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Circular RNAs (circRNAs) are a class of endogenous non-coding RNAs (ncRNAs) with
a closed-loop structure that are mainly produced by variable processing of precursor
mRNAs (pre-mRNAs). They are widely present in all eukaryotes and are very stable.
Currently, circRNA studies have become a hotspot in RNA research. It has been
reported that circRNAs constitute a significant proportion of transcript expression, and
some are significantly more abundantly expressed than other transcripts. CircRNAs have
regulatory roles in gene expression and critical biological functions in the development
of organisms, such as acting as microRNA sponges or as endogenous RNAs and
biomarkers. As such, they may have useful functions in the diagnosis and treatment
of diseases. CircRNAs have been found to play an important role in the development
of several diseases, including atherosclerosis, neurological disorders, diabetes, and
cancer. In this paper, we review the status of circRNA research, describe circRNA-
related databases and the identification of circRNAs, discuss the role of circRNAs in
human diseases such as colon cancer, atherosclerosis, and gastric cancer, and identify
remaining research questions related to circRNAs.
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INTRODUCTION

Circular RNAs (circRNAs) are endogenous non-coding RNAs (ncRNAs) that have gained
increasing attention in recent years. circRNAs are formed by exon or intron cyclization
that ligates the 5′ terminal cap and 3′ terminal poly(A) tail to form a circular structure.
They are mainly located in the cytoplasm or stored in exosomes, are unaffected by RNA
exonucleases, are more stably expressed and less susceptible to degradation, and have been
shown to exist in a wide variety of eukaryotic organisms (Li Y. et al., 2015; Pradeep
et al., 2020). The widespread existence of circRNAs suggests that they have certain biological
functions as lncRNAs and microRNAs (miRNAs) play (Jiang et al., 2009, 2014, 2015;
Wang et al., 2014; Cheng L. et al., 2019; Liang et al., 2019; Wei and Liu, 2020; Yang
et al., 2020). In recent years, studies have shown a diversity of formation mechanisms
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and biological functions of circRNAs. circRNAs are formed by
various mechanisms; for example, spliceosomes (intracellular
protein–RNA complexes) catalyze splicing as follows (Salgia et al.,
2003): first, the spliceosome recognizes introns, which are flanked
by the splice donor (or 5′ splice site) and the splice acceptor
(or 3′ splice site) with specific sequences at the 5′ and 3′ ends;
then, the 2′ hydroxyl group of the downstream sequence attacks
the splice donor, resulting in a circular intron lariat structure;
finally, the 3′ hydroxyl group of the upstream exon splice donor
attacks the splice acceptor, the upstream and downstream exons
are sequentially spliced to form a linear structure, and the
intron lariat structure is usually degraded rapidly by debranching
enzyme. Variable splicing is the process by which a precursor
mRNA (pre-mRNA) can be transcribed from different RNA
splicing methods; that is, different combinations of splice sites, to
produce mutually exclusive mRNA splice isoforms, which in turn
are translated to produce different protein products (Pan et al.,
2008). This is the main function of RNA cyclization. Cyclization
of circRNAs can be divided into intron and exon cyclization
(Sanger et al., 1976), and the current mainstream cyclization
mechanisms are categorized as follows: (1) exon skipping, (2)
direct back-splicing of intron, (3) circRNA formation by RNA-
binding proteins (RBPs; Chen, 2016; Zhang et al., 2018), and (4)
circular intron RNA cyclization (Stoddard, 2014); the detailed
mechanisms are shown in Figure 1. The diversity of circRNAs,
and thus their diverse biological functions, is a direct result of
these multiple formation mechanisms. For example, circRNAs
can act as miRNA sponges (Hansen et al., 2013; Memczak et al.,
2013; Zhao et al., 2020a), be translated into proteins (Yang et al.,
2017), bind functional proteins (Li Z. et al., 2015), regulate RNA
splicing (Conn et al., 2017), and regulate transcription (Chao
et al., 1998; Memczak et al., 2013). Therefore, the identification
of circRNAs contributes to our understanding of the formation
and biological functions of circRNAs.

