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The prediction of drug-target interaction (DTI) is a key step in drug repositioning. In recent years, many studies have tried to use
matrix factorization to predict DTI, but they only use known DTIs and ignore the features of drug and target expression profiles,
resulting in limited prediction performance. In this study, we propose a new DTI prediction model named AdvB-DTI. Within this
model, the features of drug and target expression profiles are associated with Adversarial Bayesian Personalized Ranking through
matrix factorization. Firstly, according to the known drug-target relationships, a set of ternary partial order relationships is
generated. Next, these partial order relationships are used to train the latent factor matrix of drugs and targets using the
Adversarial Bayesian Personalized Ranking method, and the matrix factorization is improved by the features of drug and target
expression profiles. Finally, the scores of drug-target pairs are achieved by the inner product of latent factors, and the DTI
prediction is performed based on the score ranking. The proposed model effectively takes advantage of the idea of learning to
rank to overcome the problem of data sparsity, and perturbation factors are introduced to make the model more robust.
Experimental results show that our model could achieve a better DTI prediction performance.

1. Introduction

Drug repositioning is to discover new indications for existing
drugs, which means that drug development based on
approved drugs does not need to consider the safety and
effectiveness of the original drug, effectively reducing the
time of drug development process and cost. Prediction of
drug-target interaction (DTI) which refers to the recognition
of interactions between chemical compounds and the protein
targets in the human body has become a key step in drug
repositioning [1].

Due to the high cost of conducting animal experiments
and clinical trials for a new drug [2], a large number of
machine learning-based methods have been widely used in
DTI prediction in recent years, and the cost of drug develop-
ment has been greatly reduced through rapid screening of
potential drug-target combinations [3, 4].

Existing machine learning-based methods often use the
features of drugs and targets for prediction [5, 6]. They treat

the prediction problem as a binary classification problem [7].
Drug-target pairs with interaction are considered positive
samples, while pairs without interaction are treated as nega-
tive samples. The output of the binary classification is the
label with higher prediction probability [8–10]. Bleakley
and Yamanishi used a support vector machine (SVM) frame-
work based on bipartite local models (BLM) to predict DTIs
[11]. Mei et al. improved the original DTI prediction frame-
work by integrate neighbor-based interaction-profile infer-
ring (NII) into the existing BLM method [12]. Buza and
Peška extended the BLM method to predict DTIs by using
the hubness-aware regression technique [13]. Laarhoven
et al. proposed a Gaussian interaction profiling (GIP) kernel
to represent the interactions between drugs and targets [14]
and then integrated the weighted nearest neighbor method
into it to predict DTIs [15]. Chen et al. proposed a Random
Walk with Restart-based method on the heterogeneous net-
work to infer potential DTI [16]. Some studies constructed
a heterogeneous network which integrates diverse drug-
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related information to predicted DTI [17, 18]. Thafar et al.
utilized graph embedding for DTI prediction [19]. Zhao
et al. integrated graph convolutional network and Deep
Neural Network to predict DTI [20]. Since the number of
positive samples is small, the machine learning-based
methods can easily learn to predict unknown samples as
negative to reduce the training penalty [3]. Recommenda-
tion system is aimed at obtaining accurate prediction results
of unknown data even with a small amount of observed
data. Considering the problem of data sparseness, learning
to rank (LTR) in the recommendation system is able to
accurately predict even with a small amount of known data.
Therefore, in this study, we defined the DTI prediction
problem as a ranking problem. The following paragraph
introduces how we define the DTI prediction problem as a
ranking problem.

LTR implies a scoring mechanism in which interacting
drug-target pairs should have a higher score than those
without interaction. In this way, samples with higher scores
are treated as interacting drug-target pairs [21, 22].
Recently, there are some studies that apply the idea of
LTR to predict DTI [23, 24]. Bagherian et al. showed that
matrix factorization algorithms have outperformed other
methods in DTI prediction [25]. Thus, we utilized matrix
factorization of LTR to predict DTI in this study. Bayesian
Personalized Ranking (BPR) which is a matrix factorization
of LTR approach has been shown to be an excellent
approach for various preference learning tasks even when
data are sparse [26, 27].

However, the existing methods do not effectively com-
bine the features of drug and target with the matrix factor-
ization method. Thus, in this study, we propose a DTI
prediction model in which BPR is the core and combined
gene expression to improve the prediction performance.
In the proposed model, the principle of ordering is that
interacting drug-target pairs (i.e., positive samples) should
be ranked before noninteracting drug-target pairs (i.e., neg-
ative samples). Firstly, a set of ternary partial orders is gen-
erated based on the positive samples and the negative
samples. The set is divided into a training set and a test
set. Next, the Adversarial Bayesian Personalized Ranking
(ABPR) method is used to train the latent factors of drugs
and targets, and the drug-drug similarity and target-target
similarity are calculated based on their features, respec-
tively, to improve the training of the latent factors. Finally,
for each drug, the inner product of drug’s latent factor and
target’s latent factor is used as the score for ranking. The
top-ranked drug-target pairs are predicted with interaction,
and the bottom-ranked drug-target pairs are predicted
without interaction. This study has the following three
contributions:

(i) Aiming at the existing problem of DTI prediction,
the idea of matrix factorization of LTR is introduced
to process a sparse matrix

(ii) BPR is not robust and vulnerable to adversarial per-
turbations on its parameters [28]. Perturbation fac-
tors are introduced to make the model more robust

(iii) This study also uses the drug and target expression
profiles to calculate the drug-drug and target-target
similarity, respectively, to improve the training of
latent factors

Experimental results show that our method is signifi-
cantly better than the traditional DTI prediction methods,
such as Deep Neural Network (DNN) [8, 29], Generalized
Matrix Factorization (GMF) [30], and other state-of-the-art
LTR methods, like Neural Matrix Factorization (NeuMF)
[30] and Adversarial Matrix Factorization (AMF) [28].

