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a b s t r a c t 

Advances in sequencing technologies led to rapid increase in the number and diversity of biological se- 

quences, which facilitated development in the sequence research. In this paper, we present a new method 

for analyzing protein sequence similarity. We calculated the spectral radii of 20 amino acids (AAs) and 

put forward a novel 2-D graphical representation of protein sequences. To characterize protein sequences 

numerically, three groups of features were extracted and related to statistical, dynamics measurements 

and fluctuation complexity of the sequences. With the obtained feature vector, two models utilizing Gaus- 

sian Kernel similarity and Cosine similarity were built to measure the similarity between sequences. We 

applied our method to analyze the similarities/dissimilarities of four data sets. Both proposed models 

received consistent results with improvements when compared to that obtained by the ClustalW analy- 

sis. The novel approach we present in this study may therefore benefit protein research in medical and 

scientific fields. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

With the development of sequencing techniques, the discovery

f biological sequences increases fast. Effective extraction and

nalysis of biological information from large data base has drawn

uch attention in the field of bioinformatics. Sequence similarity

nd evolution relationship analysis in order to get the function of

nknown sequences ( Louie et al., 2009 ) may shed light on identifi-

ation of potential drug targets and to gain insights on underlying

olecular mechanisms of diseases ( Jiang and Zhou, 2005 ). 

For protein sequence similarity analysis, there are several com-

only applied methods, which can be divided into two groups:

lignment-based methods ( Chakraborty and Bandyopadhyay, 2012;

otoh, 1982; Liu et al., 2015 ) and alignment-free methods. In the

lignment-based methods, a sequence alignment scoring matrix

nd gap penalty parameters are used to represent insertion,

eletion or substitution of AAs in the compared sequences. 

Nevertheless, due to the fact that alignment-based approaches

re generally memory demanding and time consuming, a lot of

lignment-free methods ( Yu et al., 2017 ) are applied alternatively,

hich use numerical characterization of protein sequences by

xtracting invariants from sequences indirectly. With the repre-
∗ Corresponding author. 
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entation of a protein sequence, there are mainly two types of

lignment-free methods: (1) digital-signal-based representation 

nd (2) graphical representation. The digital-signal-based represen-

ation encodes a single amino acid (AA) into a number so that a

rotein sequence is converted into a digital signal sequence, which

s processed by digital signal analysis tools to extract the features

f the protein sequence. For example, in a study performed by

ou et al. (2017) , protein sequence was converted into numerical

equences with their physicochemical properties to achieve the

ower spectra by Discrete Fourier Transform (DFT). Furthermore,

ynamic Time Warping (DTW) was used to extend the spectra

o the same length in order to calculate the distance between

ifferent sequences. Su and Bao (2013) proposed a method based

n Discrete Wavelet Transform (DWT) to measure protein se-

uence similarity. The model employed only the approximation

oefficients of DTW so that the feature vector was short enough

o bring a great running time promotion. 

Graphical representation has been widely explored in bioin-

ormatics research ( Czerniecka et al., 2016; Yao et al., 2014a ). It

epresents a protein sequence graphically and then extracts feature

ector of the graph. Various approaches on graphical representa-

ion were proposed according to the physicochemical properties

f the AAs. Some methods converted an AA to a discrete point

ccording to its physicochemical properties ( Xu et al., 2014 ), and

ome methods mapped an AA to a unique value by principle

https://doi.org/10.1016/j.jtbi.2018.03.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtbi
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2018.03.001&domain=pdf
mailto:gaorui@sdu.edu.cn
https://doi.org/10.1016/j.jtbi.2018.03.001
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components of physicochemical properties ( Wang et al., 2014 ).

