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Abstract
Background: Surgical interventions allow for tailoring of treatment to individual patients and implementation may vary
with surgeon and healthcare provider. In addition, in clinical trials assessing two competing surgical interventions, the
treatments may be accompanied by co-interventions.
Aims: This study explores the use of causal mediation analysis to (1) delineate the treatment effect that results directly
from the surgical intervention under study and the indirect effect acting through a co-intervention and (2) to evaluate
the benefit of the surgical intervention if either everybody in the trial population received the co-intervention or nobody
received it.
Methods: Within a counterfactual framework, relevant direct and indirect effects of a surgical intervention are esti-
mated and adjusted for confounding via parametric regression models, for the situation where both mediator and out-
come are binary, with baseline stratification factors included as fixed effects and surgeons as random intercepts. The
causal difference in probability of a successful outcome (estimand of interest) is calculated using Monte Carlo simulation
with bootstrapping for confidence intervals. Packages for estimation within standard statistical software are reviewed
briefly. A step by step application of methods is illustrated using the Amaze randomised trial of ablation as an adjunct to
cardiac surgery in patients with irregular heart rhythm, with a co-intervention (removal of the left atrial appendage)
administered to a subset of participants at the surgeon’s discretion. The primary outcome was return to normal heart
rhythm at one year post surgery.
Results: In Amaze, 17% (95% confidence interval: 6%, 28%) more patients in the active arm had a successful outcome,
but there was a large difference between active and control arms in the proportion of patients who received the co-
intervention (55% and 30%, respectively). Causal mediation analysis suggested that around 1% of the treatment effect
was attributable to the co-intervention (16% natural direct effect). The controlled direct effect ranged from 18% (6%,
30%) if the co-intervention were mandated, to 14% (2%, 25%) if it were prohibited. Including age as a moderator of the
mediation effects showed that the natural direct effect of ablation appeared to decrease with age.
Conclusions: Causal mediation analysis is a useful quantitative tool to explore mediating effects of co-interventions in
surgical trials. In Amaze, investigators could be reassured that the effect of the active treatment, not explainable by differ-
ential use of the co-intervention, was significant across analyses.
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Introduction

Large traditional randomised controlled trials (RCTs)
of drug therapies, with rigorously controlled design,
influence clinical practice (see, for example, Pocock).1

However, they may lack generalisability to the intended
setting and for trials of surgical techniques, a degree of
flexibility is required.2–4
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RCTs in surgery are increasingly used in a range of
disease populations, including cancer, orthopaedic and
cardiac patients.5–7 These trials often adopt pragmatic
designs to reflect the intervention as performed in clini-
cal practice. During trial design, decisions are made
about the inclusion and level of standardisation of each
stage of the procedure, rather than imposing a strictly
standardised protocol.8 The technically demanding
nature of surgery, requirements of individual patients
and unexpected adverse events result in flexibility of
delivery. A related issue is the use of co-interventions
alongside or subsequent to the surgery under investiga-
tion which, although not part of the intervention, may
impact outcomes and mediate the treatment effect.

In RCTs, primary analysis typically assesses effec-
tiveness of the whole surgical procedure in the
‘Intention to Treat’ population. However, there may be
interest in exploring contributions to the overall treat-
ment effect of intervention components, patient charac-
teristics, surgeons or co-interventions. Some variables
are effect modifiers, modelled as fixed effects and inter-
actions, others are not of interest themselves, but intro-
duce some dependency (clustering) between trial
participants. For example, outcomes for cardiac sur-
geons are clustered, even after adjusting for patient
characteristics and may be analysed as random
effects.9–11 An analogous situation exists in psychology
where clustering of patient outcomes by therapist is
expected.12 Co-interventions are not part of the inter-
vention package but may affect trial results, especially
if they are not applied consistently across trial arms.
Co-interventions may mediate the effect of the interven-
tion so that secondary analysis could explore the extent
to which the surgery acts directly on the outcome and
indirectly via the co-intervention. Furthermore, policy
makers may be interested in the direct effect of the sur-
gery if (hypothetically) either all or no patients receive
the co-intervention.

