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Abstract: Biomarker identification is very important to differentiate the grade groups in the histopatho-
logical sections of prostate cancer (PCa). Assessing the cluster of cell nuclei is essential for pathological
investigation. In this study, we present a computer-based method for cluster analyses of cell nu-
clei and performed traditional (i.e., unsupervised method) and modern (i.e., supervised method)
artificial intelligence (AI) techniques for distinguishing the grade groups of PCa. Two datasets on
PCa were collected to carry out this research. Histopathology samples were obtained from whole
slides stained with hematoxylin and eosin (H&E). In this research, state-of-the-art approaches were
proposed for color normalization, cell nuclei segmentation, feature selection, and classification. A
traditional minimum spanning tree (MST) algorithm was employed to identify the clusters and better
capture the proliferation and community structure of cell nuclei. K-medoids clustering and stacked
ensemble machine learning (ML) approaches were used to perform traditional and modern AI-based
classification. The binary and multiclass classification was derived to compare the model quality and
results between the grades of PCa. Furthermore, a comparative analysis was carried out between
traditional and modern AI techniques using different performance metrics (i.e., statistical parameters).
Cluster features of the cell nuclei can be useful information for cancer grading. However, further
validation of cluster analysis is required to accomplish astounding classification results.

Keywords: histopathology; prostate cancer; segmentation; cluster analysis; artificial intelligence;
classification

1. Introduction

Many techniques are used for analysis, color enhancement, segmentation, and classi-
fication of medical images, such as those yielded by magnetic resonance (MR), positron
emission tomography (PET), and microscopic biopsy; many internal bodily structures can
be imaged non-invasively. Computers can be used for image gain, storage, presentation,
and communication. Clinical, biochemical, and pathological images are used to diagnose
and stage PCa; computer scientists are very active in this field. However, the sensitivity and
specificity of the techniques remain controversial [1]. PCa diagnosis requires prostate MR
and microscopic biopsy images. A traditional cancer diagnosis is subjective; pathologists
examine biopsy samples under a microscope. It is difficult to objectively describe tissue
texture, tissue color, and cell morphology.

Despite recent advances, PCa remains a major medical issue among males, being as-
sociated with the overtreatment of inherently benign disease and inadequate treatment of
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metastases [2]. The prostate has a pseudostratified epithelium with three types of terminally
differentiated epithelial cells: luminal, basal, and neuroendocrine [3]. Other cells of the ep-
ithelium include fibroblasts, smooth muscle cells, endothelial cells, immune cells, autonomic
nerve fibers, and associated ganglia [4]. Malignant transformation is a multistage process;
prostatic intraepithelial neoplasia (PIN) triggers localized PCa followed by adenocarcinoma
characterized by local invasion and, finally, metastatic PCa. The most common PCa grad-
ing system is the Gleason system, which has been refined since it was first introduced
in 1974 [5]; the system is widely used to score PCa aggressiveness. However, there are
problems, including inter- and intra-observer variation. In addition, most biopsy samples
are negative [6–8]. Here, we evaluate histopathological images of cancerous tissues. PCa
grading was performed by a pathologist based on structural changes in stained sections.

Computer-based algorithms can perform cluster analyses of cell nuclei; available
methods include traditional MST [9–11]. MST cluster analysis, derived from graph the-
ory, explores nuclear distributions. A tree is used to represent binary relationships; the
connected components constitute a subtree representing an independent cluster. The iden-
tification of cancer cell abnormalities is essential for early cancer detection. Today, ML and
deep learning (DL) algorithms are used for medical image analysis, feature classification,
and pattern recognition. ML algorithms are usually accurate, fast, and customizable. ML
iteration is essential; new data must be received and assimilated. Supervised learning is
commonly used during ML training and testing; a model is trained using labeled data in a
training set, and the knowledge thus acquired is used to evaluate unforeseen labeled data
in a test set [12]. On the other hand, unsupervised learning is not commonly used for the
prediction of the diagnosis of different diseases. It is essential in the real-world environ-
ment and discovers hidden patterns using the unlabeled datasets. Therefore, unsupervised
learning is also a trustworthy method but computationally complex.

