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Abstract

The metabolite (–)-lomaiviticin A, which contains two diazotetrahydrobenzo[b]fluorene 

(diazofluorene) functional groups, inhibits the growth of cultured human cancer cells at 

nanomolar–picomolar concentrations; however, the mechanism responsible for the potent 

cytotoxicity of this natural product is not known. Here we report that (–)-lomaiviticin A nicks and 

cleaves plasmid DNA by an ROS- and iron-independent pathway and that the potent cytotoxicity 

of (–)-lomaiviticin A arises from induction of DNA double-strand breaks (dsbs). In a plasmid 

cleavage assay, the ratio of single-strand breaks (ssbs) to dsbs is 5.3±0.6:1. Labeling studies 

suggest this cleavage occurs via a radical pathway. The structurally related isolates (–)-

lomaiviticin C and (–)-kinamycin C, which contain one diazofluorene, are demonstrated to be 

much less effective DNA cleavage agents, thereby providing an explanation for the enhanced 

cytotoxicity of (–)-lomaiviticin A compared to other members of this family.

The bacterial metabolite (–)-lomaiviticin A (1, Figure 1A) was first isolated in 2001 and is a 

potent cytotoxic agent, with half-maximal inhibitory potencies (IC50) in the 0.007–72 nM 

range against 25 cultured human cancer cell lines.1 The union of two diazofluorene 

functional groups (see structure 4), four 2,6-dideoxyglycoside residues, and a highly 

oxygenated cyclohexenone core serve to create in 1 an impressive, C2-symmetric molecular 

architecture. The metabolite (–)-lomaiviticin C (2) was recently identified in the 

fermentation broth of the producing organism.2,3 Spectroscopic analysis revealed 2 as 

constitutionally and stereochemically identical to 1, save for the conversion of one 

diazofluorene into a hydroxyfulvene (blue in 2). This structural change diminishes 

cytotoxicity by two orders of magnitude.2 The kinamycins [e.g., (–)-kinamycin C (3)]4–8 
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were isolated in the early 1970s and are the first natural products found to contain a 

diazofluorene (for reviews, see refs. 9–13). The kinamycins are monomeric, do not possess 

carbohydrate residues, and are also two orders of magnitude less cytotoxic than 1. 

Collectively these data suggest that the dimeric diazofluorene structure of 1 is essential for 

potent activity, but the origins of this effect are not known.

Substantial effort has been directed toward delineating the reactivity of the 1-diazo-1H-

indene-4,7-dione within the diazofluorene (red in 1–3) and evaluating the relevance of these 

reactivities to cytotoxicity. Because (–)-lomaiviticin A (1) is not widely-available, these 

studies have employed the kinamycins or synthetic analogs. It has been proposed that redox 

cycling of the naphthoquinone to generate reactive oxygen species (ROS),14,15 formation of 

covalent adducts (5) by nucleophilic addition,16 production of vinyl radical intermediates 

(6),15–21 and addition to ortho-quinone methide (7)15,18–22 or acylfulvene (8)23,24 

electrophiles may contribute to cytotoxicity (Figure 1B). In principle, all of these 

intermediates and pathways are accessible to 1, 2, and 3, and none sufficiently account for 

the superior cytotoxicity of 1. Moreover, the biological target and mechanisms underlying 

the activity of 1 have not been established. It was indicated in the isolation report that 1 
cleaved DNA under reducing conditions,1 but no primary data were disclosed. The 

kinamycins weakly bind DNA,25 and have demonstrated DNA damaging activity,14,15,21 but 

a protein target has also been implicated in their effects.25,26

We report an analysis of the DNA damaging properties of (–)-lomaiviticin A (1) and parallel 

experiments to elucidate these properties with (–)-lomaiviticin C (2) and (–)-kinamycin C 

(3). Our data indicate that the cytotoxicity of 1 arises from induction of DNA dsbs, and that 

this mode of DNA damage is not efficiently recapitulated by 2 or 3. We present reactivity 

studies demonstrating that DNA cleavage by 1 proceeds through carbon-centered free 

radical intermediates and that the production of these intermediates is more facile for 1 than 

2 or 3.