Causal mediation analysis has been used extensively
to explore how complex interventions work in other
contexts, notably in psychotherapy, where the mediated
(indirect) effect of treatment is usually the focus.13 In
contrast, for surgical trials, interest centres on direct
effects of the intervention; the co-intervention is a nui-
sance mediator and we wish to exclude its effect.
Rigorous statistical methods for assessing causal rela-
tionships have been developed, but uncertainty remains
on when they are relevant in this setting; applications
to real trials would help to clarify their usefulness. In
the surgical trials literature, few studies have considered
mediation in trial analysis and none where both media-
tor and outcome are binary, or where clustering of out-
comes is apparent.14,15

The focus of this article is primarily on defining rele-
vant causal estimands in surgical trials, specifying sta-
tistical approaches for estimating these and being clear

about the assumptions made when doing so. Methods
are illustrated using the Amaze heart surgery trial.7,16

We provide background, methods and assumptions
for causal mediation methods based on counterfactual
arguments, and an overview of resources for implemen-
tation of methods in standard statistical software in the
section ‘Methods’. These are applied to the Amaze trial,
which motivated this work as described in the section
‘Results’; conclusions and discussion are provided in
the section ‘Conclusion’.

Methods

Mediation analysis aims to explain treatment mechan-
isms by partitioning the total effect of an intervention
on an outcome into direct effects and indirect effects,
which act via a mediator (see, for example, study by
MacKinnon13 and Figure 1). What distinguishes a
mediator from a moderator is that it occurs after ran-
domisation and lies on the causal pathway between
intervention and outcome.17 A major difficulty in this
context is the presence of unexplained confounding of
the mediator–outcome path which, if ignored, results in
biased estimates of direct and indirect effects of the
intervention.

Since the landmark publications of Baron and
Kenny18 and Robins and Greenland19, use of mediation
analysis has increased substantially. There is extensive
literature on mediation in RCTs of psychotherapy, but
from a targeted literature search there has been little
uptake in the analysis of mechanisms in surgical trials.12

Early publications focussed on the case where either
mediator or outcome were continuous random vari-
ables and based analyses on linear models.18,19

Subsequent developments provided more general meth-
ods, including conditions for identifiability of esti-
mands.20,21 Methods for more complex situations are
being developed with recent literature considering mul-
tiple mediators and repeated exposures (interventions)
with repeated mediators.22–24 Moreover, methods have
been developed within the Bayesian paradigm.25 In this
study, we focus on a single (binary) mediator and a sin-
gle (binary) outcome, where the main estimand of

Figure 1. Simple causal graph for the Amaze trial assuming no
confounding. LAA: left atrial appendage.
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interest is the direct difference between trial arms in the
probabilities of a successful outcome, that is not due to
confounding by a nuisance mediator. Several authors
provided methods for estimation of effects when both
mediator and outcome are binary so that new methods
for our case are not required.26 In this context, we
briefly review the framework and conditions required
to estimate causal estimands of interest in the presence
of a single mediator.

Potential outcomes, natural direct, natural indirect
and controlled direct effects

In the counterfactual approach, a number of potential
outcomes may be considered, depending on the treat-
ment (surgery) and mediator (co-intervention) levels.27

We denote the potential outcome for participant
i, i= 1, . . . , n, who received treatment t 2 (0, 1) and
mediator m 2 (0, 1) by Yi(t,m). The potential mediator
for patient i under treatment t is expressed as Mi(t). In
our case, for each trial arm, there are two potential val-
ues for the mediator, Mi(1) and Mi(0), resulting in four
potential outcomes (two treatment arms 3 two media-
tor levels); only one of these is observed for each parti-
cipant, so that there are one factual and three
counterfactual outcomes. For a patient to be eligible
for mediation analysis, all four must be possible (theo-
retically). In practice, this assumption is difficult to
assess from trial data alone unless suitability for the
mediator irrespective of treatment arm is recorded pro-
spectively or available from operative notes, and must
be evaluated in discussion with participating surgeons.

