e.g., venipuncture, mechanical lances) or to incorporate non-
pharmacological analgesia to minimize the pain (9), heel sticks
continue to be common in practice.

Another painful procedure that may be required for newborns
with significant respiratory compromise is endotracheal
intubation, a procedure performed on both adults and infants
that allows access to the airway to provide respiratory support
via mechanical ventilation. Adult patients report mechanical
ventilation to be a source of pain, discomfort, and depression
(27). Because the procedure is known to be associated with pain
(28, 29), the International Evidence-Based Group for Neonatal
Pain recommends this procedure be performed ‘without the use
of analgesia or sedation . . . only for resuscitation in the delivery
room or for life-threatening situations associated with the
unavailability of intravenous access’ (22). However, clinical use of
pain control is still suboptimal (30) despite evidence that opioids
reduce signs of pain during mechanical ventilation in newborns
(31). In addition, there is concern around the long-term negative
effects of opioids, such as neuromotor disability (32, 33). In
the United States alone, mechanical ventilation is provided
to ∼35,000 preterm and 20,000 term neonates each year (34).
Therefore, there is great concern that mechanical ventilation is a
significant contributing factor to the early life pain experience.

To manage and correct life-threatening diseases or
abnormalities, open and/or minimally invasive surgeries
may be required. Although the exact number of surgeries
performed on newborns is unknown, up to 33% of extremely
preterm babies require surgery to treat congenital anomalies
or manage complications (17, 35). Multiple surgeries may be
needed, thus increasing the exposure to other painful procedures,
such as venipunctures, endotracheal intubations, and anesthetic
episodes—as well as the surgical trauma-associated and post-
operative pain itself. As the procedural numbers rise, the
likelihood of developing hypersensitivity and/or persistent pain
at the site of damage (chronic post-surgical pain) increases within
months following surgery (18, 36, 37). Chronic post-surgical pain
is thought to be in large part due to a phenomenon called central
sensitization, a manifestation of maladaptive responses of the
spinal cord that lead to increases in excitability and reductions in
inhibition resulting in enhanced pain responsiveness (38, 39).

CONSEQUENCES OF EARLY LIFE PAIN IN
HUMANS AND EXPERIMENTAL MODELS

Despite the high incidence of painful procedures performed in
the NICU, most neonates receive no pharmacological analgesia
(40–42) or receive an inadequate level of analgesic (43, 44). A
combination of factors, such as the underestimation of pain
or concerns for potential adverse effects, lead practitioners to
withhold or inadequately dose these medications. However,
recent studies exploring the long-term consequences of
untreated, early life pain have shown that early life pain can
have negative repercussions that can impact sensorimotor
and cognitive development, behavior/mood, pain responses,
pharmacological requirements, and health status seen as early as
adolescence. We discuss these consequences below.

Long-Term Neurosensory and Cognitive
Impairments
It is believed that early pain experiences shape the somatosensory
scaffolding of later perceptual, cognitive, and social development
(45). This belief is evidenced by a recent study that found
an association between painful procedures in early life and a
reduction in brain responses to non-noxious touch stimuli (45).
Such risks of neurosensory impairment appear to be aggravated
by prematurity. Sensorimotor impairments in children, such as
impaired vision/blindness, impaired hearing/deafness, cerebral
palsy, delayed development trajectory, and impaired intellect into
childhood and adulthood have been attributed to painful medical
procedures early in life (46). For example, neonatal surgery has
led to major neurosensory disability with effects that persistent
into childhood (8 years old), with males having a higher risk of
disability (47).

Early exposure to painful procedures can negatively impact
neurodevelopment, such as brain growth, which is directly
related to cognition. For example, an inverse correlation between
frequency of invasive procedures and amygdala and thalamus
volumes was seen in 8 years old children born very preterm (48).
Further, reduced brain volumes in children who survived very
preterm birth and experienced early life pain were associated
with poor cognitive outcomes, such as lower intelligence (IQ),
language and attention deficits, poor visual-motor functions,
and poor behavioral outcomes (48–51). These cognitive deficits
have been shown to persist into early adolescence and young
adulthood (19 years old) for those who are born premature (52–
54). Overall, preterm boys appear to be at a greater risk for poor
neurodevelopmental trajectories than their female counterparts
(53, 55). In contrast, females with early pain seemed to be
more vulnerable to brain development with slower growth of
thalamic, basal ganglia, and total brain volumes (56). However,
conflicting sex-differences may be attributed to varied study
designs, outcome measures, environment, observer variation, or
individual variation.

Rodent studies have found similar impairments to cognition
and brain development caused by early life pain. In a rat model
of neonatal pain, mimicking NICU care, long-term alterations
in brain development were seen (57, 58). Rats exposed to acute
repetitive needle prick stimulation (4 times per day for the first
2 weeks of life) suffered long-term memory impairment (59),
while chronic repetitive needle prick stimulation (4 times per day,
every other day, for the first 8 weeks of life) resulted in short
term memory deficits (60). Similarly, neonatal rat inflammatory
pain produced long-lasting alterations in hippocampal function
that were more pronounced in middle-aged adult (P424–442)
vs. adult (P144–158) rats, characterized by spatial memory
impairment (61). Ranger et al. report that memory in adulthood
was poorer for mice exposed to repetitive pain during the first
week of life (62).

Negative Impacts on Psychosocial
Behaviors
There is a strong association between exposure to painful
procedures and altered behavioral development trajectories
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(63). Survivors of early repetitive pain may develop attention-
deficit disorders, atypical behaviors, such as hypervigilance and
exaggerated startled responses, and other forms of long-term
stress-related psychosocial disabilities (64). Neonatal rodent
models support these findings by showing that repetitive acute
pain during the first week of life can lead to negatively
altered locomotor activity (65), defensed withdrawal behaviors
(57), anxiety/depressive behaviors (66), and reduced social
behavior (67).