Results

Analysis of DNA damage by 1, 2, and 3 in vitro and in tissue culture

Our initial studies began with efforts to recapitulate the reported1 DNA cleavage activity of 

(–)-lomaiviticin A (1) in vitro. As the experimental conditions for this result (e.g., DNA 

substrate, concentration of 1, nature and concentration of reductant) were not disclosed, we 

elected to study the activity of 1 using plasmid pBR322 DNA in the presence or absence of 

the reducing agent dithiothreitol (DTT). Concentrations of 1 in the range of 0.5–2.0 µM 

were optimal for visualizing nicked (Form II) and linearized (Form III) DNA (Figure S1). 

Accordingly, DNA damage was assessed at 0.5 or 2.0 µM 1, with and without DTT (0 or 0.5 

mM), and at varying pH (5.8, 7.4, 8.0, Figure 2A). Nicked and cleaved DNA increased with 

pH and addition of DTT. Form II DNA was observed on treatment with 1 alone, and large 

amounts of Form III DNA were observed when DTT was added. A survey of buffer 

conditions (Figure S2) revealed that DNA damage by 1 was slightly enhanced in tris buffer 

relative to the phosphate buffer used in the experiments shown in Figure 2. By comparison, 

(–)-lomaiviticin C (2) induced production of Form II DNA at ≥100 µM concentration in the 
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presence or absence of DTT, but Form III DNA was not detected (Figure 2B). (–)-

Kinamycin C (3) did not display DNA damaging activity at concentrations as high as 1 mM 

in the presence or absence of DTT (Figure 2C).

Plasmid DNA damage by 1 was not measurably influenced by the hydroxyl radical 

scavengers ethanol or mannitol, the iron chelating agents diethylenetriaminepentaacetic acid 

or desferoxamine, or catalase, which mediates the decomposition of hydrogen peroxide 

(Figures S3, S4).27 Addition of superoxide dismutase, which catalyzes the disproportion of 

superoxide radical,27 did not measurably influence DNA cleavage by 1 in the presence of 

DTT.

A Freifelder–Trumbo analysis28–30 was applied to determine if the linearized DNA 

generated by (–)-lomaiviticin A (1) arises from an accumulation of unrelated ssbs, or from 

coupled strand cleavage events (Figure 2D). The fractions of Form I and III DNA remaining 

after treatment with 1 were quantified and the number of ssbs and dsbs per DNA molecule 

were calculated according to the equations fIII = n2 e−n
2 and fI = e−(n1+n2) fIII and fI represent 

the fractions of Form III and Form I DNA, respectively, n1 represents the number of ssbs/

molecule of DNA, and n2 represents the number of dsbs/molecule of DNA, and a Poisson 

distribution of DNA breaks is assumed. The first equation was solved for n2 by a seventh-

order Taylor approximation. Over the concentration range 0.01–0.7 µM the ratio of ssbs to 

dsbs was constant (5.3±0.6:1) and was lower than that expected if dsbs were to arise from an 

accumulation of unrelated ssbs (hashed red line in Figure 2D). The latter relationship was 

obtained by employing a requirement of at least 23.8 base pairs28 between unrelated ssbs to 

prevent formation of a dsb and the 4361 base pairs-size of the plasmid.

Production of phospho-SER139-H2AX (γH2AX)31,32 and translocation of p53 binding 

protein 1 (53BP1)33 are well-known markers of DNA dsbs. We detected the formation and 

colocalization of foci derived from γH2AX and 53BP1 in K562 cells treated with 0.05 or 0.5 

nM (–)-lomaiviticin A (1) for 4 h (Figure 3). By comparison, 53BP1 and γH2AX foci were 

sparse or undetectable in cells treated with 300 nM of (–)-lomaiviticin C (2) or (–)-

kinamycin C (3). We also observed foci formation and colocalization in HeLa cells treated 

with 1, establishing that the response is not cell line-specific (Figure S5).

In order to quantify the γH2AX response, we conducted fluorescence-activated cell sorting 

analysis of K562 cells exposed to (–)-lomaiviticin A (1), (–)-lomaiviticin C (2), or (–)-

kinamycin C (3) (312 nM of each). This experiment showed an increase in γH2AX by 

1300% in cells treated with 1 (relative to cells treated with an anti-γH2AX antibody alone, 

Figure S6). γH2AX levels in cells treated with 2 or 3 were 11% and 28%, respectively, 

higher than control.