In 1976, Kolakofsky (1976) observed, for the first time,
defective interfering RNAs in parainfluenza virus particles using
electron microscopy. Sanger et al. (1976) discovered that plant-
infecting viroids are a class of single-stranded, circular RNA
molecules that have characteristics such as high thermal stability
and a natural circular structure by self-complementary. In 1979,
similar circular transcripts were found in HeLa cells and yeast
mitochondria by electron microscopy (Hsu and Coca-Prados,
1979). In 1981, a ribosomal RNA (rRNA) gene was discovered
in Tetrahymena that contained an intron sequence that formed
a circular RNA after splicing. In 1988, the intron of 23S rRNA
in archaea was found to be spliced at a specific site to form
a stable circular RNA and to function as a transposon. In
1991, researchers identified several circular transcripts formed by
different splicing patterns in the human oncogene DCC (Nigro
et al., 1991), and these circular RNAs were then found in human
ETS1 gene, mouse Sry (sex-determining region Y) gene, rat
cytochrome P450 2C24 gene and human P450 2C18 gene.

Despite their early discovery, research on circRNAs has been
slow in recent decades. Although circRNAs were discovered
decades ago, they could not be detected by molecular techniques
that relied on poly(A) enrichment because they did not have
free 3′ and 5′ ends. Instead, cyclizable exons were spliced

by reverse splicing, which was different from regular linear
splicing. Moreover, the mapping algorithm of early transcriptome
analysis could not directly map the sequenced fragments to the
genome, leading to the idea that circRNAs were byproducts
of missplicing. With the development of high-throughput
sequencing and bioinformatics technologies, it was first proposed
in 2012 that circRNAs are circular transcripts generated by
reverse splicing of mRNA precursors, which are found to
exist in large quantities in different types of human cells. In
2013, it was found that circRNAs can act as a sponge for
miRNAs (Hansen et al., 2013; Memczak et al., 2013), which
regulate the growth and development of organisms. Since then,
circRNAs have rapidly become a research hotspot. To identify
circRNAs, in addition to high-throughput techniques (RNA-seq),
common analytical and computational methods are used, such
as CIRI (Gao et al., 2015), segemehl (Hoffmann et al., 2014),
Mapsplice (Wang et al., 2010), and CircSeq (Guo et al., 2014).
In recent years, researchers have developed machine learning
methods to identify circRNAs based on the above methods
(Yin et al., 2021). Feature selection is an important part of
these machine learning models. Feature selection, aiming to
select a subset of features by eliminating redundant and noise
features, is an important preprocessing step in bioinformatics.
Recently, Su et al. (2018) proposed a binomial distribution
based method to perform feature selection in computational
genomics. The effectiveness of their method has been proved
by predicting lncRNA subcellular localizations (Su et al., 2018).
Since both nucleotide and amino acid composition obey binomial
distribution, this method is suggested to be used for genomic
and proteomic analysis. We provide here an overview of the
research progress of circRNAs, including the development of
circRNA databases, identification of circRNAs, and the role of
circRNAs in human diseases such as colon cancer, atherosclerosis,
and gastric cancer.

circRNA-RELATED DATABASES

In recent years, as circRNA research has progressed, an increasing
number of circRNAs have been discovered in different species,
and circRNA-related databases have been created. Some of the
main circRNA databases published so far are listed below.

(1) circBase collects and merges public circRNA datasets
and provides evidence of the genomic catalog of their
expression, as well as scripts to identify circRNAs in
sequencing data1 (Glazar et al., 2014).

(2) Circ2Trait is a comprehensive database that includes
potential associations of circRNAs with diseases and
traits by studying the interaction network of circRNAs
with miRNAs and calculating their internal SNPs and
Argonaute (Ago) interaction sites2 (Ghosal et al., 2013).

(3) deepBase contains about 150,000 circRNA genes from
organisms, including human, mouse, Drosophila,
and nematode. This database also constructs the

1http://www.circbase.org/
2http://gyanxet-beta.com/circdb/
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FIGURE 1 | Formation of circRNAs by (a) exon skipping, (b) direct back-splicing, (c) formation by RNA-binding proteins (RBPs), and (d) circular intron RNA
cyclization.

most comprehensive expression map of circRNAs3

(Yang et al., 2010).
(4) CirNet mainly includes RNA-seq data of more than 400

samples from 26 tissues collected from the sequence read
archive database. This database not only includes basic
information on circRNAs but also provides expression

3http://deepbase.sysu.edu

profile data of circRNAs in different tissues and the
competing endogenous (ce)RNA regulatory network of
circRNAs–miRNA–gene4 (Liu et al., 2016).