The total causal effect of the treatment on patient i’s
outcome is defined as Yi(1,Mi(1))� Yi(0,Mi(0)). The
trial analysis focusses on the total average causal inter-
vention effect

E½Yi(1,Mi(1))� Yi(0,Mi(0))�:

Since treatment allocation is independent of poten-
tial outcomes in RCTs (Yi(1), Yi(0) k��Ti), the total aver-
age causal effect of the intervention can be identified
using the data from each trial arm.

Following the study by Imai et al.,21 we provide
expressions for natural direct, natural indirect and
total effects for a patient i in Table 1. The natural
indirect effect di(t) represents change in the outcome if
the mediator for patient i was changed from its value
for the intervention arm (Mi(1)) to its value in the con-
trol arm (Mi(0)), while holding treatment arm con-
stant at t, for t = 0, 1. The natural direct effect zi(t)
represents the effect of intervention t on outcome,
holding the mediator at the level realised under t.
Because our chosen estimand is the difference in prob-
ability of successful outcomes between trial arms,
these two expressions can be combined to obtain the
total natural effect for patient i. Note that this would
not be the case had we chosen the relative risk or odds
ratio as the estimand.

For probability-difference estimands, natural direct
and indirect effects from the trial are defined as the
expectation of patient-specific effects over trial partici-
pants. Note that causal effects are defined at a given
reference level for the mediator, often set to the level
observed in the control arm or intervention arm or the
average of the two (see Table 1). All these causal media-
tion estimands can be estimated from trial results pro-
vided that identifiability assumptions hold (see below).

In some applications, interest centres on estimating
either the contribution of the mediator to the total
effect, or, as in our example, the causal direct effect
after taking the mediator into account. Some mediators
can be considered manipulable in that their application
could be controlled (at least in theory).28 For example,
surgeons and policy makers may be interested in the
effect of the intervention if the co-intervention (media-
tor) was either mandated or prohibited. This

Table 1. Definitions of natural direct, natural indirect, total and controlled direct effects for an individual patient i.

Algebraic specification Definition

di(1)[Yi(1,Mi(1))� Yi(1,Mi(0))

di(0)[Yi(0,Mi(1))� Yi(0,Mi(0))

di(a � )[(di(1)+ di(0))=2

Natural indirect effect for the intervention, control arms and their average acting
through the mediator

zi(0)[Yi(1,Mi(0))� Yi(0,Mi(0))

zi(1)[Yi(1,Mi(1))� Yi(0,Mi(1))

zi(a � )[(zi(1)+ zi(0))=2

Natural direct effect of treatment fixing the mediator at the control, intervention or
average level

ti[Yi(1,Mi(1))� Yi(0,Mi(0))

= di(1)+ zi(0)

The total natural effect (TE)

zc
i (1)[Yi(1, 1)� Yi(0, 1)

zc
i (0)[Yi(1, 0)� Yi(0, 0)

Controlled direct effect of treatment if mediator is mandated or prohibited

a* denotes the average of the two treatment arms as the reference.
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(hypothetical) question can be addressed by re-
estimating effects with the mediator level set to 1 (or 0)
for all cases (see Table 1 for notation).29

Fundamental to the potential outcomes approach is
the stable unit treatment value assumption, which has
two parts.30 First, it assumes no interference between
patients, in that potential outcomes for a patient are
not affected by treatments that other patients receive.
Second, it assumes consistency, in that there are no ver-
sions of the treatment that can lead to different poten-
tial outcomes.

Additional assumptions are required in order to
identify, and interpret causally, the mediation effects.

Imai and colleagues show that average causal media-
tion effects are identifiable in general (without other
distributional assumptions) providing the key assump-
tion of Sequential Ignorability holds.31 This assump-
tion requires two conditions:

1. Yi(t,m),Mi(t) k�� TijXi, given baseline variables and
other confounders (including random effects),
treatment assignment is independent of potential
outcomes and mediators.