A neutral comet unwinding assay34 was employed as an independent method of dsb 

detection (Figure 4). K562 cells were incubated with (–)-lomaiviticin A (1, 0.5, 5, or 50 nM) 

for 30 min. The cells were fixed in agarose, lysed, placed in a neutral unwinding solution, 

and subjected to neutral electrophoresis. Visualization (SYBR Green) revealed that 1 
induced production of DNA dsbs at the lowest concentration evaluated (0.5 nM). Both (–)-
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lomaiviticin C (2) and (–)-kinamycin C (3) displayed negligible DNA cleavage activity at 

300 nM concentrations.

We conducted clonogenic survival assays using (–)-lomaiviticin A (1) and (–)-lomaiviticin 

C (2) in VC8 and Peo1 cells deficient in BRCA2 and isogenic lines transfected with and 

expressing the wild-type BRCA2 gene. We observed selective killing of the BRCA2-

deficient cell lines for both 1 and 2, and 1 was over three orders of magnitude more potent 

than 2 (Figure 5A). Both BRCA2-deficient cell lines were remarkably sensitive to 1, with 

>98% cell killing at 10 pM 1. We detected upregulation of phospho-SER1981-ATM 

(pATM) and phospho-THR68-Chk2 (pChk2), but not phospho-SER428-ATR (pATR) or 

phospho-SER345-Chk1 (pChk1), by Western blot in MCF-7 cells treated with 1 (Figure 

5B). We also detected formation of DNA dsbs in BRCA2-deficient C4-2 and Peo1 cells 

treated with 1 (0.2 nM) by the neutral comet unwinding assay (Figure S7, S8).

In vitro reactivity studies

We have reported that synthetic monomeric diazofluorenes undergo hydrodediazotization on 

treatment with DTT in methanol, to form hydroxyfulvene products.24 Accordingly, (–)-

lomaiviticin A (1) was anticipated to transform to (–)-lomaiviticin C (2) under reducing 

conditions. The relative rates of reduction of 1, the remaining diazofluorene of 2, and (–)-

kinamycin C (3) were probed by competition experiments. A mixture of 1 (137 nmol) and 3 
(125 nmol) in methanol-d4 was treated with DTT (260 nmol) and the resulting solution was 

analyzed by 1H NMR spectroscopy. This experiment revealed exclusive reduction of 1 to 

form 2, without detectable reduction of 3 (Figure S9). In a separate experiment, a mixture of 

1 (202 nmol) and 2 (421 nmol) was treated with excess DTT (3 × 117 nmol) and monitored 

by 1H NMR spectroscopy. Under these conditions, the concentration of 1 decreased at a rate 

that correlated with the accumulation of 2, definitively establishing the conversion of 1 to 2 
(Figure 6A). Additionally, we observed 56% deuterium atom incorporation at the vinylic 

position of 2 at the end of this experiment. To probe for deuterium incorporation at the 

vinylic position by ketone–enol tautomerization, a solution of natural 2 was warmed to 37 

°C in 10% CD3OD–D2O for 4 d. Within the limits of detection, no deuterium exchange 

occurred at the vinylic position, establishing this site as kinetically-stable. Deuterium 

incorporation may be explained by a mechanism comprising nucleophilic addition of thiol to 

generate a diazosulfide (9), loss of dinitrogen and thiyl radical to form the vinyl radical 10, 

and deuterium atom abstraction (Figure 6B). The origins of incomplete deuteration are 

unclear but may be due to competitive hydrogen atom abstraction from residual S–H bonds 

in DTT.