Internalizing behaviors are negative actions that are directed
toward oneself manifesting as withdrawal, depression, and/or
anxiety (68). Higher levels of internalizing behaviors are
predictive of atypical social competence in children leading to
greater social difficulties and lower peer acceptance (68, 69).
These negative behaviors have been seen in children as early as
18 months old (70) and may persist throughout childhood and
adulthood (54, 71, 72). Preterm children exposed to neonatal
pain have a higher rate of internalizing behaviors than full term
children (70, 73). For example, young adults born extremely
preterm who underwent prior surgery had higher anxiety
and pain catastrophizing than term controls (74). Internalized
behaviors can also lead to the development of other serious
health issues, such as drug addiction (75), alcoholism (76), or
obesity (77).

Varied Behavioral Pain Responses
Early life pain can be challenging to recognize due to variability in
patients’ responses toward pain and changes associated with age
and subsequent painful experiences. Changes in facial expression
and withdrawal reflex in the neonate are suggested to be
most associated with nociception activity (78). However, facial
grimacing after a heel stick was seen as early as 28 gestational
weeks of age, becoming more recognizable with age. Recently,
Green et al. demonstrate the emergence of discriminative
facial expressions toward noxious and innocuous stimulation
occurring in infants at ∼33 weeks’ gestation, coinciding with
brain maturation (79). Some work has shown that the degree
of grimacing was inversely related the number of invasive
procedures (43). Additionally, a greater number of procedures
during early life has been associated with lower behavioral pain
responses (e.g., facial grimace, cry, state of arousal) and pain
scores following subsequent pain exposure within 1 month of life
(80–82). Although pain experiences may not produce noticeable
behavioral changes, noxious stimulation (i.e., heel stick) in
infants between 25 and 43 gestational weeks may be processed at
the somatosensory cortical level (83). The presences of cortical
activation, measured by increases in hemodynamic responses,
without a facial motor response support the concept that pain
is reflective of emotional responses requiring cortical processing
(83, 84). Sex should also be considered when evaluating facial
grimacing, as female preterm neonates showed more robust
facial expressions than males in response to acute procedural
pain (85).

Reorganization of Pain Processing
Painful procedures during neonatal development have been
shown to have later influences on sensitivity to noxious stimuli

and pain. Negative hemodynamic effects, such as higher heart
rates and lower oxygen saturations, following secondary noxious
stimuli are reported in individuals with a history of neonatal pain
(43, 80, 86). Males with a history of neonatal pain have more
pronounced responses than females with respect to hemoglobin
oxygenation following secondary venipuncture (87).

Procedural pain early in life appears to lead to alterations in
neonatal sensory function resulting in hyposensitivity following
acute pain as a neonate but hypersensitivity later in life (88).
However, the directionality of changes in sensitivity later in
life is inconsistent. Preterm or full term children between 10
and 12 years old who underwent neonatal surgery have shown
generalized thermal hyposensitivity as well as mechanical and
thermal hyposensitivity in areas around prior tissue damage (89,
90). In contrast, in preterm adolescents between 12 and 18 years
old there was greater mechanical hypersensitivity compared to
full term children, with females being consistently more sensitive
than male counterparts (91). And, young adults (18–20 years
old) who were extremely preterm and underwent prior neonatal
surgery had higher pain intensity scores and reported moderate
to severe persistent pain more than young adults who were term
born (17, 74).

Investigations into whether painful early life experiences have
a negative impact on pain responses following secondary acute
injury later in life have also been conducted. Hypersensitivity
and allodynia after secondary injuries have been demonstrated
(88). Heightened pain responses (e.g., cried longer, higher
pain scores) toward routine vaccinations given to 4–6
months old neonatally circumcised babies were seen when
compared to uncircumcised babies (92, 93). Infants (4–
21 weeks of age) requiring repeated surgery in areas of
scaring, due to prior neonatal surgery, had higher post-
operative pain scores and higher analgesic requirements
than controls (94). Furthermore, higher pain intensity
ratings during venipuncture at age 7.5 years were positively
associated with a greater number of invasive procedures
experienced in the neonatal period (95). Variations in pain
responses (e.g., becoming hypersensitive or hyposensitive)
with or without secondary injury are likely due to
difficulties with controlling for: intensity/frequency of pain
stimulus, time/age following painful event(s), and variability
within study population, outcome measures, and other
environmental influences.

Animal models of pain have aided in further exploration of
these effects of early life pain as well as provided additional
support for these clinical findings. After repetitive needle prick
stimuli, neonatal rats had decreased thermal sensitivity during
development (57) and adulthood (60). Similarly, adolescent rats
demonstrated peripheral thermal hypoalgesia after experiencing
repeated post-natal inflammatory peripheral pain (formalin)
(96). In contrast, repeated neonatal hindpaw incision or
needle prick has been shown to sensitize adult rats to
secondary incisional injury resulting in increased incision-related
hyperalgesia to cutaneous dynamic tactile (brush), pinch, and/or
punctate (von Frey hair) stimuli (16, 97–100). For additional
results, Walker et al. provides a list of long-term effects of
neonatal injury demonstrated in laboratory models (101).
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Increased Poor Health Outcomes
Early-life, pain-induced alterations can increase the likelihood of
having subsequent poor health outcomes. Preterm babies, who
are exposed to painful stimuli, are at a greater risk of developing
non-communicable diseases (diabetes, hypertension) and other
health conditions later in life (102), creating an intergenerational
cycle of risk. Controlling for confounding factors, post-natal
growth is reduced in infants that undergo repetitive procedural
pain during early life (103), and infants who are smaller tend to
have more cognitive problems than other children as previously
discussed. Small infants often rapidly catch-up in growth during
the first 2 years of life, but this ‘catch up’ is associated with the
development of adiposity and impaired insulin sensitivity later
in life (104). The development of these outcomes may lead to
increased risk of obesity and metabolic disorders, such as type
II diabetes in humans (105, 106) and in animals (107). Blood
pressure in adults born premature may be higher than adults
born full term, and thus prematurity exposes one to a higher
risk of hypertension, cardiovascular disease, and stroke (108).
People with these health conditions are predisposed to becoming
chronic pain sufferers. There is a growing body of literature
regarding the long-term health effects of early life injury, and
a detailed, more exhaustive list can be found elsewhere (15,
109). Additionally, more clinical and research studies have been
conducted to investigate the persistent ramifications of early life
pain beyond infancy (67, 110–112).

