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Abstract
In eukaryotic cells, transcriptional regulation of gene expression is usually achieved by

cooperative transcription factors (TFs). Therefore, knowing cooperative TFs is the first step

toward uncovering the molecularmechanisms of gene expression regulation.Many algo-

rithms based on different rationales have been proposed to predict cooperative TF pairs in

yeast. Although various types of rationales have been used in the existing algorithms, func-

tional coherence is not yet used. This prompts us to develop a new algorithmbased on func-

tional coherence and similarity of the target gene sets to identify cooperative TF pairs in

yeast. The proposed algorithmpredicted 40 cooperative TF pairs. Among them, three

(Pdc2-Thi2, Hot1-Msn1 and Leu3-Met28) are novel predictions, which have not been pre-

dicted by any existing algorithms. Strikingly, two (Pdc2-Thi2 and Hot1-Msn1) of the three

novel predictions have been experimentally validated, demonstrating the power of the pro-

posed algorithm.Moreover, we show that the predictions of the proposed algorithmare

more biologically meaningful than the predictions of 17 existing algorithmsunder four evalu-

ation indices. In summary, our study suggests that new algorithmsbased on novel ratio-

nales are worthy of developing for detecting previously unidentifiable cooperative TF pairs.

Introduction
Transcription factors (TFs) are a kind of proteins whose biological functions are to transcrip-
tionally regulate the expression of their target genes. In eukaryotic cells, transcriptional regula-
tion of gene expression is usually not achieved by a TF alone but by cooperative TFs which
function together to precisely control the location, time and amount of gene expression [1–3].
Therefore, knowing cooperative TFs is crucial for studying the molecularmechanisms of tran-
scriptional regulation of gene expression.

Many algorithms have been proposed to identify cooperative TF pairs in yeast [4–20]. Dif-
ferent algorithms are developed based on different rationales and their performances vary
under different evaluation criteria [21–24]. For example, two algorithms [4,6] assume that the
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genes bound by both TFs of a cooperative TF pair are more co-expressed or closer in the pro-
tein-protein interaction network than are genes bound by either TF alone. Another five algo-
rithms [5,11,14,18,20] assume that for a cooperative TF pair, their binding sites have shorter
distance, are more co-depleted of nucleosomes or co-occurmore often than expected by
chance. Some other algorithms [15,16,18,19] assume that the observednumber of the shared
target genes of a cooperative TF pair is higher than random expectation (see Table 1 for

Table 1. The rationales of 17 existing algorithms.

Authors The rationaleof the existing algorithm for predicting
cooperative TF pairs (CTFPs)

# of predicted
CTFPs

Banerjee and
Zhang [4]

For a CTFP, the genes bound by both TFs should be more co-
expressed than are the genes bound by either TF alone.

31

Harbison et al. [5] For a CTFP, their binding sites should co-occurmore often within the
same promoters than would be expected by chance.

94

Nagamine et al.
[6]

For a CTFP, the genes bound by both TFs should be closer in the
protein-protein interaction network than are the genes bound by
either TF alone.

24

Tsai et al. [7] For a CTFP, their interaction effect (estimated using ANOVA) should
significantly influence the expression of genes bound by both TFs.

18

Chang et al. [8] A stochastic systemmodel is developed to assess TF cooperativity. 55

He et al. [9] Themultivariate statistical method, ANOVA, is used to test whether
the expressions of the target genes were significantly influenced by
the cooperative effect of their TFs.

30

Wang [10] Pairwise mixed graphical models or Gaussian graphical models are
used for identifying combinatorial regulation of TFs.

14

Yu et al. [11] An algorithm called Motif-PIE is developed for predicting interacting
TF pairs based on the co-occurrence of their bindingmotifs and the
distance between the motifs in promoter sequences.

300

Elati et al. [12] A data mining technique called LICORN is developed for deriving
cooperative regulations.

20

Datta and Zhao
[13]

Log-linearmodels are used to study cooperative bindings among
TFs.

25

Chuang et al. [14] For a CTFP, the distance between their binding sites (in the
promoter of their common target genes) should be significantly
closer than expected by chance.

13

Wang et al. [15] A Bayesian network framework is presented to reconstruct a high-
confidence whole-genomemap of transcriptional cooperativity in
Saccharomyces cerevisiae by integrating a comprehensive list of 15
genomic features.

159

Yang et al. [16] CTFPs are predicted by identifying the most statistically significant
overlap of target genes regulated by two TFs in ChIP-chip data and
TF knockout data.