2. Data and Definition

2.1. Data Source. The Library of Integrated Network-Based
Cellular Signatures (LINCS) project is a mutual fund project
administered by the National Institutes of Health (NIH).
This project uses L1000 technology to generate approxi-
mately one million gene expression profiles [31]. The L1000
technology uses the correlation between gene expressions to
drastically reduce the amount of gene expression that needs
to be measured, from more than 20,000 to 978. In this study,
we use the drug perturbation and gene knockout tran-
scriptome data from seven cell lines including A375, A549,
HA1E, HCC515, HEPG2, PC3, and VCAP. There are three
reasons to choose drug perturbation and gene knockout tran-
scriptome data as feature data of drugs and targets: (1) both
drug perturbation and gene knockout transcriptome data
are from LINCS project and are processed by using L1000
technology. So they are naturally suited to be combined as
the feature data. (2) There is a correlation between drug per-
turbation transcriptome data and the drug’s target gene
knockout transcriptome data. Pabon et al. have verified in
their work that drug perturbation-induced mRNA expres-
sion profile correlates with the knockout-induced mRNA
expression profile of the drug’s target gene and/or genes
on the same pathway(s) [32]. The correlation reveals
drug-target interactions. Therefore, the correlation based
on the expression profile suggests that we can treat the
expression profiles as feature data for dual similarity regu-
larization. (3) Transcriptome data can capture the complex-
ity of drug activity in cells. So the use of information
obtained from transcriptional profiling studies has a huge
impact on multiple areas of the drug discovery including
target identification, validation, compound selection,
pharmacogenomics, biomarker development, clinical trial
evaluation, and toxicology [33].

DrugBank is a comprehensive, freely available web
resource containing detailed drug, drug-target, drug action,
and drug interaction information about FDA-approved
drugs as well as experimental drugs going through the FDA
approval process [34]. To obtain complete DTI data, Pub-
Chem ID is used as the identifier of drug in the DrugBank
and LINCS databases.

The data volume for the seven cell lines is listed in
Table 1. The positive drug-target interactions from Drug-
Bank are used to generate interacting drug-target pairs. To
avoid treating unknown drug-target interactions in Drug-
Bank as negative interactions, we constructed the nontarget
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set that any member of this set has no interaction record with
any drug from the same cell line in DrugBank. That means
the pair of a nontarget and a drug from the same cell line
could be more likely to be treated as a negative sample.

2.2. Problem Definition. In this study, DTI prediction is
defined as a ranking problem of drug-target scores.

Definition 1. Dα = fdα1 , dα2 , dα3 ,⋯, dαmg represents the set of m
drugs in cell line α, where dαi = fdαi,1, dαi,2,⋯, dαi,978g represents
the expression profile of i-th drug.

Definition 2. Tα = ftα1 , tα2 , tα3 ,⋯, tαng represents the set of n
targets and nontargets in cell line α, where tαj = ftαj,1, tαj,2,⋯,
tαj,978g represents the expression profile of j-th target or
nontarget.

Definition 3. Yα represents the interaction relationship, and
yαi,j ∈ f0, 1g. If yαi,j =1, the pair of the drug dαi and target tαj is
a positive sample; otherwise, yαi,j = 0, and the pair of dαi and
tαj is a negative sample.

As shown in Table 1, the numbers of drugs, targets, and
interacting drug-target pairs in this study are all limited
(for each cell line). Therefore, Yα is a small-sized sparse
matrix.

All combinations of drug and target with interactions in
each cell line are used as positive samples; all drug and non-
target combinations are used to construct a negative sample
candidate set. Since the number of negative samples is much
larger than the number of positive samples in each cell line,
we randomly sampled some negative samples from the
negative sample candidate set to ensure that the number of
selected negative samples is consistent with the number of
positive samples within the same cell line.

Based on the known relationships of drug-target pairs,
the score of drug-target pairs is sorted. The drug-target pairs
with higher scores are more likely to interact. Conversely, the
drug-target pairs with lower scores are more likely not to
interact. Therefore, we transformed the DTI prediction prob-
lem into a problem that finds out a reasonable ranking strat-
egy for a drug-target pair. In this paper, the methods are
discussed in the same cell line, so the superscript α is omitted.

3. Methods

The proposed method (AdvB-DTI) is based on the method of
BPR. Firstly, according to the interaction relationship Y , a
ternary partial order set is generated as H = fHi ∣ 1 ≤ i ≤mg,
where Hi = fðdi, t j, tkÞ ∣ di ∈D, t j ∈ T , tk ∈ T , yi,j ∈ Y , yi,k ∈ Y ,
yi,j = 1, yi,k = 0g. Hi combines the target t j of one positive
sample and the target tk of the corresponding negative sam-
ple with the same drug di into a partially ordered triple ðdi,
t j, tkÞ, which means that ðdi, t jÞ should be ranked before
ðdi, tkÞ. Then, H is divided into two parts, the training set
and test set. Next, based on the training set, BPR is used to
train the latent factor matrix of drugs and targets (nontar-
gets). FD represents the latent factor matrix of the drug
(FD ∈ℝm×f , f is the size of latent factor), FT represents target
(nontarget) latent factor matrix (FT ∈ℝn×f , f is the size of
latent factor). Among them, FD

i ∈ℝ1×f represents the latent
factor of drug di, and FT

j ∈ℝ
1×f represents the latent factor

of target (nontarget) t j. ri,j = FD
i ∙F

T
j is the predicted score

for ranking the interaction of di and t j.
In order to improve the training of latent factors, we use

the dual similarity regularization method based on the simi-
larity theory to increase the latent distance between latent
factors to increase the gap between the scores of different
drug-target pairs.

Finally, gene expression data of LINCS project were
treated as the features of drugs and targets to calculate
drug-drug similarity and target-target similarity to improve
training latent factors which represented key features of gene
expression. Because the gene expression data are the
observed values obtained from experiment, thus, the error
between the observed value and the true value does exist.
Therefore, latent factors of the drug and target (i.e., the model
parameters) learned in this study can fluctuate within a cer-
tain range but the model’s prediction results should be stable.
Consequently, the perturbation factor Δ is introduced into
the training process of FD and FT to make the trained model
more robust. The overall process of model training is shown
in Figure 1.

After the model is trained, calculate the value of ri,j for all
drug-target pairs, and sort them in a descending order. The
top-ranked drug-target pairs are predicted as the interaction,
and the bottom ranked drug-target pairs are predicted as the
noninteraction. The prediction process is shown in Figure 2.
Next, we will introduce the related methods in detail.

3.1. Bayesian Personalized Ranking. BPR is a pairwise LTR
method. It learns in an implicit feedback manner through
personalized ranking and is widely used in the recommenda-
tion systems [26].

As shown in Table 1, the numbers of drugs, targets, and
interacting drug-target pairs in this study are all limited
(for each cell line). Since one partially ordered triple was gen-
erated based on one positive sample and the corresponding
negative sample, the number of partially ordered triples is
also limited. Therefore, what we faced in this study were
not only a small amount of partially ordered triples but also

Table 1: Data volume of seven cell lines.