NEUROBIOLOGICAL MECHANISMS
UNDERLYING ENHANCED PAIN
RESPONSES TO SUBSEQUENT INJURY

Pain is a complex, multidimensional, and multisensory
phenomenon involving many intact systems to produce the final
emotional and sensory response. For the perception of pain, a
noxious stimulus must be processed through the various levels
of the neuroaxis, and arrive at higher brain centers. Nociception,
or pain responses, can be inhibited at the level of the spinal
cord through the descending inhibitory pain pathway. The
descending pain circuit is composed of the periaqueductal gray
matter in the upper brain stem, the locus coeruleus, the nucleus
raphe magnus, and the nucleus reticularis gigantocellularis.
Under normal conditions, the descending pain modulatory
system controls the balance between facilitation and inhibition
of nociception, maintaining a baseline of sensory processing
(113). However, disruption in the system can lead to enhanced
or facilitated nociception or promotion and maintenance of
chronic pain (114).

The pain transmission system is further complicated by
interactions between the central and peripheral nervous
systems and the immune system—neuroimmune interactions.
Neuroimmune interactions are responsible for: recruiting local
neuronal elements for fine tuning the immune response;
participating in the plasticity of synapses during development
as well as in synaptic plasticity at adulthood; and engaging the
rest of the body in the fight against infection from pathogenic
microorganisms (115). This established bidirectional interaction

between the neuronal and immune systems plays a crucial role in
pain modulation (116–118).

During neonatal development newborns have a high degree
of neuroplasticity and are very vulnerable to the modulating
effects of noxious stimuli (88, 119–121), especially if repetitive
in nature. Repetitive painful stimuli cause structural and
functional reorganization of the nervous system at the level of
the: periphery, spinal cord, and supraspinal pain processing;
neuroendocrine function; and neurologic development (64, 82,
122). Human and animal studies have provided solid evidence
that repetitive and prolonged pain early in life can alter
subsequent pain processing (43, 123) and later pain sensitivity
(59, 124). It remains to be determined if such changes also
contribute to chronic pain. Specific underlying structural and
functional reorganization that may be responsible for enhanced
pain responses to subsequent pain as a result of early life pain
are discussed here, with an emphasis on information gained from
preclinical work in animal models.

Peripheral Nociceptive Fiber Development
It was once believed that neonates were unable to perceive pain
due to the immaturity of the sensory nervous system (125).
However, neuroanatomical and behavioral studies have provided
strong evidence to the contrary (126–128). During the neonatal
period, a considerable amount of maturation associated with
pain transmission and modulation is taking place. Although
the peripheral nervous system is mature and functional by 24
gestational weeks, there are substantial neuroanatomical shifts
in the distribution of unmyelinated (C) and myelinated (A)
ascending fibers occurring in the post-natal period (41). Early
in life there is an abundance of myelinated Aδ sensory fibers,
responsible for the initial perception of pain, and fewer low
density C fibers, responsible for pain intensity (129). Pre-
clinical non-human animal studies have further demonstrated
the relative numbers of fiber types can be affected by early life
pain, leading to hyperinnervation and subsequent peripheral
sensitization and increased pain sensitivity later in life (130).
Babies are more likely to have hypersensitivity due to imbalances
between the numbers of afferent fibers and descending (negative)
influences (124).

Spinal Cord Mechanisms
The spinal cord can undergo neuronal and synaptic changes
due to inputs from the periphery, known as activity-dependent
plasticity (131, 132). Spinal cord plasticity shapes its function
during post-natal development and is continuously occurring
throughout life (131, 133). Peripheral C-fiber activity drives
activity-dependent cellular wind up, which initiates widespread
changes in the function of the neuronal network in the spinal
cord; this leads to clinical manifestations of spontaneous pain,
abnormal sensitivity to noxious stimuli, or even innocuous
stimuli, and referred pain that often follows injury to peripheral
tissues (132). Changes induced by peripheral input depend on
the intensity, duration, and the life stage at which the input
occurs. Animal model research has been crucial to advance our
understanding of the neuroanatomical and functional changes,
and the effects on sensitivity to subsequent stimuli, produced by
early life noxious stimuli. Neonatal rats exposed to a peripheral
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inflammatory stimulus in the hindpaw appear to have enhanced
responsiveness to sensory stimulation due to altered axonal
patterns in the substantia gelatinosa; these functional changes
suggest that axons are sprouting into new areas of the dorsal horn
(134). Furthermore, a single noxious input (CAR) at different
ages between P0 and 8 in the neonatal rat has led to sustained
thermal andmechanical hyperalgesia after re-inflammation (CFA
at P40) in the ipsilateral, but not contralateral, hindpaw that is
likely a result of local segmental circuitry involvement (135).

At the level of the spinal cord in rats, the balance between
excitatory and inhibitory neurotransmitters shifts with maturity.
In adults, substance P, calcitonin gene-related peptide, and
glutamate are the neurotransmitters involved in excitatory pain
transmission; γ-aminobutyric acid (GABA), norepinephrine,
glycine, adenosine, endogenous cannabinoids, and opioid
peptides are involved with inhibitory pain modulation (136).
During early neurodevelopment (e.g., first post-natal week of rat
life), GABA has an excitatory effect in the hippocampus caused by
an inverted chloride gradient that induces depolarization (137).
Similarly, there is a transient GABAergic excitatory effect in the
immature dorsal horn; however, this shifts to inhibitory signaling
by the end of the first post-natal week (138, 139).

Bremner et al. suggests that spinal GABAergic inhibitory
transmission onto single dorsal horn cells “in vivo” is functional
at P3 in rats and low chloride extrusion capacity does not impede
the normal inhibitory functions of GABA (140). GABA activates
voltage-gated sodium and calcium channels and potentiates the
activity of N-methyl-D-aspartate (NMDA) receptors by reducing
their voltage-dependent Mg2+ block (137). NMDA receptors,
thought to be responsible for central sensitization (141), and
activity-dependent tuning expand receptive fields in the dorsal
horn until 42 gestational weeks, gradually reducing to adult size
by 44 gestational weeks in humans (41). Together, increased
expression of NMDA receptors and shifts in GABA function
creates an excitatory neuronal environment during the most
vulnerable period of a baby’s life, when they may be exposed to
multiple noxious insults. In an excitable neuronal environment,
noxious and non-noxious stimuli may result in hypersensitivity,
which is exacerbated with repeated stimuli (41).