In this study, four state-of-the-art approaches were proposed for color normalization,
cell nuclei segmentation, feature selection, and ML classification. Histopathology samples
were collected from two different centers and created two datasets for binary (grade 3 vs.
grade 5) and multiclass (grade 3 vs. grade 4 vs. grade 5) classification. Before we perform
the segmentation, stain normalization and deconvolution techniques were carried out as a
preprocessing step. After stain deconvolution, the image hematoxylin channel was selected for
extracting the cell nuclei tissue components. Furthermore, we used an advanced method (i.e.,
marker-controlled watershed algorithm) to separate the overlapping cell nuclei. Next, we use
an MST algorithm to perform cluster analysis and extract significant information for AI classi-
fication. The cell nuclei clusters were separated, and their features are evaluated heuristically.
Cluster analysis was performed to better capture the proliferation and community structure of
cell nuclei. These methods are making their way into pathology via various computer-aided
detection (CAD) systems to assist pathologic diagnosis. Then, we proposed a majority voting
method by combining filter and wrapper-based techniques for selecting the most significant
features. Finally, we use state-of-the-art algorithms (i.e., stacked ML ensemble and k-medoids
clustering) to perform supervised and unsupervised PCa classification. The performance
metrics used for evaluating the results are accuracy, precision, recall, and F1-score.

The remainder of this paper are as follows: Section 2 presents the related work of the
past study where we discussed different state-of-the-art methods for PCa analysis. Section 3
illustrates the materials and methods of the study where we mentioned the process of data
collection and state-of-the-art techniques used in this study. In Section 4, we presented the
results of AI models and discussed the overall implication of the study. Lastly, the paper is
concluded in Section 5.

2. Related Work

Histopathology image analysis of PCa is quite problematic compared to other cancer
types. Many researchers are still working on it and trying to develop new techniques for
detecting and treating PCa. It is very difficult to analyze PCa under a microscope based on the
Gleason grading system because the tissue pattern, formation of the gland, and distribution of
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cell nuclei is quite similar in some regions (i.e., score 3 and 4) of the whole slide image (WSI).
Most of the existing research performed texture and morphological analysis to differentiate
cancer scoring using histopathology images. Table 1 shows the summary of the significant
papers that used microscopy biopsy tissue images for the analysis of PCa.

Table 1. Summary of some existing papers that performed PCa analysis using histopathology images.

Author Techniques Classification Types Description and Performance

Uthappa et al.,
2019 [13]

CNN-based
texture analysis

Multiclass
(grade 2, 3, 4, and 5)

Developed a hybrid unified deep learning network to grade the PCa
and achieved an accuracy of 98.0%

Khouzani et al.,
2003 [14]

Handcrafted-based
texture analysis

Multiclass
(grade 2, 3, 4, and 5)

Calculated energy and entropy features of multiwavelet coefficients
of the image and used ML classifier to classify each image to the

appropriate grade. They achieved an accuracy of 97.0%

Kwak et al.,
2017 [15]

CNN-based texture and
nuclear architectural analysis

Binary class
(benign and cancer)

The author presented a CNN approach to identify PCa. In addition,
they extracted handcrafted nuclear architecture features and

performed ML classification. The performance of their CNNs (0.95
AUC) was significantly better than that of other ML algorithms

Linkon et al.,
2021 [16]

Different techniques related
to PCa detection and
histopathology image

analysis have been discussed

N/A

The author discussed recent advances in CAD systems using DL for
automatic detection and recognition. In addition, they discussed the
current state and existing techniques as well as unique insights in
PCa detection and described research findings, current limitations,

and future scope for research

Wang et al.,
2020 [17]

Morphological, texture, and
contrastive predictive coding

feature analysis

Binary class
(score 3 + 3 and 3 + 4)

The author proposed a weakly supervised approach for grade
classification in tissue micro-arrays using graph CNN. An accuracy

of 88.6% and an AUC of 0.96 were achieved using their
proposed model

Bhattacharjee
et al., 2019 [18]

Morphological
analysis

Binary class
(benign vs. malignant,
grade 3 vs. grade 4, 5,
and grade 4 vs. grade

5) Multiclass
(benign, grade 3,

grade 4, and grade 5)