Zhang et al. (2015) put forward a 2-D graphical representation by

converting each AA to a point according to the hydrophobicity and

hydropathy indexes. Then the cumulative distance of every point

was utilized to present the distance of the sequences. In addition,

similar approaches have been proposed by several studies ( Li

et al., 2014; Qi and Jin, 2016 ). Furthermore, several graphical

representations of protein sequences have applied reduced protein

models ( Li et al., 2009; Randi ́c et al., 2009 ). Yao et al. (2014c) sim-

plified twenty AAs into four types with preset values according

to hydrophobicity. Four consecutive numbers were summed as

the amplitudes of vertical axis. Thus, a protein sequence can

be characterized by a 17-D vector containing the frequencies

of the amplitudes. Based on the idea of cyclic order of 20 AAs,

Ellakkani and Mahran (2015) selected twenty concentric evenly

spaced circles divided by n radial lines into equal divisions to

represent any protein sequence of length n . The mean of each two

successive distances between each two successive AAs was calcu-

lated. The set of the different mean distances with its frequencies

was taken as a mathematical descriptor. The graph-energy-based

methods are also effective graphical representation ( Sun et al.,

2016 ). Wu et al. (2015) calculated the graph energy and Laplacian

energy of 20 AAs by the codons of the AAs, and applied them to

a novel 2-D graphical representation of proteins to analyze the

similarity/dissimilarity of protein sequences. 

Albeit previous achievements, the research on dynamic feature

and non-linear feature of protein sequence is relatively few. In this

study, we calculated the spectral radii of 20 AAs and applied the

obtained spectral radii to a novel 2-D graphical representation. The

2-D graph was characterized mathematically by extracting three

groups of features. The static features of the protein sequence

included the mean of spectral radii (MSR), distribution of spec-

tral radii (DSR) and distribution of functional groups (DFG). The

dynamics features of the protein sequence included distribution

of spectral radii transitions (DSRT), distribution of functional

groups transitions (DFGT). The non-linear feature was fluctuation

complexity ( C f ). With the mathematical characterization, two

models adopting Gaussian Kernel similarity and Cosine similar-

ity were built to analyze the similarities among nine NADH5

(ND5), thirty-five Coronavirus Spike Proteins (CoVPs), twenty-four

transferrin proteins (TFs) and twenty-seven antifreeze protein

sequences (AFPs). Our results were consistent with improvements

when compared to that achieved by the ClustalW. The simula-

tions showed that the graphical representation represented the

sequence visually and comprehensively, and the proposed method

was effective for protein sequence similarity analysis. 

2. Materials and methods 

2.1. Spectral radius of graph 

For a graph, there are many measurements, such as graph

energy ( Qi et al., 2011; Wu et al., 2015; Yu et al., 2017 ), Laplacian

graph ene.g. ( Wu et al., 2015 ), spectral radius, point centrality

( Zhou et al., 2016 ), average degree of nodes ( Zhou et al., 2016 )

etc. They have been applied in sequence analysis successfully.

For example, a weighted directed graph was set up for each DNA

sequence. The adjacency matrix of the directed graph was used to

induce a representative vector for a DNA sequence ( Qi et al., 2011 ).

The spectral radius of a graph is the largest eigenvalue of

the adjacency matrix of the graph. It has been widely used as a

metric in classification. In the model called PROTNN, a rich set of

structural and topological attributes including spectral radius were

extracted to classify protein structures ( Dhifli and Diallo, 2016 ).

A metric called the spectral radius ratio was defined as the ratio

of the spectral radius to the average node degree in order to
easure the variation in node degree for complex network graphs

 Meghanathan, 2014 ). All the previous researches indicated that

pectral radius was an effective metric. Thus, the spectral radius

as adopted to model the protein sequence. 

G = (V, E) was set to be a graph possessing n vertices and m

dges, with the set of vertices V = { v 1 , v 2 , . . . , v n } and the edges

et E = { e 1 , e 2 , . . . , e m 

} . An adjacency matrix A (G ) = (a i , j ) ∈ R m ×n

f G was defined, where 

 i , j = 

{
1 , i f (v i , v j ) ∈ E, 

0 , i f (v i , v j ) / ∈ E. 
(1)

λ1 , λ2 , . . . , λn was set to be the eigenvalues of adjacency matrix

 ( G ). Spectral radius ρ( A ) ( Yu et al., 2004 ) was defined as 

(A ) = max { λ1 , λ2 , . . . , λn } . (2)

.2. The spectral radii of 20 AAs 

The method to get the spectral radii of 20 AAs is briefly

escribed as the following. 