2. Yi(t,m) k��Mi(t) jTi ¼ t;Xi, given observed treat-
ment, baseline variables and other confounders
(including random effects), the mediator assign-
ment is independent of potential outcomes.

The first condition is justifiable in RCTs since ran-
dom allocation is independent of subsequent events,
including mediators and outcome measurements.
Randomisation protects intervention–mediator and
intervention–outcome relationships from confounders.
The second condition is difficult to justify and not
testable from observed data. Randomisation does not
protect the mediator–outcome relationship from con-
founding because those with high observed mediator
levels can differ from those with low values on prognos-
tic variables. Because bias due to unmeasured con-
founding cannot be excluded in general, it is important
to conduct sensitivity analysis to assess this assumption.

Sequential Ignorability is also required for causal
interpretation of controlled direct effects, as is the
assumption that all patients have the potential to
receive all treatments and mediator levels. Controlled
effects estimation also requires that the mediator is
manipulatable.

Resources for estimation of direct and indirect effects

Natural direct and indirect effects can be estimated in
standard statistical software. We describe commonly
cited examples, although contributions continue to be
published. The user-friendly mediation package in R
uses Monte Carlo simulation to estimate direct and
indirect effects on the additive scale for continuous and
binary mediator and outcome variables, and includes

both parametric and non-parametric error options.32

This package accommodates intervention–mediator
interaction, random effects and sensitivity analysis for
unobserved confounders, although sensitivity analysis
when both mediator and outcome are binary is not
incorporated. It provides estimates of difference in pro-
portions estimands but not odds ratio estimands. A
limited version of this package for parametric estima-
tion is programmed in Stata.33 Other R packages are
available for multiple mediators (mma) and for esti-
mands on odds ratio scale (medflex).34,35

Alternative Stata packages are available for para-
metric estimation (paramed), for binary outcomes with
multiple mediators (LDEcomp) and for estimating mar-
ginal distributions for time-varying exposure (interven-
tion) and covariates (gformula).36–38 The gformula
package allows continuous and binary mediators and
outcomes, intervention–mediator interactions and
options for missing data; gformula is also available as a
SAS macro. A fully parametric procedure for media-
tion analysis is available in both SAS and SPSS
(CAUSALMED).39

For analysts with a thorough understanding of do-
calculus and directed acyclic graphs, Tikka and
Karvanen40 contributed the R package causaleffect.

Results

The Amaze cardiac surgical trial assessed whether abla-
tion during heart surgery returns the heart to normal
sinus rhythm in patients with a documented history of
rapid or irregular heart rhythm.7,16 This multi-centre,
Phase III, pragmatic RCT randomised 352 patients to
ablation plus planned surgery, or planned surgery alone
(control arm). The primary outcome was sinus rhythm
restoration at one year post-surgery (binary outcome).

In 280 trial patients with valid primary outcome, 84/
137 (61.3%) ablation and 67/143 (46.9%) control patients
returned to sinus rhythm. Of 151 patients with a successful
outcome at one year, 84 (56%) were in the ablation arm,
48 (32%) were in sinus rhythm during a baseline electro-
cardiograph despite having a history of atrial fibrillation
and mean (SD) age was 70.5 (8.0) years. Of 129 patients
with an unsuccessful outcome, 53 (41%) were in the abla-
tion arm, 8 (6%) were in sinus rhythm at baseline and
mean (SD) age was 73.6 (7.0) years.

The original trial analysis using mixed effects logistic
regression, including baseline fixed effects (heart
rhythm at baseline, patient age and cardiac operation
type) and surgeon random effects are in Table 2 (results
for operation type suppressed for simplicity). The odds
of successful outcome were higher in the ablation arm,
for younger patients and for those in sinus rhythm at
baseline. Adjusting for fixed effects, 8.4% of the
remaining variation in outcomes was due to surgeon
effects. We used Monte Carlo simulation to obtain our
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chosen estimand (difference in proportion of patients
in normal heart rhythm at one year), estimated to be
0.17 (0.06, 0.28); that is, 17% more ablation patients
returned to sinus rhythm than did control patients.
Note that this is a marginal estimand, as opposed to
the odds ratio for ablation which is conditional on
other variables in the parametric model.