Descending Modulatory Systems
In the mature nervous system, descending pathways are
responsible for inhibiting noxious signals at the level of the
spinal cord. Animal research has been crucial in understanding
the maturation of descending modulatory systems, and therefore
when the neonate is most vulnerable. During infancy the
descending modulatory system is facilitatory, which is mediated
by the mu-opioid receptor pathways in the rostroventral medulla
(RVM) in the rat (142). As the RVM matures (e.g., P25–P40
in rat), the control over spinal nociceptive circuits transitions
to descending inhibition (142). However, prior to P40, without
full development of the descending inhibitory mechanisms,
endogenously driven suppression of noxious stimuli from the
periphery is not fully functional, thus the neonatal nervous
system is more vulnerable to the effects of noxious stimuli
(120, 121, 128, 143). Early noxious experiences can lead to
permanent or long-lasting changes of the RVM circuits and other
inhibitory mechanisms.

The vulnerability of the neonate to long term changes induced
by noxious stimuli prior to maturation of the descending
inhibitory pathway is highlighted by animal research. Neonatal
incisional injury (P3) modifies descending pathways of spinal
excitability from the RVM in early adulthood, producing
acute hyperalgesia but long-term generalized hypoalgesia (P28)
(144). In contrast, repetitive noxious stimulation (needle
prick) in the neonatal rat (P0–14) has led to long-term
thermal hypersensitivity (P56), likely due to alterations in the
descending modulatory circuitry (59). Additionally, neonatal
tissue inflammation (carrageenan; P3) has shown to lengthen
thermal withdrawal latencies at the site of injury compared
to controls; however, re-inflammation later in life (CFA; P50)
exaggerates nocifensive responses, such as peripheral thermal
hyperalgesia (145). These alterations in behavioral responses
post-CFA re-injury are likely a result of enhanced RVM-evoked
modulation of the pain reflexes, thus strengthened descending
inhibition of the spinal cord (145).

Brain
Pruning, or the selection of active neuronal circuits, occurs
throughout life; however, during the late second trimester and
throughout the neonatal period, these processes and others
that shape the neural architecture are particularly active in
the human brain (146). In the neonatal period, there is rapid
neuronal proliferation and differentiation including: maturation
of oligodendrocytes; distribution and activation of microglia;
differentiation, migration, and proliferation of cortical neurons;
development of the subplate neurons, cerebral cortex, deep
nuclear structures, and axons; formation of synaptic connections;
and increase in cortical surface area and gyral formation (147). As
discussed above, procedural pain in the NICU can have dramatic
effects on brain development and function (13, 56).

Neonatal pain has been associated with reduced brain
microstructure and volumes in humans (56) and pigs (148).
Proposed mechanisms responsible for reduced brain volume
and structure due to early life pain include alterations mediated
by excitotoxicity and disrupted axonal development. Persistent
neonatal pain in the rat can result in neuronal death in cortical
and subcortical areas due to excitoxicity (149). Additionally,
microglial activation in the rat initiates downstream intracellular
cascades (e.g., release of glutamate, proinflammatory cytokines)
that can result in cell death via excitotoxicity (150). Human
imaging studies (e.g., diffusion tensor imaging, MRI) suggest
pain-associated impairment in axonal development as another
mechanism responsible for abnormal brain development (13).
For example, early procedural pain in the premature newborn
likely contributed to the development of damaged subcortical
neurons with secondary axonal changes in the white matter (13).

Regions of the brain that appear to be most affected by early
life pain and noxious input are associated with or connected to
the limbic system (e.g., hippocampus, amygdala, and thalamus)
and basal ganglia (48). In studies conducted by Nuseir et al.,
lower levels of hippocampal neurotrophins were detected in
injured neonatal rats as compared to control rats, and the
authors suggested this as the underlying mechanism for memory
impairment (59, 60). The thalamus is the relay center for sensory
and motor signals ascending to the cerebral cortex. Human
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infants who experience pain have decreased thalamic volumes,
accompanied by disruptions in thalamic metabolic growth
and thalamocortical pathway maturation (14). Thalamocortical
connections undergo rapid formation during gestation and
early post-natal life making them particularly vulnerable to
excitotoxicity (151). Interestingly, the rat thalamus is regulated by
NMDA-dependent long-term potentiation, which is only active
during the first week of life (152), when newborns are routinely
exposed to painful procedures. Therefore, early pain can alter
thalamic development due to NMDA-dependent mechanisms.
Furthermore, NMDA and GABA receptors are also key
components of synaptic plasticity in the amygdala of the rodent
and are presumed responsible for neuronal responsiveness
and structural reorganization (153). Early life insults in the
piglet can alter the normal developmental expression of GABA
receptors, thereby impacting neuronal cytoskeleton development
and myelination (154), which may lead to downstream effects
on learning and cognitive impairments. These changes within
the limbic system appear to be conserved across species
throughout life affecting lifelong memory and associated fear
(153, 155, 156). Factors and mechanisms adversely influencing
brain development are being elucidated by using animal models,
but there is much more to understand about the cellular and
molecular mechanisms.

Neuroimmune Plasticity
The neonate’s immune system is immature and undergoes
rapid changes early in life (157). It is well-understood that
the immune system plays a critical role in pain modulation
due to the tightly woven interactions of the nervous system
and immune system (116–118). Specific components of the
immune system play an intimate role in modulating pain
sensitivity (158). A key player in immune-related pain are
microglia cells, which make up 15% of the total glial population
in the central nervous system (CNS) (159). Microglia are
present during the embryonic and early post-natal period during
which they inhabit the spinal cord and brain (160). Animal
research has shown that the development and architecture of
the CNS is fine-tuned and shaped by microglia, where they
also contribute to neuroplasticity and lifelong maintenance and
protection of the CNS (161). Microglia respond to noxious
stimulation by activating and proliferating, which contributes to
maladaptive pain and central sensitization. Microglia reactivity
is a complex multistage activation process, where microglia
undergo a morphological and functional transformation process.
Early life challenges, including tissue injury, lead to microglial
activation that may result in the release of numerous signaling
molecules that can have deleterious effects on the pathogenesis
of pain, especially in the neonate (161, 162). For example, spinal
microglial reactivity, measured by immunostaining of microglia-
specific ionized calcium-binding adapter molecule 1 (Iba-1), was
enhanced in rats exposed to a noxious insult (e.g., incision,
inflammation) as a neonate (16, 88, 163–165).