Additional experiments were conducted to further probe for the intermediacy of the vinyl 

radical 10, evaluate its ability to effect hydrogen atom abstraction from DNA, and test for 

reduction of both diazofluorenes in the presence of DNA. All exchangeable protons in calf 

thymus DNA and DTT were replaced with deuterium by repeated lyophilization from 

D2O.35 d4-DTT (1 equiv) was added to a degassed solution of calf thymus DNA and the free 

base of (–)-lomaiviticin A (1) in D2O, and the resulting mixture was incubated for 48 h at 37 

°C. The ratio of d-(–)-lomaiviticin C (11) to (–)-lomaiviticin C (2) produced in this 

experiment was 1:2 (e.g., 67% hydrogen atom incorporation at the vinyl position, 1H NMR 

Colis et al. Page 4

Nat Chem. Author manuscript; available in PMC 2014 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



analysis), and the isotopologues 2 and 11 were isolated in 34% yield. The double 

hydrodediazotization product 12 (Figure 6B) was recovered in 37% yield, with 39% 

hydrogen atom incorporation at the vinylic positions. To remove variables arising from 

deuterium atom donation by DTT, the experiment was repeated without additional reductant. 

This experiment revealed 88% hydrogen atom incorporation at the vinyl position of the 

monohydrodediazotization products 11 and 2 (11:2 = 1:7, 81% recovery). We also isolated 

18% of 12, containing 60% hydrogen atom incorporation at the vinylic position.

Discussion

(–)-Lomaiviticin A (1) is the most complex and cytotoxic diazofluorene-containing natural 

product. As the producing organism provides 1 in limited quantities (1 mg/L or less)1,2 and a 

total synthesis has not yet been realized, prior mechanism of action studies have employed 

the kinamycins or synthetic analogs.14–24 Our laboratory developed a semisynthetic route to 

1 that facilitated the studies herein.2

It was noted1 that (–)-lomaiviticin A (1) cleaved DNA under reducing conditions, but no 

experimental parameters or primary data from this study were published. Our data show that 

1 nicks and cleaves plasmid DNA at submicromolar concentrations. DNA damage by 1 is 

not mediated by iron, hydroxyl radical, superoxide, or hydrogen peroxide, and increases 

with pH. Nicking occurs in the absence of DTT, but substantial cleavage is only observed in 

its presence. These results were unanticipated because kinamycin-mediated DNA damage is 

favored at lower pH15 and is ROS-, metal-, and reductant-dependant.14,15,21 An earlier study 

demonstrated that (–)-kinamycin D (C-1-deacetyl-kinamycin C, see Figure 1A) cleaved and 

nicked pBR322 DNA at 1 mM concentration in the presence of 5.7 mM DTT,21 but (–)-

kinamycin C (3) was inactive at concentrations as high as 1 mM in the presence of 0.5 mM 

DTT in our assay.

Our data demonstrate production of DNA dsbs in tissue culture by (–)-lomaiviticin A (1). 

We detected production and colocalization of γH2AX and 53BP1 foci in K562 and HeLa 

cells treated with ≤0.5 nM 1, but only marginal responses in cells treated with 300 nM (–)-

lomaiviticin C (2) or (–)-kinamycin C (3). The neutral comet unwinding assay revealed 

DNA dsb formation in K562 cells treated with 0.5–50 nM 1. DNA cleavage by 0.5 nM 1 
was greater than 300 nM of 2 or 3, and 5.0 nM 1 was comparable to 40 Gy of IR. In 

addition, BRCA2-deficient VC8 and Peo1 cells are hypersensitive to (–)-lomaiviticin A (1), 

and pATM/pChk2, but not pATR/pChk1, are upregulated in MCF-7 cells treated with 1. 

BRCA2 is involved in DNA dsb repair,36 ATM and Chk2 primarily respond to DNA dsbs, 

and ATR and Chk1 primarily respond to stalled replication forks.37 Thus, these data support 

a model involving production of DNA dsbs by 1, but not 2 or 3, in tissue culture at low 

nanomolar–picomolar concentrations. As dsbs are the most toxic of all DNA lesions,38 this 

model establishes an explanation for the increased cytotoxicity of 1.

The molecular mechanisms underlying reductive activation and DNA cleavage by (–)-

lomaiviticin A (1) remain incompletely defined but our experiments provide some insights. 