The heart contains a sac called the left atrial appen-
dage (LAA) in which blood clots can form. Although
not a component of routine cardiac surgery or ablation,
some patients had the LAA removed during surgery
(97 (55.1%) of 176 patients who had ablation and 53
(30.1%) of 176 control patients). The difference in the
probability of LAA removal between trial arms raised
concerns that some of the observed total effect of abla-
tion may have resulted from this co-intervention.

Using the potential outcomes framework, we
explored the relative size of the direct effects of abla-
tion on the probability of returning to sinus rhythm
and an indirect effect acting through LAA removal,
see Figure 1. In particular, it is important to ensure
that a significant proportion of the treatment effect
resulted directly from ablation.

In addition to ‘Intention To Treat’ analysis, we
explore questions such as:

� How much of the intervention effect acts as a direct
effect of ablation, rather than through removal of
the LAA?

� What would the effect of ablation be if no patient in
the target population (or all patients) had the LAA
removed?

� Does the direct effect of ablation vary between
patients and how?

Natural direct, natural indirect and controlled direct
effects in the Amaze trial

Although our estimand of interest is the difference
between trial arms in probability of sinus rhythm

restoration, in keeping with the original modelling
approach we used mixed effects logistic regression
models to describe the relationships between outcomes,
mediators and treatment, adjusting for confounders.
Two additional parametric models are required for this
purpose, the mediator model and the outcome model.
Our mediator model was

logit(p(MijTi,Xi, vsi
)=a0 +a1Ti +aT

2Xi + vsi

where for patient i= 1, . . . , n, Ti and Mi represent treat-
ment assignment and observed LAA removal status,
respectively; Xi represents baseline covariates; and vsi

surgeon random effects with vsi
jTi,Xi;N (0,s2

v).
The outcome model was

logit(p(Yi = 1jTi,Mi,Xi, usi
))= u0 + u1Ti + u2Mi

+ u3(T 3 M)i + uT
4Xi + usi

where Yi is the binary outcome, (T 3 M)i denotes the
interaction between treatment and mediator and
usi
jTi,Mi,Xi;N (0,s2

u) for surgeon effects. This differs
from the overall trial analysis by adjustment for LAA
removal and its interaction with treatment.

Estimation of the natural direct effect of ablation on
return to sinus rhythm and the natural indirect effect of
ablation via removal of the LAA can be estimated from
these equations using either approximate methods or
by Monte Carlo simulation.

Table 2 summarises the outcome model results
alongside the original trial analysis. The coefficient for
ablation decreased substantially when LAA removal
and its interaction were included in the model; the (con-
trol group) mediator was associated with a small, non-
significant increase in the odds of a successful outcome.
Older patients were less likely to have a successful out-
come, while those in sinus rhythm at baseline had much
greater chance of returning to sinus rhythm.

Table 3 shows that removal of the LAA was strongly
associated with intervention (ablation) and age, with
older patients less likely to have the LAA removed. The
intra-cluster correlation coefficient was very high

Table 2. Estimated odds ratios for return to sinus rhythm at one year using data from the Amaze trial (results for operation type
are suppressed).

Original trial analysis Outcome model for mediation

Variable Odds ratio (95% CI) Odds ratio (95% CI)
Ablation 2.43 (1.40, 4.21) 1.59 (0.76, 3.32)
LAA removal 0.75 (0.30, 1.84)
Ablation–LAA interaction 2.57 (0.78, 8.44)
Baseline sinus rhythm 8.31 (3.42, 20.20) 8.58 (3.50, 21.06)
Age in years 0.96 (0.92, 1.00) 0.96 (0.92, 1.00)
ICC(surgeon)a 0.084 0.102

CI: confidence interval; LAA: left atrial appendage.
aICC(surgeon) is the Intra-Cluster Correlation Coefficient due to surgeon random effects on the log-odds scale, calculated as the proportion of

total variation attributed to variation between surgeons. Level 1 residual variance is s2
e =p2=3 using the latent variable formulation of the logistic

regression model.
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(56%), suggesting that individual surgeons had strong
preferences for removal (or not) of the LAA. All analy-
ses use complete cases only and, according to the
sequential ignorability assumption, we assume that age,
baseline sinus rhythm, operation type and surgeon
comprise all important confounding variables for the
LAA-–outcome association.