• Our method is based on the graphs of 20 AAs introduced by

Wu et al. (2015) . Four nucleotides i.e., A,G,C,T were mapped to

four unit vectors with different directions, respectively. An AA

was mapped to a graph by a walking method to connect the

codons of the specified AA. The walking method is described

briefly as follows. The walker began to walk from (0, 0). If

the following nucleotide in the codons was the same with the

current one, the walker would not change the walking direc-

tion and only add the value of edges by one. Otherwise, the

walker would change the walking direction according to the di-

rection of the nucleotide. Thus, the nucleotides were connected

together to form a graph. Then the graph was transformed to

an undirected graph. In the graph, the value of the edge de-

noted the walking times. The graphs of 20 AAs are shown in

Figure S1 in supplementary materials. 
• After getting the graphs of 20 AAs, the adjacency matrices

of the graphs were established to calculate the eigenvalues.

Thus, the spectral radii of 20 AAs were calculated according to

(2) and the result is shown in Table 1 . 

.3. The 2-D graphical representation of protein sequence 

Suppose a protein sequence is denoted by S = S 1 S 2 . . . .S N ,

here S i denotes the ith AA along the protein sequence. In order

o represent the order and types of AAs in the sequence, the

 -coordinate value includes two parts. One part is the ordinal

umber of the i th AA appearing in the sequence. The other part

escribes the types of the 20 AAs. Type numbers of the AAs were

efined according to the alphabetic order to distinguish the 20

As with definition shown in Table 1 . 

For graphical representation of the i th AA, we defined 

x i = i + 0 . 5 ∗ T i / 20 , 

y i = sr i , 
(3)

here T i denoted the type of the i th AA defined in Table 1 , sr i 
enoted the spectral radius of the i th AA along the sequence. 

Our method was performed on two short fragments of Sac-

haromyces cerevisiae to demonstrate the proposed graphical

epresentation. 

Protein I (PI) and protein II (PII) sequences are 

PI:W T FESRNDPA K DP V ILWLNGGPGCSS L TGL, 

PII:W F FESRNDPA N DP I ILWLNGGPGCSS F TGL. 

The 2-D graphical representation of PI and PII was shown in

ig. 1 . Fig. 1 showed that there were four different points in the

wo sequences intuitively, which was consistent with the result of

anual alignment. 
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Table 1 

The spectral radii and type numbers of 20 AAs. 

AA SR Type AA SR Type AA SR Type AA SR Type 

A 6.04 1 G 8.13 6 M 2.24 11 S 5.19 16 

C 2.5 2 H 2.93 7 N 3.26 12 T 3.15 17 

D 3.02 3 I 5.15 8 P 8.13 13 V 3.61 18 

E 2.46 4 K 5.1 9 Q 2.46 14 W 2.24 19 

F 3.26 5 L 7.42 10 R 8.32 15 Y 3.26 20 

Fig. 1. The 2-D graphical representation of protein I (PI) and protein II (PII) sequences. PI and PII sequences are PI:WTFESRNDPAKDPVILWLNGGPGCSSLTGL, 

PII:WFFESRNDPANDPIILWLNGGPGCSSFTGL. 
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.4. Numerical characterization of protein sequence 

.4.1. Mean spectral radius (MSR) 

To extract the mean value of spectral radii sr of the protein

equence, we defined 

r = 

1 

N 

N ∑ 

i =1 

sr i , (4) 

here sr i denoted the spectral radius of the i th AA in the protein

equence. 

.4.2. Distribution of spectral radii (DSR) 

According to the size and clustering of the spectral radii of 20

As, the values of spectral radii were classified into eight intervals

s Interval 1 = {2 ≤ sr ≤ 2.5}, Interval 2 = {2.5 < sr ≤ 3.15},

nterval 3 = {3.15 < sr ≤ 5}, Interval 4 = {5 < sr ≤ 6}, Interval

 = {6 < sr ≤ 7}, Interval 6 = {7 < sr ≤ 8}, Interval 7 = {8 <

r ≤ 8.3} and Interval 8 = {8.3 < sr ≤ 9}. Let I i , i = 1 , 2 , . . . , 8 ,

hich represented the i th interval. To calculate distribution F of

pectral radius intervals, we defined 

 = [ f I 1 , f I 2 , f I 3 , f I 4 , f I 5 , f I 6 , f I 7 f I 8 ] , (5) 

here f I j = 

1 
N 

∑ N 
i =1 h I j (sr i ) , h I j (sr i ) = 

{ 

1 , if sr i ∈ I j , 
0 , otherwise . 