Cell line Drug Target Nontarget
Interacting
drug-target

pair

Noninteracting
drug-target pair

A375 520 363 2,754 796 1,432,080

A549 525 366 2,648 805 1,390,200

HA1E 533 372 2,707 818 1,442,831

HCC515 471 334 2,516 689 1,185,036

HEPG2 370 356 2,520 557 932,400

PC3 643 378 2,866 963 1,842,838

VCAP 521 377 3,003 809 1,564,563
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high-dimensional data. BPR is able to accurately predict even
with a small amount of known data [26]. And BPR could
map both drugs and targets into a shared low-dimensional
latent feature space and to use this representation to calculate
the probability of drug-target interactions to overcome the
problem of high dimensionality [27].

According to the study of [26], BPR was derived for solv-
ing the personalized ranking task that only positive observa-
tions are available. In the problem of DTI prediction, only
positive drug-target interactions can be directly obtained
from the DrugBank database which is a key challenge in the
DTI prediction problem. Hence, these advantages make
BPR suitable for the DTI prediction problem.

In this study, we use this method to rank the score of
drug-target pairs.

For Hi of dið1 ≤ i ≤mÞ, we have

p θ ∣ t j>di
tk

� �
∝ p t j>di

tk ∣ θ
� �

p θð Þ, ð1Þ

where θ denotes the parameters of the model and t j>di
tk

denotes that for di the possibility of interacting with t j is
greater than the possibility of interacting with tk. Since the
interaction of di and t j has no interference on the interaction
of di and tk, all drug-target interactions are independent. The
likelihood estimates for parameter θ are
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Y
di ,t j,tkð Þ∈Hi

p t j>di
tk ∣ θ

� �
: ð2Þ

In order to calculate pðt j>di
tk ∣ θÞ, we use the logistic

sigmoid function [26]:

p t j>di
tk ∣ θ

� �
= σ ri,j − ri,k

� �
, ð3Þ

where σð∙Þ is the logistic sigmoid function and σðxÞ = 1/ð1
+ e−xÞ.

ðri,j − ri,kÞ captures the ranking relation between t j and tk
with the given di. If t j is more likely to interact with di than tk,
then ri,j ≥ ri,k and ðri,j − ri,kÞ ≥ 0. Otherwise, ðri,j − ri,kÞ ≤ 0.
Any standard collaborative filtering model can be applied
to predict the value of ðri,j − ri,kÞ. Matrix factorization has
been successfully applied in many studies [35–37]. Thus,
the matrix factorization model is used in this study.

Next, consider pðθÞ of formula (1). It is a Gaussian distri-
bution with zero mean and variance-covariance matrix λθI
[26], where λθ is a model-specific regularization parameter
and I is an identity matrix, so

p θð Þ ~N 0, λθIð Þ: ð4Þ

According to formulas (2)–(4), the maximum posterior
probability of the BPR method can now be rewritten as

max
θ

L = ln p θ ∣ t j>di
tk

� �
= ln p t j>di

tk ∣ θ
� �

p θð Þ
= 〠

di ,t j,tkð Þ∈Hi

lnp t j>di
tk ∣ θ

� �
− λθ θk k2

= 〠
di ,t j,tkð Þ∈Hi

lnσ ri,j − ri,k
� �

− λθ FD�� ��2 + FT�� ��2� �
,

ð5Þ

where k∙k2 is an L2 regularization term.
From the maximum likelihood estimation for parameter

θ in formula (5), an equivalent optimization objective for-
mula can be obtained:

min
θ

LBPR Hi ∣ θð Þ = 〠
d,ti ,t jð Þ∈Hi

− ln p t j>di
tk ∣ θ

� �
+ λθ θk k2

= 〠
di ,t j ,tkð Þ∈Hi

− ln σ ri,j − ri,k
� �

+ λθ FD�� ��2 + FT�� ��2� �
:

ð6Þ

3.2. Adversarial Bayesian Personalized Ranking. As men-
tioned, since the error between the observed value and the
true value does exist, in order to enhance the robustness of
the model, it is necessary to consider gene perturbations. It
is unreasonable to add noise (such as changing the labels of
training data) at the input layer. For example, modifying
the training data ðdi, t j, tkÞ to ðdi, tk, t jÞ means that the non-
interacting drug-target pair ðdi, tkÞ is ranked higher than
interacting drug-target pair ðdi, t jÞ. Obviously, the latent fac-

tors obtained by such training data are unreasonable. There-
fore, it is necessary to add perturbations to the latent factors.
For drug and target gene perturbations, we defined it as the
perturbation factor that are added to Bayesian Personalized
Ranking:

max
Δ, Δk k2≤ε

LBPR Hi ∣ θ + Δð Þ, ð7Þ

where Δ is the gene perturbations on model parameters, ε
controls the magnitude of adversarial perturbations, k∙k2
denotes the L2 norm, and θ denotes the current model
parameters (i.e., latent factors).

Δ can be optimal by adversarial perturbations Δadv as
follows [28]:

Δadv = ε
Γ

Γk k2 , Γ =
∂LBPR Hi ∣ θ + Δð Þ

∂Δ
: ð8Þ

Finally, we define the objective function of ABPR as
follows:

LAdvB−DTI Hi ∣ θð Þ = LBPR Hi ∣ θð Þ + λΔadv, ð9Þ

where λ controls the adversarial strength. The training
process of AdvB-DTI can be expressed as playing a minimax
game:

min
θ

max
Δ, Δk k2≤ε

LBPR Hi ∣ θð Þ + λLBPR Hi ∣ θ + Δð Þ, ð10Þ

where the learning algorithm for model parameter latent
factor θ is the minimizing player, which is aimed at obtaining
accuracy prediction results. And the perturbation factor Δ
acts as the maximizing player, which is aimed at identifying
the worst-case perturbations against the current model.
Finally, by playing this minimax game, it is able to make
the model robust and simulate the error.

3.3. Dual Similarity Regularization. In the process of latent
factors training, when drugs or targets are similar, their latent
distance should be small. Conversely, when drugs or targets
are different, their latent distance should be large. In order
to meet this requirement, dual similarity regularization was
introduced into this process.

In order to effectively combine the features of drugs and
targets with matrix factorization methods, a Gaussian
function needs to be introduced. Through this function, the
features of drugs and targets can effectively influence the
training of latent factors. Zheng et al. made the point that this
function is sensitive to the latent distance of similarity
between different drugs or targets [38]. The similarity
between drugs (or targets) is negatively related to their latent
distance. The function is defined as
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SimGaus SD, FD, di
� �

= 〠
m

j=1
SD i, jð Þ − e− FD

i −F
D
jk k2

� �2
,

SD i, jð Þ = SD j, ið Þ = Sim di, dj

� �
:

ð11Þ

where SD denotes drug-drug similarity matrix
(SD ∈ℝm×m), k∙k2 denotes latent distance, and Simð∙Þ is a
similarity calculation method.