How much of the intervention effect acts as a direct effect of
ablation, rather than through the removal of the LAA?. To
address this question, we used the R package mediation;
since mediator and outcome are binary, it allows ran-
dom effects models and estimates the difference in
probability of success, our chosen estimand.32 To esti-
mate the probabilities of success, first 2000 potential
mediators for each treatment arm were simulated from
the logistic model for mediator; then, conditional on
each treatment 3 simulated–moderator pair, potential
outcomes were simulated from the logistic model for
outcome. Probabilities of success for each treatment
were estimated from these simulated samples. The non-
parametric (Bootstrap) option was used for inference
(see Appendix for details of the algorithm).

Total effect of ablation on probability of return to
sinus rhythm was 0.17 (0.06, 0.28); that is, 17% more
ablation patients than controls returned to sinus
rhythm, (95% confidence interval: 6%, 28%). Figure 2
shows that, when LAA removal is averaged over inter-
vention and control arm levels, about 1% (22%, 4%)
of the effect of ablation acts via removal of LAA, with
16% (5%, 26%) a direct effect of ablation. Results are
similar when the reference level for LAA removal is set
at either intervention or control arm levels.

Alternative parametric models for surgeon effects,
lack of interaction between ablation and LAA removal,
software packages and choice of parametric and non-
parametric confidence intervals showed very similar
results. In all models the natural direct effect was

‘statistically significant’ at the 1% level, so that the trial
conclusions were confirmed.

What would be the effect of ablation if no patient in the target
population (or all patients) had the LAA removed?. Setting
the mediator level to 0 (1) for all cases and estimating
controlled effects, the difference in the percentage of
patients with a successful outcome due to ablation was
14% (2%, 25%) if nobody had the LAA removed, and
18% (6%, 30%) if everyone had the LAA removed.
LAA removal may have a small but important impact
on the effectiveness of ablation.

These results hold if all variables affecting the deci-
sion to remove the LAA have been adjusted for; in real-
ity, there may be systematic selection of patients for
LAA removal and some unmeasured confounding.

Does the direct effect of ablation vary between patients and
how?. Model results and clinical colleagues suggested
that LAA removal and return to sinus rhythm are age-
related. The moderating effect of age on total and
mediated effects was explored, by including age and its
interactions with ablation and LAA removal in the
parametric models. The results in Figure 3 suggest that
the direct (and total) effects decrease with age, but there
is little evidence that mediation is associated with age.

Sensitivity analysis

Assessing sensitivity of results to unobserved confound-
ing is important. For continuous mediator and out-
come, sensitivity is assessed through correlation
between residual errors from mediator and outcome

Table 3. Estimated odds ratios for LAA removal for the
mediator model using data from the Amaze trial (results for
operation type suppressed).

Variable Odds ratio (95% CI)

Ablation 4.78 (2.65, 8.64)
Baseline sinus rhythm 0.51 (0.23, 1.16)
Age in years 0.94 (0.90, 0.99)
ICC (surgeon)a 0.56

LAA: left atrial appendage; CI: confidence interval.aICC(surgeon) is the

intra-cluster correlation coefficient due to surgeon random effects on

the log-odds scale, calculated as the proportion of total variation

attributed to variation between surgeons. Level 1 residual variance is

s2
e =p2=3 using the latent variable formulation of the logistic

regression model.