.4.3. Distribution of spectral radii transitions (DSRT) 

To obtain distribution of spectral radius intervals transitions in

 sequence, we defined 

 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

a 1 , 1 · · · a 1 , j · · · a 1 , 8 
. . . 

. . . 
. . . 

. . . 
. . . 

a i, 1 · · · a i, j · · · a i, 8 
. . . 

. . . 
. . . 

. . . 
. . . 

a 8 , 1 · · · a 8 , j · · · a 8 , 8 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

8 ×8 

= (a i, j ) 8 ×8 , 
here a i, j = 

1 
N−1 

∑ N−1 
l=1 

w i j (sr l ) , w i j (sr l ) =
 

1 , if sr l ∈ I i and sr l+1 ∈ I j , 
0 , otherwise . 

A was rebuild to a row vector by 

˜ 
 = [ a 1 , 1 , . . . , a 8 , 1 , a 1 , 2 , . . . , a 8 , 2 , . . . , a 1 , 8 , . . . , a 8 , 8 ] . (6) 

.4.4. Distribution of functional groups (DFG) 

Physicochemical properties of AAs are largely related to the

ide chain of AAs. Each property of AAs has its particularity, which

epends on the type of the side chain the AAs possess ( Hayat and

han, 2013 ). By the presence of side chain chemical group, 20 AAs

ere classified into 10 functional groups: phenyl (F/W/Y), carboxyl

D/E), imidazole (H), primary amine (K), guanidino (R), thiol (C),

ulfur (M), amido (Q/N), hydroxyl (S/T) and nonpolar (A/G/I/L/V/P)

 Pugalenthi et al., 2008 ). Let F, D, H, K, R, C, M, Q, S and A represent

ach group, respectively. Thus, the sequence can be represented by

 = (s 1 , s 2 , . . . , s N ) , s i ∈ { F , D, H, K, R, C, M, Q, S, A } . In order to calcu-

ate distributions G of the ten functional groups, we defined 

 = [ g F , g D , g H , g K , g R , g C , g M 

, g Q , g S , g A ] , (7) 

here g k = 

1 
N 

∑ N 
i =1 q k (s i ) , q k (s i ) = 

{ 

1 , if s i = k, 

0 , otherwise , 
k =

 F , D, H, K, R, C, M, Q, S, A } . 

.4.5. Distribution of functional groups transitions (DFGT) 

To get distributions of functional groups transitions, we de-

ned 

 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

b 1 , 1 · · · b 1 , j · · · b 1 , 10 

. . . 
. . . 

. . . 
. . . 

. . . 
b i, 1 · · · b i, j · · · b i, 10 

. . . 
. . . 

. . . 
. . . 

. . . 
b 10 , 1 · · · b 10 , j · · · b 10 , 10 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

10 ×10 

= (b i, j ) 10 ×10 , 

here b i, j = 

1 
N−1 

∑ N−1 
l=1 

v i j (s l ) , v i j (s l ) = 

{ 

1 , if s l = k i and s l+1 = k j , 
0 , otherwise . 
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Table 2 

The distance matrix of the nine ND5 protein sequences calculated by Gaussian Kernel similarity analysis. 

Human Gorilla C.Chim. P.Chim. Rat Mouse Opossum F.Whale B.Whale 

Human 0 0.48 0.35 0.36 0.87 0.84 0.89 0.75 0.77 

Gorilla 0 0.48 0.46 0.86 0.81 0.89 0.77 0.81 

C.Chim. 0 0.21 0.85 0.79 0.88 0.73 0.73 

P.Chim. 0 0.83 0.76 0.85 0.72 0.72 

Rat 0 0.64 0.82 0.85 0.85 

Mouse 0 0.78 0.77 0.77 

Oppossum 0 0.84 0.83 

F.Whale 0 0.20 

B.Whale 0 

Table 3 

The distance matrix of the nine ND5 protein sequences calculated by Cosine similarity analysis. 