186

Chen et al. [17] A method called simTFBS is developed for inferring TF-TF
interactions by incorporating motif discovery as a fundamental step
when detecting overlapping targets of TFs based on ChIP-chip data.

221

Lai et al. [18] For a CTFP, (i) the two TFs should have a significantly higher
number of common target genes than random expectation and (ii)
their binding sites (in the promoters of their common target genes)
should tend to be co-depleted of nucleosomes in order to make
these binding sites simultaneously accessible to TF binding.

27

Wu and Lai [19] For a CTFP, the overlap of the targets (defined by TF binding and TF
perturbation data) of these two TFs should be higher than random
expectation.

50

Spivak and
Stormo [20]

For a CTFP, the distribution of nucleotide spacings between their
binding sites should be deviated significantly from random
expectation.

1399

doi:10.1371/journal.pone.0162931.t001
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details). Apart from the above mentioned algorithms which aim to identify cooperative TF
pairs in yeast, several advanced algorithms have been proposed to identify cooperative TF pairs
in human [25–27].

Although various types of rationales have been used in the existing algorithms, the func-
tional coherence is not yet used. This prompts us to develop a new algorithm based on the
functional coherence and similarity of the target gene sets. First, the proposed algorithm
assumes that the common target genes of two cooperative TFs have similar functions. This
rationale is biologically plausible since co-regulated genes are known to have similar functions
[28–30]. Second, the proposed algorithm assumes that two cooperative TFs have similar target
gene sets. Since the biological role of two cooperative TFs is to co-regulate the expression of a
set of genes, they should have a significant number of shared target genes [5,11,15,16,18,19]. In
other words, the target gene sets of two cooperative TFs should be similar to each other.

Materials andMethods

Data sources
Two data sources were used in this study. First, the experimentally validated target genes of
151 TFs were retrieved from the YEASTRACT database [31]. The association between a TF
and its target gene was supported by two types of experimental evidence. One is the TF binding
(TFB) evidence from the detailed gene by gene band-shift, foot-printing experiments or the
high throughput genome-wide ChIP-chip experiments showing that the TF binds to the pro-
moter of its target gene. The other one is the TF regulation (TFR) evidence from the detailed
gene by gene analysis or the genome-wide expression analysis showing that the perturbation
(knockout or over-expression) of the TF-encoding gene causes a significant change in the
expression of its target gene. Therefore, the target genes of a TF retrieved from the YEAS-
TRACT database are of biological significance since they are validated by two types of experi-
mental evidence.

The second data source used in this study is the functional similarity scores of all gene pairs
in yeast retrieved from Yang et al.’s study [32]. Yang et al. proposed an improving Gene Ontol-
ogy (GO) semantic similarity measure based on downward random walks to calculate the func-
tional similarity score of any gene pair. Their score has been shown to be more biologically
meaningful than the other existing functional similarity scores [32].

The proposed algorithm
The proposed algorithm for identifying cooperative TF pairs is based on two rationales (func-
tional coherence and similarity of the target gene sets). First, the proposed algorithm assumes
that the common target genes of two cooperative TFs have similar functions. This rationale is
biologically plausible since co-regulated genes are known to have similar functions [28–30].
Second, the proposed algorithm assumes that two cooperative TFs have similar target gene
sets. Since the biological role of two cooperative TFs is to co-regulate the expression of a set of
genes, they should have a significant number of shared target genes [5,11,15,16,18,19]. In other
words, the target gene sets of two cooperative TFs should be similar to each other.

Fig 1 depicts the proposed two-step procedure of calculating the cooperativity score of a TF
pair (e.g. TF1-TF2). The first step is to retrieve the set of TF1’s target genes (denoted as G1), the
set of TF2’s target genes (denoted as G2) and the set of the common target genes of TF1 and
TF2 (denoted as G12) from YEASTRACT database [31]. Note that G1, G2 and G12 are of biolog-
ical significance since the regulatory associations between a TF and its target genes are vali-
dated by two types of experimental evidence (TFB evidence and TFR evidence). The second
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step is to calculate the cooperative score of TF1-TF2 based on the functional coherence of G12

and the similarity betweenG1 and G2.
The functional coherence (FC) of G12 is calculated using the following formula

FCðG12Þ ¼

PM
i;j¼1;i<j f ðgi; gjÞ

CM
2

whereM is the number of genes in G12 = {g1, � � �, gM}, CM
2

is all possible gene pairs formed by
genes in G12, and f(gi, gj) is the functional similarity score of gi and gj retrieved from Yang
et al.’s study [32]. Note that FC(G12) is actually the average of the functional similarity scores of
all possible gene pairs formed by genes in G12. The higher the FC(G12) is, the higher the func-
tional coherence of the genes in G12 is.