Our plasmid cleavage assays support DNA-damage by ROS and metal-independent 

pathways, and our labeling experiments provide evidence for generation of vinyl radicals 
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from both diazofluorenes of 1. Strand cleavage may initiate by hydrogen atom abstraction 

from the deoxyribose backbone, but further study is required to establish this. Vinyl radical 

intermediates were first proposed in 2005 by Feldman and Eastman, who studied the 

reduction of the synthetic monomeric diazofluorene dimethylprekinamycin (not shown) with 

tributyltin hydride,18,19 but the significance of this finding has not been supported by later 

studies of the kinamycins, which indicated DNA nicking is mediated by ROS and trace 

metals.14,15,21 Our competition experiments reveal that the first hydrodediazotization of 1 
(to form 2) is faster than the second hydrodediazotization (to form 12) and is more facile 

than reduction of (–)-kinamycin C (3). The high mass recoveries from the 

hydrodediazotization experiments conducted in the presence of DNA suggest covalent 

adducts formed from ortho-quinone methide (7) or acylfulvene (8) intermediates are 

insignificant, if formed at all (Figure 1B). We speculate that nucleophilic addition to the 

diazo group (see structure 5, Figure 1B, and structure 9, Figure 6B) may trigger the 

formation of vinyl radical intermediates. Thiol addition to generate a diazosulfide (9, Figure 

6B) finds precedent in the Stadler–Ziegler reaction, which involves addition of thiolates to 

arenediazonium ions,39,40 and is supported by an early model study, which demonstrated the 

addition of an aryloxide nucleophile to a diazofluorene.16 The addition of nucleotides to 

benzenediazonium ions, and the decomposition of these adducts to aryl radicals, has been 

reported.41,42 Thus, in the absence of thiol, DNA itself may behave as a nucleophile toward 

1. The sequence of steps, e.g., protonation then addition, or addition followed by 

protonation, is not known, although the latter seems more likely given the electron-deficient 

nature of 1. The differing rates for the first and second hydrodediazotization, and the 

observation that Form III plasmid DNA is produced by 1 only in the presence of DTT, 

suggests DNA may be reactive toward the first diazofluorene of 1 but not toward the 

remaining diazofluorene of (–)-lomaiviticin C (2).

Many DNA-damaging natural products are activated by electron transfer or nucleophilic 

addition,43 and the enediyne antitumor agents, such as neocarzinostatin chromophore and 

the calicheamicins,44 provide the closest precedent for the behavior of (–)-lomaiviticin A 

(1). These agents undergo nucleophilic activation to generate biradical intermediates that 

nick and cleave dsDNA. However, the pathways leading to radical formation are distinct, 

and there is little doubt that the two vinyl radicals of 1 are generated stepwise. The ratio of 

DNA ssbs to dsbs produced by 1 (5.3±0.6:1) is below the value anticipated if dsbs arose 

from an accumulation of unrelated ssbs, suggesting strand cleavage occurs from a single 

binding event. Incidentally, this ratio is comparable to that observed for bleomycin (6:1),

which mediates stepwise strand cleavage events (without dissociation),45 and is lower than 

that obtained for calicheamicin (2:1),46 in which strand cleavage occurs from a single 

reactive intermediate.44

The enhanced reactivity of (–)-lomaiviticin A (1) toward reduction was unanticipated. 

Energy minimization of 1, conducted at the B3LYP 6-31G(d) level of theory in a water 

solvent continuum suggests that the diazofluorenes of 1 occupy a parallel conformation 

(Figure S10). The interdiazofluorene distance, as measured from the quinone carbonyl distal 

to the diazo and the nearest carbon atom of the opposing diazofluorene, is 3.8 Å. This 

arrangement minimizes nonbonded interactions between the carbohydrates of 1, which 
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increase as the diazofluorene fragments are twisted (about the cojoining carbon–carbon 

bond) away from each other, and decreases the surface area exposed to water. We 

hypothesize that electronic delocalization between the arenes may increase electrophilicity. 

In support of this, the redox potential of pseudogeminal-[2.2]paracyclophane-4,7,12,15-

tetrone, in which the two quinone fragments are fixed at a distance of ~3.2 Å,47 is 0.27 V 

more positive than 2,5-dimethylbenzoquinone,48 while the redox potential of 

[2.2]paracyclophane-4,7-dione, in which a benzene ring is positioned near the electrophore, 

is 0.19 V less positive then 2,5-dimethylbenzoquinone. The heightened reactivity of 1 vs. 3 
may be due to a combination of this interaction and the additional ketone and hydroxyl49 

substituents of 1.