Human Gorilla C.Chim. P.Chim. Rat Mouse Opossum F.Whale B.Whale 

Human 0 0.18 0.13 0.13 0.57 0.54 0.53 0.38 0.42 

Gorilla 0 0.18 0.17 0.53 0.48 0.52 0.39 0.43 

C.Chim. 0 0.72 0.56 0.47 0.54 0.37 0.37 

P.Chim. 0 0.53 0.46 0.49 0.38 0.37 

Rat 0 0.30 0.41 0.53 0.53 

Mouse 0 0.38 0.43 0.42 

Oppossum 0 0.44 0.43 

F.Whale 0 0.59 

B.Whale 0 

Table 4 

The distance matrix of the nine ND5 protein sequences calculated by the ClustalW. 

Human Gorilla C.Chim. P.Chim. Rat Mouse Opossum F.Whale B.Whale 

Human 0 0.104 0.067 0.069 0.456 0.443 0.464 0.375 0.377 

Gorilla 0 0.096 0.093 0.469 0.453 0.494 0.39 0.387 

C.Chim. 0 0.048 0.461 0.448 0.472 0.37 0.37 

P.Chim. 0 0.453 0.443 0.459 0.368 0.368 

Rat 0 0.241 0.494 0.41 0.407 

Mouse 0 0.469 0.422 0.415 

Opossum 0 0.486 0.486 

F.Whale 0 0.034 

B.Whale 0 

Table 5 

The correlation coefficients for nine ND5 proteins of Gaussian Kernel similarity method and some state-of-the-art methods as compared with the ClustalW method. 

Species Our 

Method 

Yao et al. (2014c) Ellakkani and 

Mahran (2015) 

Zhang et al. (2015) Mu et al. (2016) Liu et al. (2013) Wu et al. (2010) Huang and 

Hu (2013) 

Yao et al. (2014b) 

Human 0.96 0.93 −0.09 0.91 0.93 0.94 0.93 0.89 0.89 

Gorilla 0.93 0.88 −0.03 0.92 0.93 0.93 0.91 0.93 0.85 

C.Chim. 0.96 0.94 −0.11 0.93 0.91 0.94 0.91 0.95 0.86 

P.Chim. 0.96 0.95 −0.11 0.91 0.93 0.93 0.76 0.91 0.77 

Rat 0.96 0.95 0.72 0.92 0.93 0.84 0.63 0.93 0.87 

Mouse 0.96 0.98 0.75 0.87 0.97 1.00 0.66 0.86 0.76 

Opossum 0.99 0.94 0.99 0.99 0.93 0.89 0.52 0.92 0.93 

F.Whale 0.98 0.91 0.16 0.92 0.93 0.89 0.53 0.92 0.87 

B.Whale 0.98 0.93 0.15 0.92 0.96 0.87 0.69 0.93 0.90 
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B was rebuild to a row vector as 

˜ B = [ b 1 , 1 , . . . , b 10 , 1 , . . . , b 1 , 10 , . . . , b 10 , 10 ] . (8)

2.4.6. Fluctuation complexity ( C f ) 

Fluctuation complexity ( Grassberger, 1986 ) can be applied for

classification and has been widely used to describe symbol se-

quences in information sciences ( Parrott, 2010 ), which was defined

by Bates and Shepard ( Grassberger, 1986 ). 

It is well known that the function of proteins varies according

to the type and order of AA residues. Fluctuation complex-

ity considers both the probability of single AA and the transition

probability. It reflects the fluctuation in net information gain of the
equence. Thus, fluctuation complexity was adopted to characterize

he protein sequence. Fluctuation complexity was defined as 

 f = 

L ∑ 

i, j=1 

P i j ∗
(

log 
P i 
P j 

)2 

, (9)

here L denoted the number of states existing in the sequence

hich was equal to the type number of AAs as 20 in this paper,

 i calculated by (10) denoted the probability of the i th state

n a sequence and P ij calculated by (11) denoted the transition

robability of state i followed by the state j in a sequence. P and
i 
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Fig. 2. Phylogenetic trees of the nine ND5 constructed by Gaussian Kernel similarity (a), Cosine similarity (b) and the ClustalW (c). 