With subsequent noxious experiences, activated microglia are
primed to respond to injury more rapidly. Microglial priming
appears to last for extended periods of time. As a result, microglia
have gained attention as a suggested cellular mechanisms linking
early life pain to altered pain processing and chronic pain in

adulthood (161). Thus, microglia have become a major focus of
investigative pre-clinical studies into pain processing pathways,
neuroplasticity, and as potential treatment targets. However, the
mechanisms driving microglial priming are unknown, and it
is unknown how long microglial priming lasts. Interestingly, a
murine study suggests that while male mice require microglial
activation to develop pain hypersensitivity, females have an
alternative route via the adaptive immune system (166).

MODELS TO STUDY THE EFFECTS OF
EARLY LIFE PAIN ON PAIN MODELS TO
STUDY THE EFFECTS OF EARLY LIFE PAIN
ON PAIN OCCURRING LATER IN LIFE

The most commonly used clinically relevant models (we use
‘model’ to refer only to the induced pain state) of neonatal
early life pain are the repetitive needle prick (RNP) (37, 57) and
plantar incision (16, 100, 144), most often using a rat. These
painful insults are performed at various time points during the
early post-natal period (P0–P7) in the rat because this critical
period corresponds with that of a preterm human infant (24–36
weeks gestation) (167). The RNP model involves repeated tissue-
breaking injury to the rodent’s hindpaw using a needle to mimic
the heel stick frequently performed in human babies in the NICU
(8). Usually the noxious stimulus is administered between 4 and
8 times per day over a defined period of time during the early
neonatal period (P1–14).

The plantar incision model involves incising the skin and
fascia of the mid-plantar aspect of the hindpaw and the
underlying plantar muscles followed by routine closure. The
plantar incision is a clinically relevant model used to mimic
surgical injury and has been used in animals (e.g., rats, pig) of
varying ages to investigate post-operative incisional pain and the
efficacy of various analgesic treatments (168–173). In the context
of neonatal early life pain, the incisional model has been used
in rats between P3 and P17 (97, 144). Both paradigms result
in reliable neonatal tissue-breaking injury and nociceptive input
thus serving as clinically relevant models to better understand the
mechanisms and consequences of early life pain.

Other models used to evaluate the long-term effects of
neonatal injury include the induction of inflammation (e.g.,
carrageenan, CFA), full-thickness skin wounds, laparotomy,
intramuscular injections, and peripheral nerve injury models
(Tables 2, 3) (101). Alternative models have focused on the
psychological implications of early life pain and prematurity,
such as stress (67). The most commonly used species are rodents;
however, there are reports of other species being used. For
example, piglets who undergo tail docking (P3 or P63) have long-
term peripheral mechanical hyperalgesia (tail stump) (212) and
distinctive changes in gene expression up to 16 weeks following
the procedure (213).

Neonatal pain models (first-hit) have been superimposed with
secondary (adult) pain models (second-hit) to evaluate the effects
of early life pain on subsequent pain later in life. Like one-
hit neonatal pain models, two-hit models are primarily induced
in the rat. Subsequent pain typically occurs between P25 and
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TABLE 2 | Pain models used to evaluate long-term effects of neonatal pain with

or without subsequent pain later in life.

1st Stimulus 2nd Stimulus References

(165, 174, 175)

(134, 135, 165, 175–179)

(58, 180)

(165, 181–184)

(57, 59, 62, 177, 184, 185)

(97, 100, 178, 186–188)

(189–192)

(193, 194)

(195)

(171)

(194)

(135, 145, 196–198)

(199)

(61)

(200)

(96)

(201)

(202)

(203)

(37, 98, 204)

(205)

(16, 97, 100, 163, 206, 207)

(144)

(164, 208, 209)

This illustration represents different pain models used to mimic injury that occurs

early in life (P0–17) and/or later in life (P6–125). These models have been used to

evaluate the long-term consequences of neonatal pain and inflammation.

key Complete Freud’s Adjuvant (CFA) Formalin Incision

Carrageenan (CAR) Stress Nerve

Injury

Capsaicin (CAP) RNP Other

(e.g. LPS)

P60 and varies from inflammatory (e.g., CFA, CAR) to tissue-
breaking (e.g., RNP, incision) in nature (Table 4). These time
periods in the rat most likely resemble humans classified as
young adults and middle-aged adults, respectively. Alone these
models are used to evaluate the effects of early life pain on
later acute pain (215–217). Two-hit models provide evidence
that single or repetitive noxious stimulation during the early
post-natal period can affect subsequent acute pain later in life
in regards to mechanical and thermal sensitivity (37, 206),
learning and memory (61, 200), and microglial activation (16,
163). However, the impact that early post-natal injury has on
chronically painful conditions during adulthood has not been
evaluated in animal models.

EFFECTS OF EARLY LIFE PAIN ON
CHRONIC PAIN IN THE ADULT

Chronic pain is a major global health concern affecting more
than 1.5 billion people worldwide (218). Over the last decade,

TABLE 3 | Rodent models of neonatal pain and times of assessment.