Similarly, we can obtain

SimGaus ST , FT , t j
� �

= 〠
n

k=1
ST j, kð Þ − e− FT

j −F
T
kk k2

� �2
,

ST j, kð Þ = ST k, jð Þ = Sim t j, tk
� �

,
ð12Þ

where ST denotes target-target similarity matrix
(ST ∈ℝn×n).

Commonly used similarity calculation methods include
cosine similarity, Tanimoto coefficient, structural similarity
index, and Spearman’s rank correlation coefficient.

Tanimoto coefficient is an extension of Intersection over
Union. It can be used to measure the similarity of nonbinary
features. It calculates the degree of correlation based on the
magnitude of the feature vector. The closer the calculation
result is to 1, the more similar the two vectors are. It is
defined as

T x, yð Þ = xy

xk k2 + yk k2 − xy
: ð13Þ

Cosine similarity is determined by the angle between two
vectors. The smaller the angle is, the more similar the two
vectors are. It is defined as

cos x, yð Þ = xy
xk k yk k : ð14Þ

Structural similarity index is a common similarity calcu-
lation method used in computer vision to measure image
quality [39]. It is defined as

SSIM x, yð Þ =
2μxμy + c1

� �
2σxy + c2
� �

μ2x + μ2y + c1
� �

σ2x + σ2y + c2
� � , ð15Þ

where μ is the mean, σ2 is the variance, σxy is the covari-
ance, and c1 = 0:001 and c2 = 0:001 are constants to avoid the
denominator being 0. The closer the calculation result is to 1,
the more similar the two vectors are. Since technologies orig-
inating from computer vision have been widely used in DTI
prediction in recent years, we attempt to use these methods
to calculate the similarity between drugs and targets. Origi-
nally, μ is used as an estimate of the image brightness, σ2 is
an estimate of the image contrast, and σxy is the measure of

the similarity of the image structure. In our problem, μ is
used as an estimate of the amount of change in gene expres-
sion, σ2 is used as an estimate of the relative change in gene
expression, and σxy is used as an estimate of the change trend
in gene expression.

Spearman’s rank correlation coefficient is a similarity
calculation method based on the ranking of feature data. It
is defined as

sprm x, yð Þ = 1 −
6∑n

1g
2
i

n n2 − 1ð Þ , ð16Þ

where gi is the difference in the ranks of xi and yi and the
size of features is n. For example, if x = ð1, 0, 3Þ and y = ð1,
5, 2Þ, then the rank of x = ð2, 1, 3Þ and y = ð1, 3, 2Þ, thus g =
ð1,−2, 1Þ. Similarly, the closer the similarity value is to 1,
the more similar the two vectors are.

Because the Gaussian function is a numerically “sensi-
tive” function, which means it can increase the impact of sim-
ilarity on latent factor training. Thus, it can extend the latent
distance between drugs (or targets) to increase the scores of
different ðri,j − ri,kÞ, which is to increase the penalty for
wrong rankings and optimize the training latent factors.

We use stochastic gradient descent to optimize the final
objective formula:

min
θ

max
Δ, Δk k2≤ε

〠
Hi⊆H, di ,t j ,tkð Þ∈Hi

LBPR Hi ∣ θð Þ + λadvLBPR Hi ∣ θ + Δð Þ

+ λsim SimGaus SD, FD, di
� �

+ SimGaus ST , FT , t j
� �	

+ SimGaus ST , FT , tk
� �


,
ð17Þ

where λadv and λsim are adversarial and similar hyper-
parameters, respectively.

4. Experiment and Analysis

The experiments are designed to answer the following three
questions:

(i) How do different similarity calculation methods
affect the prediction results of the model?

(ii) How do different numbers of latent factors, λsim and
λadv, impact the model’s performance?

(iii) Will our model (AdvB-DTI) outperform other
prediction models?

4.1. Assessment Metrics. The assessment metrics used in the
experiment are AUC [26], Top_k [40], and AUPR. AUC is
defined as formula (18):

AUC =
1
Dj j 〠diϵD

∣ di, t j, tk
� �

∣ ri,j > ri,k, t j ∈ T , tk ∈ T , yi,j = 1, yi,k = 0
n o

∣

Hij j :

ð18Þ
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The set of interacting drug-target pairs is called the posi-
tive set, and the set of noninteracting drug-target pairs is
called the negative set. One drug-target pair is randomly
selected from the positive set and the negative set, respec-
tively. AUC means the probability that the model correctly
predicts that the score of the drug-target pair from the posi-
tive set is larger than that of the drug-target pair from the
negative set. AUC can better reflect the overall performance
of the model. The larger the value of AUC is, the better the
performance of the model is.

Topki means for drug di, among the k top-ranked drug-
target pairs, the proportion of targets that interact with di
in all the targets that interact with di, which is defined as

Top_ki =
t j tl ∣ ri,j ≤ ri,l,∀tl ∈ T , l ≠ j
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Top_k is the average of all Top_ki ð1 ≤ i ≤m). This
assessment metric is equivalent to the recall rate. Top_k is
defined as

Top_k =
1
Dj j 〠diϵD

Top_ki: ð20Þ

The meaning of prec_ki is, for drug di, among the k top-
ranked drug-target pairs, the proportion of targets that inter-
act with di. Its definition is shown in

prec_ki =
t j tl ∣ ri,j ≤ ri,l ,∀tl ∈ T , l ≠ j

� ��� ∣≤k − 1,∀t j ∈ T , yi,j = 1
n o


 




k
:
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prec_k is the average of all prec_kið1 ≤ i ≤m). This
assessment metric is equivalent to the precision rate. prec_k
is defined as

prec_k =
1
Dj j 〠diϵD

prec_ki: ð22Þ

With different k values, drug di has different (Top_ki,
prec_ki) pairs. Connecting all (Top_ki, prec_ki), we can
obtain a curve. The area enclosed by the obtained curve
and the coordinate axes is the AUPRi of di. AUPRi is also a
comprehensive assessment metric, which is defined as

AUPRi =∯di
σ∈Top_ki−prec_ki curve

dσ: ð23Þ

AUPR calculates the average of all AUPRið1 ≤ i ≤m).
The closer the value is to 1, the better the model performance.
It is defined as

AUPR =
1
Dj j 〠diϵD

AUPRi ð24Þ

4.2. Results and Analysis. We adopted 5-fold nested cross-
validation to evaluate the performance of the proposed
method, which means that when analyzing the impact of
hyperparameters, we only utilized the training set. For fair
comparison, we tuned the parameters of each method so that
they could achieve the best performance in comparison. The
hyperparameters used in the experiments and their values are
listed in Table 2.