Fig. 3. The correlation coefficients for nine ND5 proteins of Gaussian Kernel similarity method and some state-of-the-art methods as compared with the ClustalW method. 
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 ij were defined as 

 i = 

C i 
N 

, i = 1 , 2 , . . . , 20 , (10) 

 i j = 

C i j 

N − 1 

, i, j = 1 , 2 , . . . , 20 , (11) 

here C i denoted the number of the i th AA in the sequence, C ij 
enoted the number of the j th AA following the i th AA in the
equence which was calculated by 

 i j = 

N−1 ∑ 

l=1 

m i j (s l ) , m i j (s l ) = 

{
1 , if s l = AA i and s l+1 = AA j , 

0 , otherwise . 

.4.7. The numerical feature vector 

The whole numerical feature vector ( fv ) of the protein sequence

as constructed as 

f v = [ sr , F , ˜ A , G, ˜ B , C f ] , (12) 

here sr , F , ˜ A , G, ˜ B and C f were calculated by 4 –(9) , respectively. 
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Fig. 4. Phylogenetic trees of thirty-five CoVPs constructed by Gaussian Kernel similarity (a) and Cosine similarity (b). 

Fig. 5. Phylogenetic tree of thirty-five CoVPs achieved by the ClustalW. 
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2.5. The models of similarity/dissimilarity analysis 

Gaussian Kernel similarity can reflect the degree of the tested

point belonged to the cluster with the given centroid and ad-

justable bandwidth. Cosine similarity measures the direction

similarity of two vectors. Thus, we adopted the two popular

measurements of distance between two vectors to reflect the

similarity/dissimilarity of two protein sequences. 
For two protein sequences P 1 and P 2, the corresponding feature

ectors were � s = ( f 1 
1 
, f 1 

2 
, . . . , f 1 n ) and 

�
 t = ( f 2 

1 
, f 2 

2 
, . . . , f 2 n ) , where f 

j
i 

enoted the ith feature in the jth protein, i = 1 , 2 , . . . , n, j = 1 , 2 ,

 denoted the number of features calculated by (12) . The distance

ased on Gaussian Kernel similarity between 

�
 s and 

�
 t was defined

s 

 g (s, t) = 1 − exp 

(
−‖ s − t‖ 

2 

2 σ 2 

)
, 

here the parameter σ controlled the bandwidth which was equal

o 4 in this paper. 

The second distance measurement d c ( s, t ) between two vectors

  and 

�
 t was defined to be one minus the Cosine of the included

ngle between 

�
 s and 

�
 t , which was based on the assumption that

wo protein sequences were similar if the corresponding feature

ectors had similar direction, i.e., 

 c (s, t) = 1 − cos ( � s , � t ) = 1 −
(

�
 s ·� t 

| � s || � t | 
)

. 

.6. Materials 

Four data sets were curated to evaluate the proposed method.

he first data set is nine ND5. Nine ND5 contains the NADH5

f nine species including Human, Gorilla, Pigmy Chimpanzee,

ommon Chimpanzee, Fin Whale, Blue Whale, Rat, Mouse and

possum from NCBI ( Xu et al., 2016 ). The accession numbers are

isted in Table S1 of supplementary materials. The second data set

s thirty-five Coronavirus Spike Proteins. The proteins were derived

rom the NCBI. Thirty-five Coronavirus Spike Proteins are from

pecies of order Nidovirales, family Coronaviridae and subfamily

oronavirinae. The information and accession numbers ( Mu et al.,

016 ) are listed in Table S2 in supplementary materials. The third

ata set is twenty-four previously published transferrin proteins

rom fish, amphibians and mammals of twenty-four vertebrates,

hose taxonomic information and accession numbers ( Xu et al.,
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Fig. 6. Phylogenetic trees of twenty-four TFs constructed by Gaussian Kernel similarity (a) and Cosine similarity (b). 