“1-Hit” Models

1st Stimulus

(age)

Outcome

measure(s)

Age/Time References

INFLAMMATORY PAIN

CFA

(P1)

PWL

EPM, PWL, sleep

recordings,

ACTH, corticosterone

P30

P90

(174)

CFA

(P1)

PWT, PWL, paw

diameter

DRG [ATF3,

CGRP, IB4]

2, 4, 24, 72 h, then 2×

weekly until 8 weeks

12, 24 h, 3, 7, and

14 days

(175)

CFA

(P10)

Paw diameter, PWT

SC [IBA1]

0, 1, 3, 24 h, 7 days

1, 24 h, 7 days

(165)

CAR

(P10)

Paw diameter, PWT

SC [IBA1]

0, 1, 3, 24 h, 7 days

1, 24 h, 7 days

(165)

CAR

(P1)

PWT, PWL, paw

diameter

DRG [ATF3,

CGRP, IB4]

2, 4, 24, 72 h, then 2×

weekly until 8 weeks

12, 24 h, 3, 7, and

14 days

(175)

CAR

(P0, 1, 3, or

14)

Pain behavior

PWL

DRG [CGRP,

IB4], electrophysiology

P0, 1, 3, or 14

P56–70

P56

(134)

CAR

(P3 or 12)

Paw diameter

EPM, FST

0, 0.5, 1, 3, 6, 14, 24,

32, 39, 45, 52, 60, 69 h

P50–55

(176)

CAR

(neonate; not

specified)

Electrophysiology

(PWT)

P19–23 (178)

CAR

(P3)

PWT P6, 13, 20, 27, 34, 41,

48, 55, 62

(135)

CAR

(P1, 4)

Fear conditioning

PWT, PWL

P24, 45, 66

P27, 48, 69

(177)

CAR

(P0)

OFA

FST, sucrose

preference,

stress-induced

analgesia test

with PWL

P65–70

P70–90

(179)

CAR

(P0)

OFA

FST, corticosterone

P60–80

P70–90

(210)

Formalin

(P1–2)

Formalin test

(nociceptive activity)

EPM, FST, MWM

P25

P25–38

208)

Formalin

(P1–3, 1–5, or

10–12)

Brain histology, WB P4, 6, 13 (58)

LPS

(P14)

Brain (c-Fos)

EPM

Fear conditioning

PWT

2.5 h

P38–42, 62–68

P60–72

P60–90

(181)

Zymoson

(P10)

Paw diameter, PWT

SC [IBA1]

0, 1, 3, 24 h, 7 days

1, 24 h, 7 days

(165)

TISSUE-BREAKING PAIN

Skin Flap

(neonate; not

specified)

PWT,

electrophysiology

P19–23 or 40–44 (178)

(Continued)
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TABLE 3 | Continued

“1-Hit” Models

1st Stimulus

(age)

Outcome

measure(s)

Age/Time References

RNP

(P0–7)

Weight gain

PWL

Alcohol preference,

defensive withdrawal,

social discrimination,

air-puff startle tests

P8, 15, 21

P16, 22, 65

P20–30

(57)

RNP

(P1–7)

Fear conditioning

PWT, PWL

P24, 45, 66

P27, 48, 69

(177)

RNP

(P0–14)

PWL

Radial arm water

maze

Hippocampus [ELISA]

P28, 56

P56, 57

P70

(59)

RNP

(P0–7)

PWT

OFA

MWM

OFA, Corticosterone,

ACTH, WB

P8, 15, 22, 43, 57, 85

P25, 87

P24–30, 87–93

P24, 45, 87

(187)

RNP

(P0–7 or 0, 2,

4, 6)

OFA

EPM,

FST, Corticosterone

>P98

>P119

(185)

RNP

(P1–6)

OFA, EPM, MWM,

Rotarod, PWL,

Sucrose preference

P60–85 (62)

RNP

(P8–14)

EPM

MWM

P30

P31–33, 34–36, 38

(184)

Incision

(P3, 10, 17)

PWT, PWL, OFA,

brain [c-Fos]

>P90 (97)

Incision

(P7 or 28)

Electrophysiology

(PWL)

0, 1 h (188)

Incision

(P3 or 40)

PWT

EMG

0, 4, 24, 48, 72 h

24 h

(100)

Incision

(P3)

PWT, PWL

Electrophysiology

Weekly, P14–42

P40

(144)

Incision

(P6)

Development

assessment

Wire hang test

Rotarod

OFA, EPM

NOR

P6–21

P17, 18, 20

P17, 19, 21

P18

P19

(186)

Toe clipping

(P7 or 17)

Developmental

assessment

OFA, EPM

Balance beam

Rotarod

P6–21

P56

P63–65

P70–72

(182)

Toe clipping

(P3 or 7)

Developmental

assessment

Grip test, PWL

Corticosterone

1, 3, 5, 12 h, daily for 3

weeks

P84–86

P7

(183)

Tail clip

(P8)

EPM

MWM

P30

P31–33, 34–36, 38

(184)

NERVE PAIN

SNI

(P10 or 60)

DRG [IBA1, ATF3,

NF200, CGRP, IB4]

7 days (191)

SNI

(P10 or 56)

PWT

PWL

SC/DRG [IBA1,

NF200, GFAP,

IB4], WB

3, 7, 14, 21, 28, 38, 44

days

3, 7, 14, 21, 35, 51

days

7, 30 days

(192)

(Continued)

TABLE 3 | Continued

“1-Hit” Models

1st Stimulus

(age)

Outcome

measure(s)

Age/Time References

SNI

(P10 or 33)

PWT, PWL, Cold pain

behavior,

Electrophysiology, IC

SC [IBA1,

BDNF, GFAP]

1, 7, 14, 21, 28, ±35

days

7, ±21 days

(211)

SNI

(P3, 10, 21,

33, or 60)

PWT 0, 1, 7, 14, 28 days (189)

CCI

(P10 or 60)

PWT 0, 7, 14, 28 days (189)

SNI

(P14, 28, or

112)

PWT 0, 1 days, weekly up to

14 weeks

(190)

P, post-natal day; CFA, complete Freud’s’ adjuvant; CAR, carrageenan; RNP; repetitive

needle prick; SNI, spared nerve injury; CCI, chronic constriction injury; PWT, paw

withdrawal threshold; PWL, paw withdrawal latency; IC, incapacitance meter; SC,

spinal cord; DRG, dorsal root ganglion; IBA1, immunostaining for ionized calcium-

binding adapter molecule 1 (microglia marker); c-Fos, proto-oncogene; CGRP, calcitonin

gene-related peptide; ATF3, Activating transcription factor 3; IB4, isolectin B4;

NF200, Neurofilaments protein; GFAP, glial fibrillary acidic protein; BDNF, Brain-

derived neurotrophic factor; WB, western blot; ACTH, adrenocorticotropic hormone;