Matrix factorization methods demonstrated their power
and versatility in bioinformatics, for example, in the predic-
tion of disease subtype alignment [41], drug repositioning
[42], and protease target prediction [37]. Thus, we treat a
state-of-the-art method which predicts DTI via DNN [8] as
baseline and compare it with other state-of-the-art matrix
factorization methods [28, 30].

4.2.1. Comparative Experiment of Different Similarity
Calculation Methods. Table 3 lists the results of comparative
experiments of different similarity calculation methods per-
formed independently in the seven cell lines. Four different
methods were used for comparison.

From Table 3, it can be found that the prediction
results of Tanimoto coefficient are better than those of
the other three methods in seven cell lines. The perfor-
mance based on Spearman’s rank correlation coefficient is
second to that of the Tanimoto coefficient in this experi-
ment, and they are very close. The traditional cosine simi-
larity calculation method was unstable in the experiment,
and AUC is under 90% in cell lines A549 and HEPG2.
The prediction performance of structural similarity index
is similar to that of Spearman’s rank correlation coefficient.
Except cosine similarity, three similarity calculation
methods all consider the value of the features in calculating
the similarity. Cosine similarity only considers the angle
between vectors. If two feature vectors have the same
direction, they are considered similar regardless of value
of the features. From the results of cosine similarity, it
can be inferred that ignoring feature values may cause
poor prediction performance. Therefore, based on the
above results, Tanimoto coefficient is more suitable to the
prediction problem.

4.2.2. Impact of Different Settings of Hyperparameters.
Figure 3 reflects the relationship between the number of
latent factors and the result of Top_10. For example, when
factor_size = 5, Top_10 ≈ 0:5. It means that ten top-ranked
drug-target pairs of a particular di predicted by the model

Table 2: The parameters and settings used in the experiments.

Hyperparameter Setting

factor_size [5, 10, 15, 20, 25, 30, 40, 50, 60]

λsim [0,0.3,0.5,0.9,1.25]

λadv [0,0.3,0.5,0.9]

ε 0.1

λθ 0.1

learning rate 0.03
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contain about half of all interacting drug-target pairs of this
drug (i.e., the recall rate is about 0.5). The meaning of latent
factors is to map high-dimensional feature vectors to low-
dimensional latent space and capture the implicit features
of gene expression. The larger the size of the low-
dimensional latent space, the more sufficient the feature
information of the original high-dimensional drug and target
expression can be that can be extracted. That is why the value
of Top_10 significantly rises with the increase of the latent
factor size. As shown in Figure 3, when the size of the latent

factor increases to a critical size (e.g., factor_size > 25), the
feature information is almost completely extracted, and the
performance of AdvB-DTI becomes stable.

Figure 4 shows the impact of λsim on the values of AUC.
When dual similarity regularization was not used (i.e., λsim
= 0), the values of AUC are lower than those using this
method, which indicates that the method can improve the
prediction performance.

Firstly, how does dual similarity regularization improve
the training of latent factors? ri,j is the score to rank. The
ranking interval between different drug-target pairs is calcu-
lated by the difference of different scores. If λsim is set to a
larger value, the latent distance between the drug and the tar-
get will also become large, and the same thing happens to dif-
ferent scores. Therefore, making the interval between
different drug-target pairs increase will aggravate the penalty
for the model when ranking errors occur during the training
process. Thus, dual similarity regularization improves the
training of latent factors.

Secondly, how to select a proper value for λsim? The dif-
ference in ri,j between different drug-target pairs increases
with λsim. Thus, the interval between different rankings
increases. In cell lines with fewer positive samples, the model
parameter θ will not be too large and increasing λsim can
effectively improve the prediction performance. However,
in cell lines with more positive samples, increasing λsim
means that θ needs to increase beyond the limit of its regular
term kθk2, so the model will be underfitting and the value of
AUC decreases, as shown in Figure 4. AUC increases with
λsim but decreases when λsim is greater than a critical value.

Therefore, in a cell line with fewer positive samples, a
larger λsim will improve the prediction performance; how-
ever, in a cell line with more positive samples, a smaller
λsim is suitable.

Table 3: The impact of different similarity calculation methods on
prediction performance in seven cell lines.

Cell line Tanimoto cos SSIM sprm

A375
AUC 0.9202 0.9088 0.9037 0.9119

AUPR 0.9437 0.9160 0.9389 0.9436

A549
AUC 0.9347 0.8944 0.9247 0.9192

AUPR 0.9477 0.9109 0.9425 0.9367

HA1E
AUC 0.9249 0.9174 0.9082 0.9035

AUPR 0.9450 0.9401 0.9380 0.9389

HCC515
AUC 0.9163 0.9018 0.9045 0.9045

AUPR 0.9403 0.9332 0.9377 0.9305

HEPG2
AUC 0.9259 0.8828 0.9144 0.9124

AUPR 0.9303 0.9161 0.9249 0.9279

PC3
AUC 0.9306 0.9090 0.9116 0.9228

AUPR 0.9581 0.9471 0.9459 0.9536

VCAP
AUC 0.9466 0.9102 0.9349 0.9349

AUPR 0.9645 0.9558 0.9453 0.9543
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Figure 3: Impact of different numbers of latent factors onTop_10.
Top_10 increases with factor_size and tends to be stable after
factor_size is greater than 25.
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Figure 4: Impact of λsim on AUC. AUC increases with λsim but
decreases when λsim is greater than a critical value.
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In HEPG2 cell line, the number of positive samples is the
smallest among the 7 cell lines. In PC3 cell lines, the number
of positive samples is the largest among 7 cell lines. There-
fore, in this experiment, we select these two cell lines as rep-
resentatives to study the impact of λadv on prediction
performance. In Figures 5(a) and 5(b), the curve of λadv = 0
represents that ABPR was not used in the model, and the
other curves represent that ABPR was used in the model. In
the early stages of training, the values of AUPR by using
ABPR are better than those by not using ABPR. This is
because when using ABPR, the parameters of the model
could change within a certain range without changing the
past prediction results, that is, learning new knowledge with-
out forgetting the knowledge learned in the past. Thus, the
prediction performance of the model can be effectively and
quickly improved in the early stages of model training. Using
ABPR as far as possible, the better performance will be
obtained in the early stage of training.