Figure 2. Total effect (TE), natural direct effects (NDE) and
natural indirect effects (NIE) of ablation on return to normal
heart rhythm (with mediator at the level of control arm (0),
intervention arm (1) and the average).
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models, which is zero if sequential ignorability holds.31 If
plausible correlation levels substantially change estimates
of direct and indirect effects, uncontrolled confounding
may be distorting true causal effects. The same approach
can be used, if only one of mediator and outcome is con-
tinuous and the other binary (probit analysis).31,32

Vansteelandt in the Appendix to Benitez Majano41

provided methods to address unmeasured covariates
when both mediator and outcome are binary, based on
three parameters.

Define U to be a continuous measure encapsulating
all unobserved confounders, scaled to have variance 1,
and b the log (odds ratio) of U on outcome Y , condi-
tional on T and M . To express how strongly U is asso-
ciated with the mediator, define two further sensitivity
parameters l0 and l1 such that

E(U jM = 1, T = t)� E(U jM = 0, T = t)= l0 + l1t

That is, l0 represents the association between U and
M in the control arm and l1 the additional association
due to the intervention.

To explore sensitivity to unexplained confounding,
b, l0 and l1 must be varied, with 0 representing no
unexplained confounding and 61 large effects. In our
analysis, we address the question,

How large do the parameters b, l0 and l1 have to be
so that the mediation effect increases and the causal
direct effect shrinks to zero?
The mediation package in R was augmented to include
sensitivity analysis when both mediator and outcome
are binary (code available from authors).

A contour plot of natural direct effect for ablation
by b and l0, (l1 set to 0 throughout), is provided in the

Appendix. The direct effect of ablation was significant
at the 5% level unless either of the following:

1. unexplained confounding had odds ratio for suc-
cessful outcome of 2, and the confounder had
expected value 0:5 standard deviations lower in
patients with LAA removal, or

2. the unexplained confounding had odds ratio for
successful outcome of \0:5, and the confounder
has expected value 0:5 standard deviations lower
in patients with LAA intact.

Therefore, unless unobserved confounding is
strongly associated with both outcome and mediation,
and acts in opposite directions, conclusions are
unchanged. Neither scenario seems plausible.

Conclusion

Mediation analysis is a useful tool to investigate ques-
tions of interest in RCTs provided key assumptions
hold.20 Its use has been established in psychotherapy
and other mental health trials but is uncommon in
surgery.29

In Amaze, treatment success was observed in 17%
more ablation patients than controls and, despite the
strong association between ablation and LAA removal,
the treatment effect was largely directly attributable to
ablation. Although exploration of mediation effects
could be limited by the size of the trial, this was not an
issue in Amaze. In all models, the direct effect of abla-
tion was significant (p \ 0.01), even in a model that
prohibited removal of the LAA. Sensitivity analysis

Figure 3. Estimated natural direct effect (left) and natural indirect effect (right), with 95% confidence intervals, as a function of
patient age (SR: sinus rhythm; vertical line at mean age of trial sample 71.9 years).
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suggested that unexplained confounding would have to
be implausibly strong to conclude otherwise. Policy
makers, surgeons and patients can be confident that
ablation is effective in restoring sinus rhythm at one
year, whatever the surgeon’s preference for the co-
intervention.

In Amaze, 20% of patients did not have the primary
outcome data, mostly due to death or measurement
device failure. Since the proportion of missing cases was
balanced in the two arms and missingness was unlikely
to depend on intervention or mediator, complete case
analyses were used. However, multiple imputation or
inverse probably weighting methods for missing data
could be incorporated into the analysis with additional
programming.

Methodology for pragmatic trials of complex inter-
ventions has extended the use of RCTs for interven-
tions like surgery. Flexibility in intervention delivery
confers external validity and relevance of trial results,
but introduces treatment heterogeneity. If there is too
little control of treatment delivery, results are difficult
to interpret and unlikely to be accepted by surgeons or
policy makers. Therefore, detailed description of the
substantive components of intervention and control,
and monitoring of adherence to these protocols are cru-
cial.8,42 Co-interventions should be considered at the
design stage, with conditions for their use documented;
additional baseline variables affecting the mediator–
outcome relationship should be collected and included
in analyses, to justify the assumption of sequential
ignorability.