In summary, we have shown that DNA cleavage is the primary mechanism of action of (–)-

lomaiviticin A (1), provided evidence that vinyl radical species mediate this cleavage 

activity, and established that both diazofluorenes of 1 contribute to strand cleavage. This 

mode of DNA damage is not recapitulated by (–)-lomaiviticin C (2) or (–)-kinamycin C (3), 

and thereby accounts for the enhanced cytotoxicity of 1 relative to other diazofluorene-

containing natural products. The work herein establishes a context to study the molecular 

mechanisms underlying reductive activation, hydrogen atom abstraction, and DNA cleavage 

by (–)-lomaiviticin A (1).

Methods

Cell Culture

The cells were maintained at 37 °C in a humidified atmosphere containing 5% CO2. K562 

cells were cultured in RPMI 1640 medium supplemented with 10% fetal bovine serum 

(FBS), 1% L-glutamine, and 1% penicillin/streptomycin. HeLa cells were grown in DMEM 

supplemented with 10% FBS and 1% penicillin/streptomycin. MCF7 cells were grown in 

RPMI supplemented with L-glutamine and 10% FBS. PEO1 and PEO1 C4-2 ovarian cells 

and VC8 and VC8+BRCA2 Chinese hamster ovary (CHO) cells were grown in high-glucose 

DMEM supplemented with 10% FBS.

Plasmid cleavage assays

Reactions using supercoiled pBR322 plasmid DNA were performed in 20.0 µL of 10 mM 

sodium phosphate buffer/50 mM NaCl, pH 8.0, unless otherwise noted. The DNA 

concentration was 38 µM in DNA bp. In a typical assay, DTT (5 mM, 2.0 µL) was added to 

a mixture of 1 in DMSO (2.0 µL of solution in DMSO), water (final volume = 20.0 µL), 

buffer (100 mM sodium phosphate solution, pH 8.0, 2.0 µL), salt (500 mM NaCl, 2.0 µL), 

and pBR322 DNA (0.25 µg/µL in water, 2.0 µL), mixed in that order. The solution was 

thoroughly mixed by pipetting and incubated at 37 °C for 16 h. Solutions of 1 was prepared 

immediately before use. The final reaction contained 10% DMSO by volume.

Immunofluorescence

HeLa and K562 cells were grown on glass coverslips and poly-L-lysine coated glass 

coverslips, respectively. Following treatment, cells were washed with cold PBS, fixed with 

4% paraformaldehyde at room temperature (15 min), permeabilized on ice (20 min) in 
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0.25% Triton X-100, and blocked with 3% bovine serum albumin in Tris-buffered saline 

(TBS) for at least 5 min at room temperature. Coverslips were incubated with primary 

mouse monoclonal anti-γH2AX (SER139) and rabbit polyclonal anti-53BP1 antibodies 

(1:100) for 1 h at 37 °C, washed with phosphate-buffered saline (PBS), and incubated with 

secondary Alexa 488 and Alexa 594 conjugated anti-mouse (1:100) and anti-rabbit (1:200) 

antibodies, respectively, for 1 h at 37°C. The coverslips were washed with PBS and 

mounted on glass slides using Vectashield mounting medium containing DAPI to 

counterstain DNA. Foci were visualized with a Zeiss Axiovert 200 M epifluorescence 

microscope equipped with a 63×/1.40 Plan-Apochromat oil immersion objective. Images 

were captured with a Zeiss Axiocam Mrm camera and AxioVision software.

Comet assay

Following treatment, K562 cells were immediately placed on ice. Drug was removed and 

cells were rinsed and re-suspended (3 × 105 cells/mL) in cold PBS prior to analysis for DNA 

double-strand breaks using Trevigen’s neutral comet assay reagent kit. The DNA was 

stained with SYBR Green I and the resulting comets were analyzed using a Zeiss Axiovert 

200 M epifluorescence microscope at 10× magnification and the CometScore software. At 

least 50 individual comet images were analyzed from each sample for tail moment.