Because of using Dual Similarity Regularization, the dif-
ference of scores of different drug-target pairs will increase;
that is, the model parameters can withstand a certain range
of perturbations to improve the model prediction perfor-
mance. However, when the value of λadv exceeds a certain
range, due to the constraints of the regular terms of the
model parameters, they cannot resist excessive perturbations,
which leads to the model being underfitted. Therefore, if λadv
is given a large value, the model converges fast. The upper
bound of model convergence depends on the ability of model
parameters to resist the perturbations, which can be verified
in the PC3 cell line. As shown in Figures 5(a) and 5(b), the
larger λadv is, the lower the upper bound of model conver-
gence. When λadv = 0:3, the model obtained the best predic-
tion performance.

4.2.3. Comparison with Other Methods. AdvB-DTI was com-
pared with other state-of-the-art methods, and the prediction

performances are listed in Table 4. The comparison methods
include DNN [8], GMF [30], NeuMF [30], and AMF [28].

Xie et al. used a DNN framework [8] for DTI prediction
based on transcriptome data in the L1000 database gathered
from drug perturbation and gene knockout trials. We used
the same configurations for DNN training.

NeuMF [30] is a deep learning matrix factorization
framework for recommendation task with implicit feedback.
In this method, DNN’s input layer is defined as a latent vec-
tor instead of drug and target features. It is an improvement
of GMF and DNN. To compare with NeuMF and GMF fairly,
our model uses the same number of latent factors as NeuMF
and GMF.

AMF [28] is a state-of-the-art approach designed for item
recommendation with users’ implicit feedback. It introduces
the concept of ABPR and improves the method of BPR [26].

The results of DNN are used as baseline in Table 4. Since
the DTI data are too sparse that each drug only has interac-
tions with few targets, and DNN needs sufficient data for
training, the performance of DNN is not attractive. DNN uti-
lizes the transcriptome data as drug and target’s feature.
However, the transcriptome data has much noise, which also
limits its performance. As shown in Table 4, other state-of-
the-art matrix factorization methods’ performances are
better than that of the baseline.

When comparing AdvB-DTI with other state-of-the-art
matrix factorization methods (NeuMF, GMF, and AMF),
we could observe that only utilizing the relationship of drug
and target could not guarantee an ideal prediction
performance and efficiently exploiting the similarity of
drug-drug and target-target will has a positive impact on
the performance.

Notice that the performance of AMF is only second to
that of AdvB-DTI. It demonstrates that adding perturbations
to latent factors could make model learn noise, rather than
utilize noise data to train model like DNN. That is the reason
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Figure 5: Impact of λadv on AUPR. For cell lines HEPG2 and PC3, the best performance of AUPR is achieved when λadv = 0:3.
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that AMF could achieve a better performance than other
models except AdvB-DTI.

NDCG is mainly used for evaluating ranking methods
[43]. As our model is a ranking method, we compared
AdvB-DTI with AMF, which has the best performance in
Table 4 except AdvB-DTI, as shown in Table 5. It can be seen
from the results that AdvB-DTI outperforms AMF and it is
verified that AdvB-DTI can effectively deal with the class
imbalance problem and the problem of data sparsity.

Finally, we compared the computing resource consump-
tion of these methods. All the algorithms were written using
Python programming language and operated on a computer
(Ubuntu 16.04.4 LTS, Core i9-7900X CPU, 3.3GHz, 128GB
memory space). The algorithms were executed by CPU. We
conducted 10 experiments in the cell line of A549, and each
experiment concurrently executed 10 training procedures
with 5-fold cross-validation. The average results are shown
in Table 6.

It can be found that DNN has the largest memory cost
because of its many parameters. GMF is a traditional matrix
decomposition framework with simple structure and few
parameters, so its memory cost is minimum. NeuMF is the
framework of matrix decomposition combined with neural
network, so its memory cost is slightly higher than that of
GMF. AdvB-DTI improves AMF and NeuMF improves

GMF. Comparing the two groups of models based on
Tables 4 and 6, it can be found that the convergence time
of the model is related to its final prediction performance,
and the improvement of model performance may lead to
the increase of training time. In addition, the neural
network-based methods, such as DNN and NeuMF, take up
a lot of CPU resources.

In summary, AdvB-DTI efficiently utilizes the similarity
of drug-drug and target-target and the relationship of drugs
and targets to train latent factors for drugs and targets to
improve DTI prediction performance.

5. System Analysis of AdvB-DTI

After the comparison with other methods, we utilize top 1%
of all the prediction results to demonstrate the strength of our
method to predict novel DTIs. In order to verify our model,
all the known DTIs which have been utilized in our model
are removed for discussion in this section and the following
analysis is in A375.

5.1. Examination of Results. To validate whether our
prediction results are in accord with current knowledge, we
examined the predicted DTIs using other DTI database,
including TTD [44], IUPHARBPS [45], Matador [46],
STITCH [47], DGIdb [48], and CTD [49].

We used ri,j to rank all predicted DTIs and calculated pair
counts that overlap between the predicted results and the
interactions from other databases. Then, we counted the
number of overlapping pairs in the sliding bins of 500 con-
secutive interactions (as shown in Figure 6). It suggests that
our model can predict novel DTIs validated by known
knowledge in other databases. Considering that DTIs in
CTD database are curated from the published literature,
these interactions are both direct (e.g., “chemical binds to
protein”) and indirect (e.g., “chemical results in increased
phosphorylation of a protein” via intermediate events); it is
reasonable that CTD database covers a wider variety of
drug-target interactions than other DTI databases.

5.2. Enrichment Analysis. In this study, the DrugBank data-
base is considered the gold standard. The drug-target interac-
tions from the DrugBank database are the most accurate and
strict drug-target interactions. Besides the DrugBank data-
base, there are some other databases containing a large
amount of drug-target interaction data. These drug-target
interaction data are much larger than the gold standard we
used. Therefore, we compare our prediction results with the

Table 4: Comparison between AdvB-DTI and other methods.