Fig. 7. Phylogenetic tree of twenty-four TFs by the ClustalW. 
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016 ) are provided in Table S3 in supplementary materials. Fur-

hermore, twenty-seven antifreeze protein sequences (AFPs) from

pruce budworm (Choristoneura fumiferana, CF), yellow meal-

orm (Tenebrio molitor, TM), Hypogastrura harveyi (HH), Dorcus

urvidens binodulosus (DCB), Microdera dzhungarica punctipen-

is (MDP) and Dendroides canadensis (DC) ( Zhang, 2010 ) were

nalyzed. 

. Results and discussion 

.1. Similarity analysis of nine ND5 

Mitochondrial NADH deaminase Subunit 5 (ND5) is widely

sed in the analysis of phylogeny and population genetic diversity

ecause of its high mutation rate. To illustrate the proposed sim-
larities/dissimilarities models, the similarities of nine ND5 protein

equences across nine species were analyzed. 

We calculated the distances by Gaussian Kernel similarity and

osine similarity, ( Tables 2 and 3 , respectively), which were then

ompared to the analysis achieved by the ClustalW ( Table 4 ) in

rder to validate its effectiveness. The corresponding phylogenetic

rees ( Fig. 2 ) showed that Gaussian Kernel similarity analysis is

onsistent with that of the ClustalW, while Cosine similarity anal-

sis is closely consistent with that of the ClustalW. 

In addition, the correlation coefficients between the distance

atrices calculated by Gaussian Kernel similarity and by the

lustalW were calculated. Pearson’s correlation coefficient of X

nd Y is 

 X,Y = 

Cov (X, Y ) 

σX σY 

, (13) 

here Cov denotes the covariance, σ X denotes the standard devi-

tion of X, σ Y denotes the standard deviation of Y . For example, X

epresents the distances between Human and nine species (listed

n the first row in Table 2 ), which were calculated by Gaussian

ernel similarity. Y represents the distances between Human and

ine species (listed in the first row in Table 4 ), which were calcu-

ated by the ClustalW. The correlation coefficient of X and Y were

alculated by (13) , which is 0.96 as shown in the first column

nd first row of Table 5 . With the same method, the correlation

oefficient for other species were calculated, respectively (fist

olumn in Table 5 ). Similarly, the correlation coefficients between

he result by the ClustalW and the results by some state-of-the-art

ethods were calculated ( Table 5 ). The results were also presented

n graphical format ( Fig. 3 ), which showed that the result by the

roposed method has relatively higher correlation with that by the

lustalW than other methods. This observation further confirmed

he effectiveness of the proposed method. 

.2. Similarity analysis of thirty-five Coronavirus Spike Proteins 

Coronaviruses are species of virus which are associated with

espiratory, intestinal, liver, and neurological diseases. Generally,

oronaviruses were divided into three groups. The first group and
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Fig. 8. Phylogenetic trees of 27AFPs constructed by Gaussian Kernel similarity (a) and Cosine similarity (b). 

Fig. 9. Phylogenetic tree of twenty-seven AFPs by the ClustalW. 
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the second group come from mammalian, and the third group

comes from poultry (chicken and turkey). To classify the SARS-

CoV viruses and associate proteins with the virus virulence, the

proposed method was utilized to analyze the coronaviruses spike

proteins. 

Phylogenetic trees were built by Gaussian Kernel similarity,

Cosine similarity and by the ClustalW ( Fig. 4 a,b and Fig. 5 ). All

the SARS-CoVs clustered in a new strain nearest to group II

coronaviruses. This is consistent with the report that SARS-CoV

represents a lineage that split off from the group II branch rel-

atively late in coronavirus evolution ( Snijder et al., 2003 ). All

the groups of CoVs were also separated correctly by the analysis

( Fig. 4 ). The results from Gaussian Kernel similarity and Cosine

similarity analysis were comparable, with only little differences
n SARS-CoVs classification. However, SARS-CoVs were not clearly

istinguished by the ClustalW ( Fig. 5 ). In conclusion, the results of

aussian Kernel similarity and Cosine similarity analysis methods

ere in agreement with the ClustalW with improvement. 