The author used histopathology images to perform morphological
analysis of cell nucleus and lumen and carried out multiclass and
binary classification. The best accuracy of 92.5% was achieved for

binary classification (grade 4 vs. grade 5 using support vector
machine classifier

Bhattacharjee
et al., 2020 [19]

Handcrafted and
non-handcrafted feature

analysis using AI techniques

Binary class
(benign vs. malignant)

The author introduced two lightweight CNN models for
histopathology image classification and performed a comparative
analysis with other state-of-the-art models. An accuracy of 94.0%

was achieved using the proposed DL model

Nir et al.,
2018 [20]

Glandular-, nuclear-, and
image-based feature analysis

Binary class
(benign vs. all grades)

and
(grade 3 vs. grade 4, 5)

Proposed some novel features based on intra- and inter-nuclei
properties for classification using ML and DL algorithms and

achieved the best accuracy of 91.6% for benign vs. all grades using
linear discriminant analysis

Ali et al.,
2013 [21]

Morphological and
architectural feature analysis

from cell cluster graph

Binary class
(no recurrence vs.

recurrence)

The author defined cells clusters as a node and constructed a novel
graph called Cell Cluster Graph (CCG). In addition, they extracted

global and local features from the CCG that best capture the
morphology of the tumor. A randomized three-fold cross-validation
was applied via support vector machine classifier and achieved an

accuracy of 83.1%

Kim et al.,
2021 [22]

Texture analysis using DL
and ML techniques

Binary class
(benign vs. malignant)

and
(low- vs. high-grade)

The author used DL (long short-term memory network) and ML
(logistic regression, bagging tree, boosting tree, and support vector

machine) techniques to classify dual-channel tissue features
extracted from hematoxylin and eosin tissue images

The studies in Table 1 confirm the success of the analysis of histopathological images
for the classification of PCa such as benign vs. malignant and low- vs. high-grade cancer. It
has been analyzed from the above-mentioned studies that most of the authors performed
morphological and texture feature analysis for PCa classification. However, it has also
been shown that morphological analysis of cell nuclei is not significant for PCa diagnosis
because the shape and size of the cell nucleus are almost similar in all the grades (i.e.,
grade 3, grade 4, and grade 5), and AI models can produce unsatisfactory results. Therefore,
in the present study, we performed the PCa analysis only based on the cluster features of
the cell nuclei. The features extracted from the clusters are provided in Section 3.2.4.
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3. Materials and Methods
3.1. Data Acquisition

Dataset 1 (grade 3, grade 4, and grade 5 WSIs) was collected from the Yonsei University
Severance Hospital, Korea. WSIs were scanned into a computer at 40× optical magnification
using a 0.3 NA objective, fitted to a C-3000 digital camera (Olympus, Tokyo, Japan) attached
to a BX-51 microscope (Olympus). The tissue samples had been sectioned to a thickness of
4 µm; then, the sections were deparaffinized, rehydrated, and stained with H&E (staining
blue and red, respectively). The WSIs used for this research were acquired from 80 patients.

Dataset 2 (grade 3, grade 4, and grade 5 WSIs) was collected from the Kaggle repository,
available at https://www.kaggle.com/c/prostate-cancer-grade-assessment (accessed on
25 March 2021). The WSIs were analyzed and prepared at Radboud University medical
center. All the slides were scanned using 3DHistech Panoramic Flash II 250 scanner at
20×magnification (pixel resolution 0.48 µm). All cases were retrieved from the pathology
achieves of the Radboud University Medical Center. Patients with a pathologist’s report
between 2012 and 2017 were eligible for inclusion. The WSIs used for this research were
acquired from 60 patients.

A total of 900 H&E-stained patch images of size 512× 512 pixels were generated by tiling
the pathology annotated slides. Furthermore, the acquired samples were divided equally into
three cancer grades (300 grade 3, 300 grade 4, and 300 grade 5). For supervised classification,
the dataset was divided into two subsets: train set (80%) and test set (20%). On the other
hand, unsupervised classification was performed using the whole dataset. Examples of
histopathological images of datasets 1 and 2 are shown in Figure 1. The binary classification
was defined (grade 3 vs. grade 5) as was multiclass classification (grade 3 vs. grade 4 vs.
grade 5). Appendix A, Figures A1–A3 show the illustration of the Gleason grading process.
Each of the grades is assigned according to the Gleason grading system as follows:

• Grade 3: Gleason score 4 + 3 = 7. Distinctly infiltrative margin.
• Grade 4: Gleason score 4 + 4 = 8. Irregular masses of neoplastic glands. Cancer cells

have lost their ability to form glands.
• Grade 5: Gleason score 4 + 5, 5 + 4, or 5 + 5 = 9 or 10. Only occasional gland formation.