The similarity (Sim) betweenG1 and G2 is calculated using Jaccard similarity coefficient

SimðG1;G2Þ ¼
jG1 \ G2j

jG1 [ G2j
¼
jG12j

jG1 [ G2j
¼

M
jG1 [ G2j

whereM = |G12| is the number of genes in G12 and |G1 [ G2| is the number of genes in the
union of G1 and G2. The higher the Sim(G1, G2) is, the higher the similarity betweenG1 and G2

is. Then the cooperativity score (CS) of TF1-TF2 is calculated using the following formula

CSðTF1;TF2Þ ¼ FCðG12Þ � SimðG1;G2Þ ¼

PM
i;j¼1;i<j f ðgi; gjÞ

CM
2

�
M

jG1 [ G2j

The higher the CS(TF1, TF2) is, the higher the cooperativity betweenTF1 and TF2 is.
Since we can retrieve the experimentally validated target genes of 151 TFs from YEAS-

TRACT database [31], the cooperativity scores of 11325 (151�150/2) TF pairs can be calcu-
lated. Finally, these 11325 TF pairs are sorted by their cooperativity scores, where the top one
TF pair has the highest cooperativity score and therefore is the most plausible cooperative TF
pair. That is, the finally output of the proposed algorithm is a ranked list of 11325 TF pairs,
where the top one TF pair is the most plausible cooperative TF pair.

Fig 1. The proposed two-stepprocedure of calculating the cooperativity score of a TF pair (TF1-TF2).

doi:10.1371/journal.pone.0162931.g001
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Four existing evaluation indices
To judge the biological significance of the set of predicted cooperative TF pairs (PCTFPs) from
an algorithm, here we adopt the following four existing evaluation indices.
Index 1: The statistical significanceof the overlap with the benchmark set. Yang et al.

[16] proposed to evaluate the performance of an algorithm by calculating the significance of
the overlap of its set of PCTFPs with a benchmark set of 27 known cooperative TF pairs col-
lected from MIPS transcription complex catalog [33]. The significance of the overlap is repre-
sented as −logP, where P is the p-value computed using Fisher exact test [34]. The higher the
−logP is, the better the performance of an algorithm is.
Index 2: The co-regulatorycoefficient of a PCTFP. Balaji et al. [35] proposed the co-reg-

ulatory coefficient to evaluate the biological plausibility of a PCTFP. The co-regulatory coeffi-
cient represents the significance of a PCTFP in regulating common target genes. The greater
the co-regulatory coefficient is, the higher the biological plausibility of a PCTFP is. To evaluate
the biological significance of the set of PCTFPs from an algorithm, we used the average of the
co-regulatory coefficients of all PCTFPs from an algorithm. The higher the average is, the bet-
ter the performance of an algorithm is.
Index 3: The shortest path length of a PCTFP in the physical protein-protein interaction

network. Aguilar and Oliva [36] observed that a cooperative TF pair has a shorter path length
in the physical protein-protein interaction (PPI) network (using PPI data from BioGRID data-
base [37]) than expected by random. Therefore, the greater the reciprocal of the shortest path
length of a PCTFP in the PPI network is, the higher the biological plausibility of a PCTFP is.
To evaluate the biological significance of the set of PCTFPs from an algorithm, we used the
average of the reciprocals of the shortest path lengths of all PCTFPs from an algorithm. The
higher the average is, the better the performance of an algorithm is.
Index 4: The functional similarity of a PCTFP. Lai et al. [21] proposed to evaluate the

biological plausibility of a PCTFP by using the functional similarity between the two TFs of a
PCTFP. The functional similarity scores between any two TFs were retrieved from Yang et al.’s
study [32]. The higher the functional similarity score between the two TFs of a PCTFP is, the
higher the biological plausibility of a PCTFP is. To evaluate the biological significance of the set
of PCTFPs from an algorithm, we used the average of the functional similarity scores of all
PCTFPs from an algorithm. The higher the average is, the better the performance of an algo-
rithm is.

Results and Discussion
From “The proposed algorithm” subsection, it is known that the final output of the proposed
algorithm is a ranked list of 11325 TF pairs, where the top one TF pair is the most plausible
cooperative TF pair. Here we consider the top 40 TF pairs as the PCTFPs from the proposed
algorithm. Considering the top 40 TF pairs is reasonable because the number of the PCTFPs
from most (>10) existing algorithms [4,6–10,12–14,18,19] falls between 13 and 60 (see
Table 1).