(5) starBase v2.0 integrates published circRNA data and
constructs interaction networks of miRNAs with circRNAs
and circRNAs with RBPs. In addition, the database looks

4http://syslab5.nchu.edu.tw/CircNet

Frontiers in Genetics | www.frontiersin.org 3 March 2021 | Volume 12 | Article 665233

http://deepbase.sysu.edu
http://syslab5.nchu.edu.tw/CircNet
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-665233 March 15, 2021 Time: 15:58 # 4

Jiao et al. Circular RNAs and Human Diseases

for potential miRNA–ncRNA, miRNA–mRNA, ncRNA–
RNA, RBP–ncRNA, and RBP–mRNA interactions through
high-throughput data. starBase also predicts the function
of ncRNAs from miRNA-mediated (ceRNA) regulatory
networks (miRNAs, lncRNAs, and pseudogenes) and
protein-coding genes using the online tools miRFunction
and ceRNAFunction5 (Li et al., 2014).

TOOLS FOR RECOGNITION OF circRNAs

Because of the low expression level of circRNAs and limitations
of previous computational methods, these RNA molecules were
only found in small numbers in individual genes and therefore
initially thought to be products of missplicing, byproducts
of RNA splicing, incidental in animals, or precursors of
linear RNAs. In recent years, with improved experimental and
computational methods for circRNAs and the use of next-
generation high-throughput sequencing technologies (Wang
et al., 2009; Zeng et al., 2017, 2019), a large number of
stable circRNAs have now been found in a variety of cells,
and 85% of circRNAs can be mapped to known genes, of
which 84% overlap with coding exons (Memczak et al., 2013).
Because of the special structure of circRNAs—they lack a
5′ terminal cap and a 3′ terminal poly(A) tail and have a
closed-loop structure with covalent bonds—and their maturation
mechanism, early sequencing methods could not easily detect
such molecules. Improvements in sequencing analysis techniques
and computational methods have made detection more efficient
(Malysiak-Mrozek et al., 2019; Mrozek, 2020). Therefore,
studies on the identification of circRNAs are reviewed from
two aspects: (1) identification based on sequencing data and
(2) identification based on sequence features and machine
learning methods.

Identification of circRNAs Based on
Sequencing
Many algorithms exist for circRNA identification, including CIRI
(Gao et al., 2015), segemehl (Hoffmann et al., 2014), Mapsplice
(Wang et al., 2010), CircSeq (Guo et al., 2014), and find_circ
(Memczak et al., 2013). Using these algorithms, researchers
have identified a large number of circRNAs in human, mouse,
nematode, archaea, and other organisms (Yang et al., 2011; Jeck
and Sharpless, 2014). We describe here several of these commonly
used sequencing-based tools for identification of circRNAs.

CIRI (Stoddard, 2014) was developed by Gao et al. (2015)
to comprehensively identify circRNAs, and it is based on the
novel chiastic clipping signal algorithm. CIRI can accurately
detect circRNAs from transcriptomic data without bias through
multiple filtering strategies. This tool is mainly used to identify
and annotate circRNAs from RNA-seq data. Unlike other
methods for annotating circRNAs, CIRI eliminates false positives
by using a new algorithm based on paired cross-clip signal
detection in the BWA-MEM sequence alignment/map and
combining it with systematic filtering.

5http://starbase.sysu.edu.cn/

CIRCexplorer, a tool for identifying circRNAs developed by
Zhang et al. (2014), was the first to elucidate the regulatory
mechanism of complementary sequences on production of
exon-derived circRNAs. This tool revealed that regulation
of variable cyclization was mediated by competitive pairing
of complementary sequences, providing a new theoretical
perspective on the complexity and diversity of gene expression at
the transcriptional and posttranscriptional levels. Nearly 10,000
circRNAs were identified in human embryonic stem cell line
H9 using a special nuclease to enrich circRNAs in combination
with computational analysis software, demonstrating exon
cyclization mediated by the complementary sequence of
intron RNA. Competitive pairing of complementary sequences
between different regions can selectively generate either linear
RNAs or circRNAs.

CircSeq, a tool developed by Guo et al. (2014) to identify and
characterize mammalian circRNAs, is a computational pipeline
to identify and quantify the relative abundance of circRNAs from
RNA-seq databases. Compared with other identification tools,
CircSeq does not require available gene annotation to identify
circRNAs. The application of the identification tool to non-
polyA-selected RNA sequencing data in the ENCODE project
proved its ability to classify and globally characterize more than
7000 human circRNAs.