Reactivity Experiments (Competition Hydrodediazotization Between 1 and 3)

A solution of (–)-lomaiviticin A (1) [nominally 2.2 µM, 100 µL, containing approximately 

14% (–)-lomaiviticin C (2)] and (–)-kinamycin C (3) in methanol (nominally 2.0 µM, 100 

µL) were combined in a J-Young NMR tube and concentrated to dryness. The residue 

obtained was dissolved in methanol-d4 (100 µL) and the resulting solution was concentrated 

to dryness. This procedure was repeated. The residue obtained was dissolved in methanol-d4 

(400 µL). A solution of 1,3,5-trimethoxybenzene in methanol-d4 (20.0 mM, 20.0 µL, 403 

nmol) was added and the resulting solution was analyzed by 1H NMR spectroscopy. The 

molar quantity of each species in solution was determined by integrating resolved 

resonances of 1, 2, and 3 [1: δ 6.25 (s, 2H); 2: δ 5.43 (s, 1H); 3: δ 5.72 (s, 1H)] against the 

aryl resonance of 1,3,5-trimethoxybenzene [δ 6.07 (s, 3H)]. This analysis revealed the 

presence of 137 nmol 1, 22.2 nmol 2, and 125 nmol 3 (Table S1). A solution of DTT in 

methanol-d4 (4.3 mM, 20.0 µL, 86.6 nmol) was then added, and the resulting mixture was 

analyzed by 1H NMR spectroscopy. This process was repeated twice.

Hydrodediazotization of 1 in the Presence of Calf Thymus DNA and Dithiothreitol

Calf thymus DNA in D2O [44.6 µL, 6.85 mM/base pairs, 116 equiv, azeotroped from D2O 

(3 × 500 µL)] was added to a solution of 1 (3.6 mg, 2.64 µmol, 1 equiv) in 10% N,N-

dimethylformamide-d7–D2O (200 µL). Dithiothreitol in D2O (1 mM, 2.64 µL, 2.64 µmol, 

1.00 equiv) was added, and the resulting mixture was stirred gently for 48 h at 37 °C. The 

mixture was purified by reverse-phase flash-column chromatography (eluting with 10% 

methanol–water initially, grading to 80% methanol–water, seven steps) to afford separately 

a mixture of 2 and 11 (1.2 mg, 34%) and the double hydrodediazotization product 12 
(orange solid, 1.1 mg, 37%). 1H NMR analysis showed 67% proton incorporation at the 
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vinylic position for 2 and 11, and 39% total hydrogen atom incorporation at the vinylic 

position of 12.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Structures of the metabolites employed in this study and their proposed reaction pathways. a. 

Structures of (–)-lomaiviticin A (1), (–)-lomaiviticin C (2), (–)-kinamycin C (3), and the 

diazotetrahydrobenzo[b]fluorene (diazofluorene, 4) functional group. b. Cytotoxic species 

proposed to form from the 1-diazo-1H-indene-4,7-dione. Red denotes the 1-diazo-1H-

indene-4,7-dione functional group of 1, 2, and 3. Blue denotes the hydrofulvene functional 

group of 2.
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Figure 2. 
Analysis of nicked and cleaved plasmid pBR322 DNA by (–)-lomaiviticin A (1), (–)-

lomaiviticin C (2), and (–)-kinamycin C (3). a. Plasmid damage induced by 1, [1] = 0.5 or 

2.0 µM, pH = 5.8, 7.4, or 8.0, [DTT] = 0 or 0.5 mM, 37 °C, 16 h. b. Plasmid damage 

induced by 2, [2] = 2–1000 µM, pH 7.4, [DTT] = 0 or 0.5 mM, 37 °C, 16 h. c. Plasmid 

damage induced by 3, [3] = 2–1000 µM, pH 7.4, [DTT] = 0 or 0.5 mM, 37 °C, 16 h. Top 

band: Form II (nicked) DNA, middle band: Form III (linearized) DNA, bottom band: Form I 

(supercoiled) DNA. d. Ratio of DNA dsbs () to ssbs () per DNA molecule in a plasmid 

cleavage assay using 1. Data points (left to right) correspond to 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 