Validation of the 40 PCTFPs from the proposed algorithm
To judge the biological plausibility of each of the 40 PCTFPs from the proposed algorithm, we
provide five types of validation (see Table 2 for details). The five types of validation are (i)
whether a PCTFP is predicted by any existing algorithm, (ii) whether a PCTFP has physical or
genetic interaction, (iii) whether both TFs of a PCTFP are studied in the same experimental
publications, (iv) whether a PCTFP has common GO terms, and (v) whether a PCTFP has
common target genes.
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Table 2. Five types of validation of the 40 PCTFPs from the proposed algorithm.

PCTFP Evidence of the cooperativity between TF1 and TF2

TF1 TF2 AlgorithmEvidence Physical/Genetic Evidence Co-citations # of CommonGO Terms # of CommonTargets

Arg80 Arg81 7 5 47 5 8

Ifh1 Sfp1 1 0 16 4 82

Met28 Met31 2 1 29 8 11

Hap2 Hap4 5 3 100 8 18

Met32 Met4 5 6 43 6 30

Met31 Met32 6 8 54 14 18

Hap3 Hap5 5 5 65 10 4

Met31 Met4 5 5 42 6 14

Met28 Met4 3 7 35 10 13

Pdc2 Thi2 0 0 6 5 2

Met28 Met32 3 0 33 9 14

Mig1 Mig2 3 7 67 14 4

Ifh1 Rap1 1 1 22 4 105

Gcr1 Gcr2 3 10 26 7 8

Hap3 Hap4 1 3 93 8 7

Fhl1 Ifh1 1 7 33 7 26

Rap1 Sfp1 7 0 36 6 113

Hap2 Hap3 3 4 118 9 7

Hap4 Hap5 3 2 59 8 6

Aft1 Aft2 5 9 63 6 15

Stp1 Stp2 2 5 40 9 2

Mbp1 Swi6 13 12 147 7 14

Hot1 Msn1 0 0 13 3 2

Gal4 Gal80 3 34 185 6 2

Gcr2 Tye7 1 5 7 3 6

Pdr1 Pdr3 5 12 187 10 30

Dal81 Stp2 1 1 17 3 2

Ino2 Ino4 6 13 117 10 10

Cbf1 Met4 5 5 39 7 24

Ace2 Swi5 12 3 99 9 30

Oaf1 Pip2 4 6 57 13 13

Cbf1 Met32 5 1 38 8 23

Dal80 Dal81 1 0 28 7 4

Dal81 Gln3 2 0 23 7 9

Msn2 Sok2 2 2 36 6 150

Ste12 Tec1 6 12 114 9 171

Msn2 Yap1 3 2 114 7 143

Leu3 Met28 0 0 13 6 3

Swi4 Swi6 14 29 256 7 21

Bas1 Pho2 3 7 52 6 7

A PCTFP in boldface means that it is a novel CTFP predicted by the proposed algorithm. “AlgorithmEvidence” provides the number of existing algorithms

which predict the PCTFP. “Physical/Genetic Evidence” provides the number the experimental papers which suggest that the two TFs of the PCTFP have

physical or genetic interaction. “Co-citations” provides the number of experimental papers which study the biological roles of both TFs of the PCTFP. More

details could be seen at http://cosbi2.ee.ncku.edu.tw/40TFI/.

doi:10.1371/journal.pone.0162931.t002
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Overall speaking, the 40 PCTFPs from the proposed algorithm are likely to be biologically
meaningful since (i) 93% (37/40) PCTFPs are also predicted by at least one existing algorithm,
(ii) 80% (32/40) PCTFPs have physical or genetic interactions, (iii) the two TFs of each of the
40 PCTFPs are studied in the same experimental publications, (iv) 100% (40/40) PCTFPs have
common GO terms, and (v) 100% (40/40) PCTFPs have common target genes.

Among the 40 PCTFPs from the proposed algorithm, three (Pdc2-Thi2, Hot1-Msn1 and
Leu3-Met28) are novel predictions, which have not been predicted by any existing algorithms.
Strikingly, Thi2 is known to act together with Pdc2 to respond to thiaminediphosphate
demand [38]. Moreover, it is known that osmotic stress-induced gene expression requires both
Hot1 and Msn1 [39]. The fact that two (Pdc2-Thi2 and Hot1-Msn1) of the three novel predic-
tions have been experimentally validated in the literature [38,39] demonstrates the power of
the proposed algorithm.