The above sequencing methods all identify back-splicing sites
from high-throughput sequencing data to detect circRNAs. In
comparing some of the above identification tools, Hansen et al.
(2016) and Sekar et al. (2019) found that only a small percentage
of circRNAs could be predicted simultaneously by these
tools, indicating significant differences and species variability.
Therefore, the above tools developed around high-throughput
sequencing technology have poor identification performance
and low consistency. Moreover, these tools generally have high
false-positive rates and low sensitivity (Hansen et al., 2016). To
address these shortcomings, researchers have developed tools
to identify circRNAs on the basis of sequence features and
machine learning.

Identification of circRNAs Based on
Sequence Features and Machine
Learning
Identifying circRNAs using sequence features that distinguish
circRNAs from linear RNAs (especially mRNAs that encode
proteins) is an urgent problem to be solved in bioinformatics. In
recent years, the combination of sequence features and machine
learning has been successfully used to solve biological problems
such as the prediction of gene regulatory sites and splice sites
(Wang et al., 2008; Xiong et al., 2015), and protein function (Cao
et al., 2017; Gbenro et al., 2020; Hippe, 2020; Zhai et al., 2020),
etc (Mrozek et al., 2007, 2009; Wei et al., 2017b,c, 2018; Jin et al.,
2019; Stephenson et al., 2019; Su et al., 2019a,b; Liu B. et al., 2020;
Liu Y. et al., 2020; Smith et al., 2020; Zhao et al., 2020b,c). Some
tools have been developed to identify circRNAs using sequence
features and machine learning methods. The basic framework of
using machine learning methods to predict circRNAs is shown in
Figure 2.
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FIGURE 2 | Methodology for predicting circRNAs based on machine learning methods.

One study selected 100 RNA circularization-related sequence
features, including length, adenosine-to-inosine (A-to-I) density,
and Alu sequences of introns upstream and downstream of the
splice site, and established a machine learning model to identify
circRNAs in the human genome. The classification abilities of
two machine learning methods, random forest (RF; Cheng et al.,
2019b; Liu et al., 2019) and support vector machine (SVM; Jiang
et al., 2013; Wei et al., 2014, 2017a, 2019; Zhao et al., 2015;
Cheng, 2019; Hong et al., 2020; Li and Liu, 2020; Shao and Liu,
2020), were also compared. The results showed that the selected
sequence features could effectively identify RNA circularization
and that different sequence features contribute differently to the
classification and prediction ability of the model. The RF method
showed better classification than the SVM method.

In 2021, Yin et al. (2021) constructed a tool, named PCirc,
to identify circRNAs using multiple sequence features and RF
classification. This tool specifically targets the identification of
circRNAs in plants, mainly from RNA sequence data. The tool
encodes the sequence information of rice circRNAs by using
three feature-encoding methods: k-mers, open reading frames,
and splicing junction sequence coding (SJSC). The accuracy of
the encoded information is greater than 80% when using the RF
method for identification. The identification model can be used
not only for the identification of rice circRNAs, but also for the
recognition of circRNAs in plants such as Arabidopsis thaliana.

circRNAs AND HUMAN DISEASES

In terms of disease diagnosis, studies have found that the
exosomes released by cancer cells contain abundant circRNAs,
suggesting that circRNAs might be used as biological markers
for clinical diagnosis. The key when using circRNAs for disease
prediction is to identify the interaction site between the circRNA
and miRNA or RBP, and then indirectly determine the association
between the circRNA and disease by analyzing the relationship
between the miRNA or RBP and disease (Jiang et al., 2010; Cheng
et al., 2018; Liu, 2020; Zeng et al., 2020; Zuo et al., 2020).

In 2015, Li Y. et al. (2015) reported that exosomes are enriched
with circRNAs, so it is possible that diseases such as colon cancer
could be diagnosed by detecting circRNAs in serum. Aberrant
expression of circRNAs in colorectal cancer and pancreatic ductal

adenocarcinoma has been used as a diagnostic or predictive
biomarker. By studying their expression profile, it was found that
circRNAs may be associated with the molecular pathogenesis of
cutaneous basal cell carcinoma (Sand et al., 2016).