0.5, 0.6, 0.7 µM of 1. The dashed line represents the Freifelder–Trumbo relationship, 

defined as  where h = 23.8 and L = 4361. Quantitative analyses and 

statistical treatments are presented in the Supporting Information.
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Figure 3. 
Immunofluorescence imaging of γH2AX and 53BP1 foci in K562 cells treated with (–)-

lomaiviticin A (1), (–)-lomaiviticin C (2), or (–)-kinamycin C (3). γH2AX and 53BP1 are 

commonly used markers (refs. 31–33) for DNA dsbs. Immunofluorescence imaging shows 

that these foci are induced and colocalize in K562 cells treated with 1 (0.05–0.5 nM), but are 

sparse or undetectable in cells treated with 300 nM 2 or 3. Columns (left to right), 53BP1 

(red), γH2AX (green), nucleus (blue), merge. Rows (top to bottom): control, 0.05 nM 1, 0.5 

nM 1, 300 nM (–)-lomaiviticin C (2), 300 nM (–)-kinamycin C (3). K562 cells in 

Colis et al. Page 14

Nat Chem. Author manuscript; available in PMC 2014 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



exponential growth phase were incubated with 0.05 nM 1, 0.5 nM 1, 300 nM 2, or 300 nM 3 
for 4 h. Immunological detection was performed using a primary antibody [rabbit polyclonal 

anti-53BP1 antibody (Novus Biologicals) and mouse monoclonal anti-phospho-histone 

H2AX (SER139) antibody (Upstate)] and visualized with Alexa 488 (goat-anti-mouse IgG) 

and Alexa 594 (goat-anti-rabbit IgG). Mounting medium contained DAPI to visualize 

nuclear DNA.
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Figure 4. 
Neutral comet unwinding assay of K562 cells treated with (–)-lomaiviticin A (1), (–)-

lomaiviticin C (2), or (–)-kinamycin C (3). (–)-Lomaiviticin A (1) induces DNA dsb 

formation in K562 cells at 0.5–50 nM concentrations, while 2 and 3 induce minimal 

production of DNA double-strand breaks (dsbs) at 300 nM concentrations. Tail moment 

obtained in a neutral comet unwinding assay employing 1 (0.5, 5.0, or 50 nM), 2 (300 nM), 

or 3 (300 nM) and K562 cells. Drug exposure was 30 min. Bars represent mean tail moment 

(60–140 cells), error bars represent standard error of the mean. IR = ionizing radiation. Tail 

moment represents the extent of DNA cleavage and is defined as the product of the tail 

length and the fraction of DNA in the tail. The neutral comet assay is a method for the 

selective detection of DNA dsbs in tissue culture (see ref. 34).
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Figure 5. 
Clonogenic survival curves and western blot analysis of cells treated with (–)-lomaiviticin A 

(1) or (–)-lomaiviticin C (2). a. Clonogenic survival curves for BRCA2-deficient VC8 and 

Peo1 cells and the corresponding isogenic cell lines transfected with and expressing a 

functional BRCA2 gene (VC8+BRCA2 and C4-2, respectively). Solid data points represent 

the BRCA2-proficient cell lines (VC8+BRCA2 and C4-2), unfilled data points represent the 

BRCA2-deficient cell lines (VC8 and Peo1). Left graphs: cells treated with 1. Right graphs: 

cells treated with 2. These data support DNA as the target of 1 and 2 as BRCA2 is involved 

in DNA repair and BRCA2-deficient cell lines are hypersensitive to DNA damaging agents 

(ref. 36). b. (–)-Lomaiviticin A (1) upregulates pATM and pChk2, but not pATR and pChk1, 

in MCF-7 cells. Western blot analysis of pATM, pATR, pChk2, Chk2, pChk1, and Chk1 in 

MCF-7 cells treated with 1 (10 or 20 pM). These data support production of DNA dsbs by 1 
as pATM and pChk2 are involved in DNA dsb repair, while pATR and pChk1 respond 

primarily to replication fork stalling (ref. 37).
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Figure 6. 
Relative reactivity studies and mechanistic pathways for reduction of the diazofluorene. a. 

Competition hydrodediazotization experiment between (–)-lomaiviticin A (1) and (–)-

lomaiviticin C (2). 1/m = –0.01163, 0.01132 for 1, 2, respectively. Conditions: 1 (202 nmol), 

2 (421 nmol), DTT (3 × 117 nmol), methanol-d4 (400 µL), 21 °C. b. Postulated pathway for 

the transformation of 1 to 2 and 11. c. Structure of the double hydrodediazotization product 

12.
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Figure 7. 
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