Cell line DNN GMF NeuMF AMF AdvB-DTI

A375
AUC 0.8984 0.8733 0.9013 0.9253 0.9564

AUPR 0.8673 0.8385 0.8805 0.9350 0.9635

A549
AUC 0.9134 0.8927 0.9071 0.9246 0.9554

AUPR 0.8724 0.8495 0.8986 0.9319 0.9673

HA1E
AUC 0.8938 0.8874 0.9052 0.9074 0.9428

AUPR 0.8518 0.8424 0.8837 0.9137 0.9602

HCC515
AUC 0.8735 0.8912 0.8899 0.9009 0.9571

AUPR 0.8259 0.8429 0.8493 0.9177 0.9654

HEPG2
AUC 0.8901 0.8742 0.8835 0.8896 0.9464

AUPR 0.8135 0.8135 0.8297 0.8951 0.9624

PC3
AUC 0.8957 0.8774 0.8725 0.9205 0.9560

AUPR 0.8647 0.8631 0.8538 0.9309 0.9632

VCAP
AUC 0.8975 0.9033 0.8920 0.9095 0.9556

AUPR 0.8426 0.8388 0.8749 0.9126 0.9622

Table 5: Comparison of AdvB-DTI and AMF based on NDCG in
seven cell lines.

Cell line AdvB-DTI AMF

A375 0.9469 0.9149

A549 0.9413 0.9136

HA1E 0.9373 0.8813

HCC515 0.9455 0.8951

HEPG2 0.9566 0.8854

PC3 0.9517 0.9098

VCAP 0.9535 0.9041

Table 6: Resources consumed by AdvB-DTI and other methods in
the cell line of A549.

Method Time (m) ↓ Memory (MB) ↓ CPU (%) ↓

DNN 5 518 33.8

GMF 5 80 36.4

NeuMF 6 101 44.7

AMF 7 230 5.7

AdvB-DTI 12 180 5.3
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drug-target interactions contained in these databases. Here,
the drug-target interactions in the IUPHARBPS database,
STITCH database, CTD database, TTD database, Matador
database, and DGIdb database were used. If our prediction
results appear in other databases, it indicates that our predic-
tion results are consistent with prior knowledge.

In order to characterize and quantify the appearance of
predicted drug-target relationships (and known drug-target
interactions) in other databases, we used the enrichment
score and P value.

We calculated enrichment score (ES) as follows:

ES =
kN
nm

, ð25Þ

where k is the number of predicted drug-target interac-
tions that appear in the specified database (or the number
of known drug-target interactions (i.e., drug-target interac-
tions in our gold standard) that appear in the specified data-
base); N is the number of all possible interactions between
the drug set and the target set, that is, the drug-target interac-
tions when the drug set and the target set are fully connected;
n is the number of predicted drug-target interactions (or the
number of known drug-target interactions in our gold stan-
dard); and m is the number of drug-target interactions in a
specific database. And the interactions mentioned above only
concern drugs and targets present in the gold standard.

Then, we used the hypergeometric distribution to
calculate the P value as follows:

P X ≥ kð Þ = 〠
∞

x=k

m/xð Þ N −m/n − xð Þ
N/nð Þ : ð26Þ

FDR correction is used to correct the P values for multi-
testing [50].

As shown in Table 7, the known drug-target interactions
and the drug-target interactions predicted using AdvB-DTI
are significantly enriched on other datasets except for the
STITCH database. Obviously, the known drug-target inter-

actions (drug-target interactions in our gold standard) have
larger enrichment scores and smaller P value than predicted
drug-target interactions.

The results indicate that the drug-target interactions pre-
dicted by AdvB-DTI can be verified on other DTI datasets
and have a potential practical value.

5.3. Drug Treatment Property. Drug ATC (Anatomical Ther-
apeutic Chemical) label, which reflects drugs’ therapeutic,
pharmacological and chemical properties, is an important
label of drugs. By comparing the distribution of drug ATC
label in the known drug-target interactions and that of drug
ATC label in the predicted drug-target interactions, we can
find out which type of drug is more likely to be predicted to
be associated with targets.

The distribution of drug ATC label in the known drug-
target interactions and that of drug ATC label in the pre-
dicted drug-target interactions are illustrated in Figures 7(a)
and 7(b). The relative ratio between known and predicted
DTIs for each ATC label is shown in Figure 7(c). If there
are 25% of drugs with ATC label A in the gold standard
and 50% of drugs with ATC label A in the prediction result,
the relative ratio is 0:25/0:5 = 0:5. The smaller the ratio, the
more potential the drugs with that specific ATC label has to
target proteins. So, the drugs with that specific ATC label
should be studied further for broader use.

In Figure 7, the distributions of drug ATC labels for the
gold standard and for the predictions (note that only the
top 1% of all prediction results are taken) are almost the
same. Notably, drugs with ATC label “B” (Blood and Blood
Forming Organs) have a low relative ratio. In addition to
A375, in most other cell lines, we also predicted more targets
for drugs with ATC label “B”. The result suggests that drugs
with ATC label “B” have more potential to target proteins
and should be studied further for broader use.

6. Case Study

To illustrate the reliability of the prediction results of AdvB-
DTI, we studied several cases in this section. These examples
are all from our prediction results.

Olomoucine (CID: 4592) is a cyclin-dependent kinase
inhibitor. For Olomoucine, its predicted target is MAPK3
through AdvB-DTI.

0
0 50 100 150 200

5

10

15

20

25

30

V
al

id
at

ed
 p

ai
rs

Bin index

TTD
US
Matador

STITCH
DGIDB
CTD

Figure 6: The overlap curves between predicted interactions and
known DTIs.

Table 7: Enrichment of drug-target interactions on other datasets.

ES PES EP-Value PEP-Value

TTD 107.91 3.60 292.06 1.20

STITCH 12.32 0.52 16.72 0.04

DGIdb 70.37 2.43 ∞ 2.88

CTD 9.18 1.73 134.46 6.10

Matador 59.28 5.87 131.13 6.10

IUPHARBPS 99.74 3.84 856.72 2.33

ES: enrichment score of known drug-target interactions; PES: enrichment
score of predicted drug-target interactions; EP-Value: enrichment P value
(after -lg10) of known drug-target interactions; PEP-Value: enrichment P
value (after -lg10) of predicted drug-target interactions.
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MAPK3 (Entrez ID: 5595) is a neighbor to the known tar-
get of Olomoucine (MAPK1, Entrez ID: 5594) in the protein-
protein interaction (PPI) network. The PPI network, which
contains 270,970 pairs of protein-protein interaction, is
obtained from the BioGRID database [51]. By observing

whether the edges (between two proteins) exist or not, we
can judge whether drug known targets and predicted targets
are neighbors in the PPI network. The closer two proteins are
in the PPI network, the more likely they share the same func-
tionality. Therefore, if the predicted targets are neighbors to
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Figure 7: Distribution of ATC labels between DTIs in the known (a) and predicted (b) interactions. The relative ratio between known and
predicted DTIs for each ATC label is shown in the right panel. ATC labels include the following: A—alimentary tract and metabolism;
B—blood and blood-forming organs; C—cardiovascular system; D—dermatological; G—genitourinary system and sex hormones;
H—systemic hormonal preparations, excluding sex hormones and insulins; J—anti-infectives for systemic use; L—antineoplastic and
immunomodulating agents; M—musculoskeletal system; N—nervous system; P—antiparasitic products; R—respiratory system;
S—sensory organs; and V—several others.
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the known targets of drugs, they might be targeted in the
same way as known targets and the prediction results would
be relatively reliable.