EPM, elevated plus maze; OFA, open field arena; MWM, Morris water maze; CPP,

conditioned place preference; FST, forced swim test; EMG, electromyography; NOR,

novel object recognition.

studies concerning the health status of adults with a history
of varying degrees of prematurity, early life procedural pain,
and/or early life surgery have been conducted to understand the
effects of early life pain on diseases in adulthood (109, 219–221).
Retrospective studies are very challenging to conduct because
detailed medical records are not always accessible and/or there
is a loss of patient retention due to geographic relocation or
denied consent. These studies are further limited because of
variability in details describing procedures performed including
number of procedures, time of occurrence, and dose/route of
drug administration in addition to differences in physician’s
and/or health facility’s standard protocols, or lack thereof. Finally,
early life painful events may not be captured during childhood or
adult examinations because there is lack of patient recall, medical
exam time constraints, or focused questions to gather pertinent
information to current condition.

Regardless, untreated early life pain has been suggested to
be a significant contributor to the development of chronic
pain in children and adults (17, 97). It is speculated that
this notion would be supported by animal models. However,
two-hit models have focused on the effects of early pain on
secondary acute pain in adult rats as previously discussed.
Whether noxious stimuli during the neonatal period predisposes
a patient (human or animal) to pain-associated with chronic
painful conditions remains unknown. There are multiple animal
models of chronic pain (222, 223) that could be coupled with
an early life pain model to investigate whether there is an
impact on chronic pain conditions. Well-documented chronic
pain rodent models can be used to provide foundational data
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TABLE 4 | Rodent models of neonatal pain with subsequent pain and time of assessments.

“2-Hit” Models

1st Stimulus

(age)

Basal outcome

measure(s)

Age/Time 2nd Stimulus

(age)

Outcome

measure(s)

Age/Time References

INFLAMMATORY + INFLAMMATORY PAIN

CFA

(P0 or 14)

Capsaicin

(P56–84)

Pain behavior

PWT

PWL

Paw diameter

SC [c-Fos]

5min

5, 15, 30, 45,

60min

5, 15, 30, 45min

60 min

(195)

CFA

(P1 or 14)

CFA (P84) PWL P85 (193)

CFA

(PO)

PWT, PWL P56 CFA (P56) PWT, PWL P57 (194)

CFA

(P0, 1, 3, or 14)

PWL P56–70 CFA (P56–70) PWL 24 h (134)

CFA

(P0, 1, 3, or 14)

PWL P56–70 Formalin (P56–70) Pain behavior Every 5min for

60min

(134)

CAR

(P0, 1, 3, 5, 8, 10,

12, or 14)

PWT, PWL P40 CFA (P40) PWT, PWL P41 (135)

CAR

(P3)

CFA (P6, 13, 24,

40, or 62)

PWT 24h (135)

CAR

(P3)

PWT, PWL P120–125 CFA (P120–125) PWT, PWL 24h (135)

CAR

(P0 or P14)

PWL, Pain

behavior

3, 6, 12, 18, 24,

48, 60 h, and P60

CFA (P61) PWT, PWL, paw

diameter

P62 (198)

CAR

(P0)

PWL, tail flick P40, 60 CFA (P60) PWL, paw

diameter

1, 7, 14, 21 (196)

CAR

(P0, 8, or 14)

PWL, paw

diameter

P40, 60 CFA (P60) PWL P61 (197)

CAR

(P3)

PWL P48, 49 CFA (P50) PWL, tail flick,

electrophysiology

24 h (145)

CAR

(P3 or 14)

Mustard oil (Colon)

(P60–70)

PWL,

visceromotor

response

0, 30, 90, 150,

210min

(199)

Formalin

(P1–2 or 7–8)

PWL P25 Picric acid +

maternal

deprivation (P25)

Pain behavior PWL 1–20min P26 (96)

Formalin

(P7–8)

Formalin (P25) EPM, FST, MWM,

nociceptive activity

P25–38 (200)

INFLAMMATORY PAIN + STRESS

CAR

(P0)

Chronic stress

(P82–109)

MWM P94–117,

144–162,

424–442

(61)

CAR

(PO)

Chronic stress

(P85–P105)

FST 7 days (210)

INFLAMMATORY + TISSUE-BREAKING PAIN

CFA

(P1)

PWT P35, 42, 49 Incision (P50) PWT 4h, 1, 2, 3, 4, 7 d (171)

INFLAMMATORY + NERVE INJURY

CFA

(P0, 1, 3, or 14)

Sciatic nerve

injection (P56–84)

SC [WGA-HRP

density]

48 h (134)

CFA

(PO)

PWT, PWL P56 SNL (P56) PWT, PWL P57, 60, 63, 70,

77, 84

(194)

CFA

(tail) (P3)

PWT, PWL P56 TNI (P56) PWT, PWL P57, 60, 63, 70,

77, 84

(194)

(Continued)
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TABLE 4 | Continued

“2-Hit” Models

1st Stimulus

(age)

Basal outcome

measure(s)

Age/Time 2nd Stimulus

(age)

Outcome

measure(s)

Age/Time References

SNI

(P10)

SC [IBA1] 6, 24, 72 h LPS (P10–19,

19–21)

PWT 0, 30, 60, 90, 120,

150min

(201)

TISSUE-BREAKING + INFLAMMATION/OTHER PAIN

RNP

(P0–7)

CFA (P56) PWT P57 (202)

RNP

(P2–8)

PWL P14–16, 35–36,

64–66

Formalin (P14–16,

35–37, or 64–66)

Pain behavior 2–7 days (203)

TISSUE-BREAKING + TISSUE-BREAKING PAIN

RNP

(P0–7)

PWT

PWL

1, 3, 5 h (P0–7),

Weekly, P21–56

Weekly, P21–56

Incision (P56) PWT

SC

[CGRP, VGLUT2]

1, 3, 4, 7, 9, 11

days

(37)

RNP

(P0–7)

PWT 1, 3, 5 h (P0–7) Incision (P42–56) Electrophysiology P42–56 (98)

RNP

(P0–7)