Sheets of cancer cells throughout the tissue.
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3.2. Research Pipeline

The patch images of size 512 × 512 pixels were extracted to perform AI classification.
Figure 2 illustrates the entire methodology for AI classification to distinguish between
the grades of PCa. The pipeline plotted below consisted of seven phases, which include
slide tiling, image preprocessing, nuclei segmentation, cluster analysis, feature extraction,
feature selection, and AI classification.
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3.2.1. Image Preprocessing

Our observations on H&E-stained images show that there is a problem of color con-
stancy, and it is a critical issue for segmentation. Therefore, stain normalization represents
a vital step for balancing the color intensity in the histological section. We applied stain
normalization and stain deconvolution techniques as a preprocessing step. To perform
stain normalization, we selected an image from the dataset as a reference image to match
the color intensity with the source images in the dataset. Therefore, the stain normalization
approach was applied by transforming both the source and reference image to the LAB
color space, and the mean and standard deviation of the reference image are harmonized
to that of the source image. Figure 3 shows the source, reference, and normalized im-
ages. Based on the statistics of the source and reference images, each image channel was
normalized. However, to improve the quality of the images, the computation process of
stain normalization has been slightly modified from the original equations and can be
expressed as:

NormLmap =

((
Lsrc − Lsrc

)
×
(

L̂tar

L̂src

))
+
(

Lsrc + Ltar
)
/2 (1)
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NormAmap =

((
Asrc − Asrc

)
×
(

Âtar

Âsrc

))
+
(

Asrc + Atar
)
/2 (2)

NormBmap =

((
Bsrc − Bsrc

)
×
(

B̂tar

B̂src

))
+
(

Bsrc + Btar
)
/2 (3)

Normmap = concateate
(

NormLmap, NormAmap, NormBmap
)

(4)

where L, A, and B are the channel means and L̂, Â, and B̂ are the channel standard deviation,
src is the source image, tar is the target image, and Normmap is the normalized LAB image,
which was further converted to RGB color space. The end part of Equations (1)–(3) has
been modified from the original equations [23].
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On the other hand, stain deconvolution [24] was applied to transform the RGB color
image into stain color spaces (i.e., H&E). Examples of separated stain images are shown in
Figure 4. All color values on the normalized image IN are converted to their corresponding
optical density (OD) values and the computation of OD for each (Red, Green, and Blue)
channel can be expressed as follows:

IO = 255
OD = − log

(
IN
IO

) (5)

where IO is the background brightfield (i.e., the intensity of light entering the image).
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The stain matrix MH,E =

 Red Green Blue
0.587 0.754 0.294
0.136 0.833 0.536

 was estimated using the Qupath

open-source software based on the reference image used for stain normalization. Here, MH
is the hematoxylin stain matrix [0.587 0.754 0.294] and ME is the Eosin stain matrix [0.136
0.833 0.536]. The normalized image is transformed into an optical density space to deter-
mine the concentration of the individual stain in RGB channels. Furthermore, estimated
stain vector channels were recombined to obtain the stained images. The computation
process for determining the stain concentration and recombining the stain vector channels
can be expressed as:

Stain ConcentrationH,E = OD/MH,E (6)

Stain ImageH = IO × e(Stain ConcentrationH)×(−MH) (7)

Stain ImageE = IO × e(Stain ConcentrationE)×(−ME). (8)