Causal mediation methods available in standard
software cover a wide range of analyses, although
assumptions must be considered carefully. Methods for
multiple mediators, longitudinal outcomes, multiple
treatments over time and time-to-event outcomes need
further development.

Mediation analysis provides useful insights in trials
of surgery that may lead to co-interventions and allows
assessment of the potential size of their impact. Such
quantitative assessments are a useful addition to quali-
tative process evaluations in RCTs.43
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Appendix

Estimation in the Amaze trial

For Amaze, we used the R package mediation, since
mediator and outcome are binary, it allows random
effects models and estimates the difference in probabil-
ity of success.32 The non-parametric (Bootstrap) option
was used for inference.

Following the study by Imai et al.,21 the algorithm
took the following steps,

662 Clinical Trials 17(6)

https://ideas.repec.org/c/boc/bocode/s457581.html
https://ideas.repec.org/c/boc/bocode/s457581.html


1. Sample n patients with replacement from trial
dataset.

2. Using this sample fit the mediator model adjusted
for baseline covariates.

3. Fit the outcome model including intervention,
mediator, their interaction and confounders.

4. With the intervention set at t = 0 and t= 1 sepa-
rately, simulate potential mediator values Mi(0)
and Mi(1), for i= 1, . . . , n from mediator model.

5. For each potential mediator, sample a single poten-
tial outcome Yi(t,Mi(0)) and Yi(t,Mi(1)) from the
outcome model, for t = 0, 1.

6. From these n 3 4 potential outcomes sampled, cal-
culate the total, direct and indirect effects (differ-
ences in probabilities) and average over all patients
(see Table 1).

7. Repeat the above J times (2000 in the Amaze
example) in order to compute summary statistics
and non-parametric confidence intervals.

In the fully parametric version of this algorithm,
mediator and outcome models are fitted to trial data,
with estimated parameters â, û, each assumed to have
multivariate normal distributions. Values of a and u

are sampled from the fitted models, potential mediator
and outcome samples are then generated conditional
on a and u and the algorithm follows the same steps as
the non-parametric version thereafter.

Sensitivity analysis results

In sensitivity analysis, total, natural direct and natural
indirect effects were re-estimated for a range of values
for b, the log (odds ratio) of the effect of unexplained
confounders U (scaled to have variance 1) on the out-
come Y and l0, the mean difference in U between
mediated and non-mediated patients in the control
arm. We set l1 to zero in all analyses, since it is unlikely
that confounding associated with the mediator differs
between treatment arms in our example.

Figure 4 is a contour plot of the estimated natural
direct effect (average mediator level) for values of b

and l0 ranging from 21 to 1. The difference in prob-
ability of success between the two arms remains above
0.1 (10%) unless b and l0 have opposite signs and are
large. For example, this estimand only falls below 0.1 if,

1. the effect of the unexplained confounder on out-
come is close to 1 (odds ratio 2) and has expected
value at least 0.5 standard deviations lower in the
LAA patients, or

2. the effect of the unexplained confounder on out-
come is close to 21 (odds ratio \0:5) and has
expected value at least 0.5 standard deviations
lower in the non-LAA patients.

Moreover, the estimated difference in probability of
success is significant at (at least) the 5% level for all
other scenarios. For example, for the natural indirect
effect of ablation to be overestimated by an amount
that would change the conclusion, we would have to
omit highly effective confounders that also have much
higher levels in the non-LAA patients. The existence of
such a confounder that is either unknown to investiga-
tors, or not considered important enough to measure
and adjust for in analysis, seems implausible in an
RCT. Therefore, conclusions concerning the effective-
ness of ablation are unchanged for all plausible
scenarios.

Figure 4. Contour plot of natural direct effect (average level of
mediator) for the difference in probability of a successful
outcome in the Amaze trial for varying values for b, the log
odds ratio of the confounder on probability of success, and l0,
the difference in mean confounder between mediated and non-
mediated patients, with l1 set to zero.
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