Performance comparisonof the proposed algorithmwith 17 existing
algorithms
Using four existing evaluation indices [16,21,35,36], we evaluate the biological significance of
the PCTFPs from the proposed algorithms and those from the 17 existing algorithms. The
PCTFPs of the 17 existing algorithms were retrieved directly from the corresponding papers
[4–20]. Fig 2 shows that the proposed algorithm has the smallest average rank among the 17
compared algorithms, suggesting that the proposed algorithm is the best performing algorithm.

Fig 2. The performancecomparison of the proposed algorithmand 17 existing algorithms in the literature.Performance comparison of the proposed
algorithmand 17 existing algorithmsusing four existing evaluation indices. The performance comparison results using (a) index 1, (b) index 2, (c) index 3 and
(d) index 4 are shown, whereRj means that the algorithm is ranked j among the 18 compared algorithms.For example, the proposed algorithm ranks first
(R1) using the evaluation index 4 since the proposed algorithmhas the largest score calculated using index 4. (e) The average rank is used to give the overall
performance of an algorithmunder four different evaluation indices. The average rank of an algorithm is the average of the ranks of an algorithmunder four
evaluation indices. For example, the average rank of the proposed algorithm is 1.5 = (2+2+1+1)/4 and the average rank of WangY’s algorithm is 4 = (1+4+6
+5)/4. The smaller the average rank is, the better the performanceof an algorithm is. Since the proposed algorithm has the smallest average rank, the overall
performance of the proposed algorithm is the best among all the 18 compared algorithms.

doi:10.1371/journal.pone.0162931.g002
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That is, the PCTFPs from the proposed algorithms are more biologicallymeaningful than are
the PCTFPs from the 17 existing algorithms.

Robustness against the number of chosen PCTFPs
In the last subsection, the 40 PCTFPs (i.e. the top 40 TF pairs of the ranked list of 11325 TF
pairs) from the proposed algorithm are shown to be more biologicallymeaningful than those
from the 17 existing algorithms in the literature. To check the robustness of the proposed algo-
rithm against the number of chosen PCTFPs, we evaluate the performance of the proposed
algorithm when choosing top N (N = 30, 35, 45 or 50) TF pairs as the PCTFPs from the pro-
posed algorithm. Fig 3 shows that no matter which value of N is used, the proposed algorithm
always has a smaller average rank than do the 17 existing algorithms in the literature. This sug-
gests that the proposed algorithm is indeed robust against the number of chosen PCTFPs.

Note that our algorithm and most existing algorithms identified less than 100 PCTFPs, but
Spivak and Stormo’s algorithm [20] identified 1399 PCTFPs (see Table 1). It can be seen in Fig
2, Spivak and Stormo’s algorithm performs worst among all the compared algorithms. A possi-
ble reason is that their 1399 PCTFPs probably include a large number of false positives. It
would be interesting to investigate how the performance of our algorithm evolves with larger N
values. As shown in Fig 4, the scores of the four evaluation measures gradually decrease with
larger N values, indicating a performance degradation of our algorithm with larger N values.
Just like many false positives inside the 1399 PCTFPs from Spivak and Stormo’s algorithm, our
PCTFPs probably include a large number of false positives with larger N values.

Fig 3. Robustness analysis of the proposed algorithm.The average rank of the proposed algorithmusing top N, where (a) N = 30, (b) N = 35, (c) N = 45,
and (d) N = 50, TF pairs of the ranked list of 11325 TF pairs as the PCTFPs from the proposed algorithm. It can be seen that no matterwhich value of N is
used, the proposed algorithm always has the smallest average rank. That is, the PCTFPs from the proposed algorithmare always more biologically
meaningful than those from the 17 existing algorithms.This suggests that the proposed algorithm is robust against the number of chosen PCTFPs.

doi:10.1371/journal.pone.0162931.g003
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Conclusions
In this study, we develop a new algorithm based on functional coherence and similarity of the
target gene sets to identify cooperative TF pairs in yeast. The proposed algorithm provides 40
predicted cooperative TF pairs (PCTFPs) and the biological significance of the PCTFPs is vali-
dated by five types of validation. Among the 40 PCTFPs, three (Pdc2-Thi2, Hot1-Msn1 and
Leu3-Met28) are novel predictions, which have not been predicted by any existing algorithms.
Strikingly, two (Pdc2-Thi2 and Hot1-Msn1) of the three novel predictions have been experi-
mentally validated in the literature, demonstrating the power of the proposed algorithm. More-
over, we show that the predictions of the proposed algorithm are more biologicallymeaningful
than the predictions of 17 existing algorithms under four evaluation indices. In summary, our
study suggests that new algorithms based on novel rationales (e.g. functional coherence) are
worthy of developing for detecting previously unidentifiable cooperative TF pairs.
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