.3. The similarity analysis of twenty-four transferrin proteins 

Iron is essential for various metabolic processes such as oxygen

ransfer, electron transport, DNA synthesis, etc. Transferrin (TF)

s the major iron transporting protein in the plasma. Lactoferrin

LF) is an iron binding glycoprotein of the transferrin family

 García-Montoya et al., 2012 ). Previous studies have demonstrated

he phylogenetic relation between LFs and TFs ( Chang and Wang,

011; Ford, 2001; Yu et al., 2017 ). In this study, twenty-four pre-

iously published TFs were studied by Gaussian Kernel similarity

nd Cosine similarity analysis. 

The phylogenetic trees of twenty-four TFs were built by Gaus-

ian Kernel similarity and Cosine similarity analysis ( Fig. 6 a and

). TF proteins and LF proteins were clustered into their corre-

ponding branches. LF proteins were clustered into one branch

nd they were close to TFs of mammals. The TFs from mammals

nd salmonoids clustered into their corresponding branches, re-

pectively. Our analysis displayed no misplaced and misclassified

pecies. However, analysis performed by the ClustalW ( Fig. 7 )

ould not distinguish LFs from TFs. Thus, our method by Gaussian

ernel similarity and Cosine similarity analysis outperformed the

ultiple alignment method by the ClustalW. 

.4. Similarity analysis of 27 AF proteins 

Antifreeze proteins (AFPs) play a vital role in the antifreeze

ffect of overwintering organisms. They have a wide range of ap-

lications in numerous fields, such as improving crop production

nd the quality of frozen foods. 

Here we generated phylogenetic trees by Gaussian Kernel

imilarity and Cosine similarity analysis method ( Fig. 8 ); and by

he ClustalW analysis ( Fig. 9 ) on the twenty-seven AFPs. Gaussian

ernel similarity and Cosine similarity analysis accurately classi-

ed all species ( Fig. 8 ), which outperformed the ClustalW analysis

hat divided the TM group into three groups ( Fig. 9 ). 
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. Conclusions 

In this study, we presented for the first time the spectral radii

f 20 AAs calculation, and a novel 2-D graphical representation

sing spectral radii of 20 AAs. This method offers the advantage

n easy visibility and inspection of similarity/dissimilarity between

roteins, which sets ground for numerical characterizations of

roteins. Furthermore, it avoids loss of information and ensures

he integrity of the information. The proposed graphical repre-

entation method satisfies all requirements of a useful graphical

epresentation proposed in Randi ́c et al. (2010) . 

To characterize the protein sequence numerically, MSR, DSR,

SRT, DFG, DFGT and C f of the sequence were extracted as the

umerical features. The MSR, DSR and DFG features confirmed

he integrity of information in different levels, while the DSRT

nd DFGT reflected dynamics features of protein sequences. In

ddition, fluctuation complexity reflected the non-linear feature

f protein sequence. These features are based on the distributions

f spectral radii and functional groups, and the fluctuation in net

nformation gain of the sequence. 

Finally, we employed Gaussian Kernel similarity and Cosine

imilarity analysis to measure the similarity of protein sequences

sing the feature vector. The method was performed on the

imilarity analysis of protein sequences of four data sets: nine

D5, thirty-five CoVPs, twenty-four TFs and twenty-seven AFPs.

s the features reflected the protein sequence effectively, both

he Gaussian Kernel similarity and Cosine similarity models have

btain satisfying results. Results of nine ND5, thirty-five CoVPs,

wenty-four TFs and twenty-seven AFPs were consistent with the

lustalW method with further improvements. When compared

o other methods, the analysis presented in this study achieved

igher correlation coefficients with the ClustalW for nine ND5,

hich confirmed the efficiency of the proposed approach. The

imulations of nine ND5 and thirty-five CoVPs indicated that the

esults of Gaussian Kernel similarity were to certain extend more

ensitive than that achieved by Cosine similarity analysis. 

In summary, we demonstrated that the proposed features and

imilarity models measured protein sequences efficiently. The

btained analysis was consistent with previously demonstrated

volution patterns. The proposed approach may therefore be

pplied in identification and classification of unknown species

y protein sequences, as well as tracking the source of virus and

esigning drugs for disease therapy. 
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