The first validated circRNA, cANRIL, is closely related to a
single nucleotide polymorphism (SNP) that is thought to alter
the splicing of cANRIL, leading to expression of the INK4A/ARF
loci, resulting in an increased incidence of atherosclerosis (Burd
et al., 2010). Hypoxia is one of the key factors contributing to the
development of atherosclerosis, and is therefore also regulated by
circRNA (Boeckel et al., 2015).

Xu et al. (2015) showed that mice of a transgenic line
overexpressing the miR-7 gene in β-cells developed diabetes
mellitus. The same study showed that overexpression of the
circRNA ciRS-7 inhibited miR-7 function and thus improved
insulin secretion. Potential target genes of miR-7 have been
identified by bioinformatics analysis and include Myrip (a
gene regulating insulin secretory granules) and Pax6 (a gene
enhancing insulin transcription).

A study by Li P. et al. (2015) identified the circRNA hsa-
circ002059 as being associated with gastric cancer. In that study,
expression of this circRNA was downregulated in gastric tissues
of patients compared with healthy controls. In addition, hsa-
circ002059 was found at significantly lower levels in plasma of
patients with gastric cancer than in healthy controls.

In bladder cancer, circRNAs have been identified using high-
throughput microarray technology. Using this approach, Zhong
et al. (2016) found two downregulated circRNAs (circFAM169A
and circTRIM24) and 4 upregulated circRNAs (circTCF25,
circZFR, circPTK2, and circBC048201) in bladder cancer tissue
compared with adjacent non-tumor tissues. In addition, in the
cancer tissues, circTCF25 could increase expression of the CDK6
gene by modulating miR-103a-3p and miR-107. This is closely
related to the development of cancer.

Qin et al. (2016) identified hsa-cir0001649 in hepatocellular
carcinoma (HCC) and found that its expression was significantly
decreased compared with that in adjacent normal liver tissue. In
contrast, Shang et al. (2016) found that another circRNA, hsa-
cir0005075, was significantly downregulated in HCC compared
with adjacent normal tissue.

Exosomes are highly enriched with circRNAs. Exosomes are
extracellular vesicles, 40 to 160 nm in diameter, that function
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as important intercellular signaling pathways (Li Y. et al., 2015;
Kalluri and LeBleu, 2020). The exosome database exoRBase
included 92 sequenced samples of serum exosomes, including
samples from healthy volunteers and patients with coronary
heart disease and colon cancer. The exosome samples contained
58,330 circRNAs and 18,333 mRNAs (Li et al., 2018). Zhang
et al. (2019) demonstrated that circNRIP1, when secreted via
exosome, can be taken up by gastric cancer cells and promote
their proliferation, migration, and invasion. Therefore, exosomes
can be regarded as in vivo carriers of circRNAs that can amplify
their biological functions.

CHALLENGES AND PROSPECTS

Compared with long non-coding RNAs and miRNAs, research on
circRNAs is still in its infancy and many questions remain to be
answered, primarily in four areas:

(1) Transport and degradation: because circRNAs can resist
RNase digestion and are stable in cells, the process of their
degradation is unclear.

(2) Formation: it is unknown whether circRNAs are produced
during or after transcription.

(3) Expression, translation, and function of circRNAs:
circRNAs have stable structures and are highly conserved,
underpinning their ability to play important roles
in different organisms. Their unconfirmed roles,
including acting as miRNA sponges, regulating gene
expression, and targeting RBPs, require comprehensive
and extensive elucidation.

(4) Research methodology: the experimental methodologies
and bioinformatics used to identify circRNAs are
challenging. For example, in experimental methods,
general RNA-seq procedures such as reverse transcription
may cause technical mis-ligation and generate a large
number of artificial circRNAs. These pseudo circRNAs can

account for 34–55% of the sequencing quantity, seriously
affecting the accuracy of the data. As for methods that
use machine learning and sequence features, only a few
identification tools exist and their accuracy needs to be
improved. These tools are not stable across different
species. Therefore, in the future, stable identification
models and deep learning methods are needed to
establish identification tools for circRNAs and improve
the robustness of the models.

Accurate identification will help determine additional
biological functions of circRNAs. The unique features of
circRNAs such as ceRNA may provide new ideas for drug
discovery and development. The tissue specificity and stability
of circRNAs make them potentially useful biomarkers. In the
near future, it is likely that circRNAs will play important roles in
the prevention, diagnosis, and treatment of various diseases.
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