PWT 1, 3, 5 h (P0–7),

Weekly P21–56

Incision (P56) PWT 1, 3, 5, 7, 9 days (204)

RNP

(P0–7)

PWT

PWT, PWL

1, 3, 5 h (P0–7)

Weekly P21–56

Incision (P56) PWT, PWL 1, 3, 5, 7, 9 days (214)

RNP

(P2–14)

Acute stress (P15

or 20–21)

ACTH,

corticosterone

5, 30, 60, or

90min

(205)

Incision

(P3, 6, 10, 21 or

40)

PWT 0, 4, 24, 48, 72 h Incision (P17, 20,

24, 35, or 54)

PWT

EMG

0, 4, 24, 48, 72 h,

and 7 days

24 h

(100)

Incision

(P3)

Incision (P56) PWT, PWL, IBA1,

EMG

0, 1, 3, 5, 7, 10,

14, 19, 21, 28

days

(16)

Incision

(P3, 10, 17)

Incision (P90) PWT, PWL, OFA,

brain [c-Fos],

novelty-induced

hyponeophagia

0, 1, 2, 5 days (97)

Incision

(P3)

PWT 3, 4, 24 h Incision (P42–49) PWT, PWL

EMG

CPP, NOR

0, 1, 2, 4, 7, 9, 12,

17, 21 days

0, 24 h

24 h

(207)

Incision

(P3)

PWT

EMG

SC [IBA1]

3, 4, 24, 48, 72 h

6 h

24 h

Incision (P42) PWT, PWL

EMG, OFA

SC [IBA1]

0, 1, 2, 3, 7, 10,

14, 17, 21 days

24 h

P6

(206)

Incision

(P3)

Incision (P70) PWT, PWL,

inclined plate test

SC [IBA1]

Electrophysiology

0, 1, 3, 5, 7, 14,

21 days

0, 1, 3, 5 7 days

7 days

(163)

OTHER PAIN + OTHER PAIN

Orogastric

suctioning

(P2–11)

PWL P60 Colorectal

distention (P60)

PWL, visceral

sensitivity

24 h (209)

Lesion to motor

cortex

(P7)

Lesion to motor

cortex (P70)

SC histology P70 (208)

Electrical

stimulation

(P10)

Electrical

stimulation ±

Capsaicin (adult;

not specified)

PWT

SC [IBA1]

0, 3, 24, 48 h

48 h

(164)

P, post-natal day; CFA, complete Freud’s’ adjuvant; CAR, carrageenan; RNP; repetitive needle prick; SNI, spared nerve injury; CCI, chronic constriction injury; ACTH, adrenocorticotropic

hormone stimulation test; PWT, paw withdrawal threshold; PWL, paw withdrawal latency; IC, incapacitance meter; SC, spinal cord; DRG, dorsal root ganglion; IBA1, immunostaining

for ionized calcium-binding adapter molecule 1 (microglia marker); cFos, proto-oncogene; WGA-HRP, Wheat germ agglutinin conjugated to horseradish peroxidase; CGRP, calcitonin

gene-related peptide; VGLUT2, vesicular glutamate transporter 2; WB, western blot; EPM, elevated plus maze; OFA, open field arena; MWM, Morris water maze; CPP, conditioned

place preference; FST, forced swim test; EMG, electromyography; NOR, novel object recognition.
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on pain responses and mechanistic pathways, and early life pain
could be superimposed on this model to evaluate the influence
of early life pain on chronic pain states. Indeed, this approach
has been communicated in abstract form where we found that
neonatal RNP pain appears to heighten reflexive and complex
pain behaviors following chemical induction of osteoarthritis in
adult rats, compared to osteoarthritis alone (224). However, there
may be opportunities where using large animalmodels (e.g., dogs,
pigs) would be preferred as these models are preexisting and
better mimic human disease (225–228).

To date there is a complete lack of published clinical or
basic science information on the effects of early life pain on
persistently painful conditions in adults. Assessing ‘naturally
occurring,’ or spontaneous, chronic pain conditions in animals
with a history of early life pain could add to our understanding
of the consequences of early life pain on later chronic pain
(229). Companion animals commonly are surgically de-sexed,
or sterilized (e.g., ovariohysterectomy or orchidectomy), at an
early age (<6 months old), providing a natural model of early
life surgery and pain. Such studies would be best performed
prospectively, although one obvious shortcoming of such studies
would be the removal of the influence (positive or negative)
of sex hormones. To avoid hormonal confounders and the
risk of missing the “critical period” of neurodevelopment other
elective canine procedures may be used, such as tail docking (3–
7 days old) or ear cropping (7–12 weeks old). Another clinically
relevant example would be studying piglets who undergo painful
procedures as a part of routine management practices (e.g.,
tail docking, castration, ear notching). Pigs commonly develop
joint pain later in life and relevant outcome measures have
been described. Interestingly, a piglet model has been developed
to study the impact of NICU procedures (e.g., mechanical
ventilation) in preterm infants (230), which could easily become
a two-hit model.

CONCLUSIONS AND FUTURE
DIRECTIONS

Despite significant basic science work, chronic pain remains a
significant public health crisis, where the prevalence of new cases

has persistently increased in both adolescents (231) and adults
(232–234). The influence of predisposing risk factors, such as
age, gender, and obesity on chronic pain have been investigated
for several decades, but there has been limited exploration of
additional underlying risks, such as early life pain.

A growing body of evidence reports long-term consequences
of early life pain in humans, and elegant animal studies are
gradually shedding light on the neuroanatomical and functional
mechanisms responsible for this (18, 88, 119, 235, 236). However,
there is also the distinct possibility that early life pain may impact
the degree and severity of chronically painful conditions that
occur much later in life. To investigate this relationship, a series
of systematic studies need to be conducted. First, a suitable two-
hit model incorporating a painful procedure that consistently
happens during the neonatal period and a disease that causes
chronic pain in adulthood is needed. Second, an appropriate
battery of outcome measures that are clinically relevant should
be explored to evaluate changes to neurophysiology, psychology,
and behavior. Finally, mechanisms responsible for long-term
effects of early life pain should be determined using these
models, and this will lay the foundation for the development of
therapies to improve the quality of life of patients who suffer the
consequences of early life pain experiences.
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