Indeed, recent research has shown that MAPK3 can be
substantially inhibited by Olomoucine [52, 53]. This indi-
cates that MAPK3 may be a novel target of Olomoucine.

Drug acetylsalicylic acid (commonly known or available
as Aspirin, CID: 2244) is used for the treatment of pain and
fever due to various causes. For acetylsalicylic acid, its pre-
dicted target is cyclin-dependent kinase-2 (CDK2) through
AdvB-DTI.

CDK2 (Entrez ID: 1017) is a neighbor to two known tar-
gets of acetylsalicylic acid in the PPI network (Entrez IDs:
7157, 6256). Recent research has shown that CDK2 may be
a novel target of acetylsalicylic acid [54]. This verifies our
prediction.

CDK2 is a member of protein kinase family. It plays an
important role in regulating various events of eukaryotic cell
division cycle. Accumulated evidence indicated that overex-
pression of CDK2 should cause the abnormal regulation of
cell-cycle, which would be directly associated with hyperpro-
liferation in cancer cells [55]. Moreover, the examination of
different kinds of human cancers, with definedmolecular fea-
tures, for their susceptibility to CDK2 inhibition has unveiled
the scope in which CDK2 might represent a good therapeutic
target [56–63].

Based on the above information, we speculate that acetyl-
salicylic acid, which is predicted to target CDK2, may have
potential anticancer effects. Interestingly, the results of vari-
ous studies have demonstrated that long-term use of acetyl-
salicylic acid may decrease the risk of various cancers,
including colorectal, esophageal, breast, lung, prostate, liver,
and skin cancer [64]. The predicted target CDK2 explains
acetylsalicylic acid’s anticancer effect to some extent.

Next example is the drug Panobinostat.
Panobinostat (CID: 6918837) is an oral deacetylase

(DAC) inhibitor approved on February 23, 2015, by the
FDA for the treatment of multiple myeloma. It acts as a non-
selective histone deacetylase inhibitor (HDACi).

Histone deacetylase inhibitors (HDACis) are promising
agents for cancer therapy. However, the mechanism(s)
responsible for the efficacy of HDACi have not yet to be fully
elucidated [65].

In this study, we predicted that Panobinostat’s target is
ATF3 through AdvB-DTI.

ATF3 (Entrez ID: 467) is a neighbor to six known targets
of Panobinostat in the PPI network (Entrez IDs: 3065,
10013, 83933, 9759, 10014, 8841). As a proapoptotic factor,
it plays a role in apoptosis and proliferation, two cellular
processes critical for cancer progression [66–68]. And
ATF3 has been postulated to be a tumor suppressor gene
because it coordinates the expression of genes that may be
linked to cancer [69].

Recent research has shown that ATF3 plays an important
role in HDACi-induced apoptosis in multiple cell types [70].
HDACi can induce upregulation of ATF3 expression, thus
eliciting the antitumor response [71].

Therefore, Panobinostat, as a HDACi, may treat mye-
loma by targeting ATF3.

Another interesting case is caffeine.
Caffeine (CID: 2519) is a widely consumed pharmacolog-

ically active product. It can be used for a variety of purposes,
including the short-term treatment of apnea of prematurity
in infants and pain relief and to avoid drowsiness [72].

For caffeine, its predicted targets include PTGS2 (Entrez
ID: 5743) and PPARG (Entrez ID: 5468) through AdvB-DTI.

PTGS2 is one of two cyclooxygenases in humans. As a
proinflammatory gene, it plays an important role in inflam-
mation. Recent research has shown that caffeine treatment
can reduce the expression of proinflammatory genes, includ-
ing PTGS2 [73]. And caffeine can bind to PTGS2 acetamino-
phen complex with high energy, therefore modulating
PTGS2 inhibition [74]. Furthermore, upregulation of PTGS2
is a critical oncogenic pathway in skin tumorigenesis. Han
et al. verified that caffeine could block UVB-induced PTGS2
upregulation [75]. All these studies show that PTGS2 is a
potential target for caffeine.

PPARG, another predicted target, is a ligand-activated
transcription factor and important modulator for inflamma-
tion and lymphocyte homeostasis. There is also a study
showing that PPARG were suppressed even with a low caf-
feine dose [76]. This suggests that PPARG is also a potential
target for caffeine.

The above cases illustrate that our prediction results have
a potential practical value and can provide clues to the
analysis of the mechanism of action of certain drugs.

7. Conclusion

In this paper, we propose a DTI prediction framework
named AdvB-DTI. Based on Bayesian Personalized Ranking,
it uses the method of matrix factorization to predict DTIs. In
order to solve the problem of existing DTI prediction
methods based on matrix factorization, the proposed method
combines the features of drugs and targets with the matrix
factorization method. The advantage of this method over
other similar methods is that BPR is combined with the per-
turbation factor and dual similarity regularization to make
the model more robust and the training results more accu-
rate. Experimental results verify that AdvB-DTI efficiently
utilizes the similarity of drug-drug and target-target and the
relationship of drugs and targets to train latent factors for
drugs and targets to improve DTI prediction performance.

This study has the following positive impacts on the bio-
medical research.

Firstly, by integrating transcriptome data from drugs and
genes, our model provides a practically useful and efficient
tool for DTI prediction. The results of our study demonstrate
that our method could discover reliable DTIs, thereby reduc-
ing the size of the search space for wet experiments and
improving the drug discovery process.

Secondly, effective DTI prediction is achieved based on
the transcriptome data. Our model used drug perturbation
and gene knockout transcriptome data from the L1000 data-
base of the LINCS project. Because the cost of experiments in
LINCS project is relatively low, our prediction based on
LINCS data not only ensures high accuracy but also has
low cost.
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Thirdly, our effective predictions verify that there is
indeed a correlation between drug perturbation and the
drug’s target gene knockout at the transcriptional level. This
correlation not only provides a basis for high-precision drug-
target predictions but also provides a transcriptional perspec-
tive for the interpretation of drug mode of action. The corre-
lation can also provide clues for future drug discovery.
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