3.2.2. Nuclear Segmentation of Cancer Cells

To perform cell nuclear segmentation, image preprocessing was carried out as dis-
cussed in the previous section. The hematoxylin-stained image separated from the normal-
ized image was converted to HSI (i.e., Hue—H, Saturation—S, and Intensity—I) color space.
Furthermore, the image of the S-channel (8-bit/pixel) was selected for the segmentation
purpose because the cell nucleus is more apparent. Next, the contrast adjustment (i.e.,
specifying the contrast limit) was performed to remove the inconstancy intensity from the
background. Then, the global threshold method was applied to the saturation-adjusted
image to convert it into a pure binary image (1-bit/pixel). Finally, the marker-controlled
watershed algorithm was applied to separate the overlapping nuclei [18,25–29]. After
separating the touching nuclei, some artifacts and objects were rejected (considered as
noise), and morphological operations (i.e., closing and opening) were applied to remove
the peripheral brightness and smooth the membrane boundary of the cell nucleus. Figure 5
shows the complete process for nuclear segmentation of cancer cells.
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Figure 5. The complete process for nuclear segmentation of cancer cells. (a) Hematoxylin channel
extracted after performing stain deconvolution. (b) HSI color space converted from (a). (c) Satura-
tion channel extracted from (b). (d) Contrast adjusted image extracted from (c). (e) Binary image
after applying global thresholding on (d). (f) Nuclei segmentation after applying the watershed
algorithm on (e). Some small objects and artifacts were removed before and after applying the
watershed algorithm.

3.2.3. Cluster Analysis

This study performed an intra- and inter-cluster analysis using an MST algorithm that
identifies inconsistent edges between the clusters. This is a graph-based method that creates
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a network by connecting m points in n dimensions. Here, we used an MST for cluster
analysis of cell nuclei in the histological section. In the MST, the sum of the edge weights is
less than or equal to the sum of the edge weights of every other spanning tree [15,30,31].
An MST sub-graph traverses all vertices of the full graph in a cycle-free manner, yielding
the minimum sum of weights of all included edges, as shown in Figure 6.
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Figure 6. Examples of MST cluster analysis. (a) An MST is based on the minimum distances between
vertex coordinates. The red dashed lines indicate the removal of inconsistent edges. (b) An intra-
cluster MST was obtained after removal of the nine longest edges from (a); the red circles indicate
inter- and intra-cluster similarity. (c) The inter-cluster MST was obtained from (b).

The MST usefully identifies nuclear clusters; the centroids connecting all nuclei create
a graph that can be used to extract different kinds of features. Each center point of the cell
nucleus, called a “vertex”, is connected to at least one other through a line segment, which
is called an “edge”. We used the Euclidean minimum distance algorithm to measure the
length between the two vertices its joins and construct the MST graph. The edges (distances)
are sorted in ascending order and then listed. The edges pass through all vertices; if an edge
connects a vertex coordinate that was not linked previously, that edge will be included in
the tree [32,33]. To create separate vertices (nuclei), we used a maximum distance/weight
threshold of 10 pixels. Any longer edge distance was considered inconsistent and thus
removed, as shown in Figure 6a. If there are K vertices, the complete tree has (K − 1) edges.
As shown in Figure 6b, the graph contains 10 groups of clusters formed by cutting links
longer than a threshold value.

Next, we performed inter- and intra-cluster analyses; we computed the distances
between objects in different clusters and objects in the same clusters. Cluster analysis
does not require a specific algorithm; several methods are explored on a case-by-case basis
to obtain the desired output. It is important to efficiently locate the clusters. Inter- and
intra-cluster similarity are vital for clustering, as shown in Figure 6b,c, respectively. Cluster
analysis identifies nuclear patterns and community structure in the histological sections
and identifies similar groups in datasets. Data are clustered based on their similarity [34,35].
The Euclidean distance measure used to compute the distance between two data points can
be expressed as:

diste(x1, x2) =

√
∑(x1 − x2)

2 (9)

distinter(C1, C2) =

[{(
1
|C1| ∑

x1∈c1

x1

)
,

(
1
|C2| ∑

x2∈c2

x2

)}
diste(x1, x2)

]
(10)
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distintra(C1) =

[(
1
|C1| ∑

x1,x2∈c1

x1, x2

)
diste(x1, x2)

]
(11)

where diste(x1, x2) is the Euclidean distance, x1, x2 are the centroid points, and distinter(C1, C2)
and distintra(C1) are the inter- and intra-cluster distances, respectively.

Figure 7 shows the flowchart of MST construction and the detailed algorithm is
composed of the following steps:

1. Create an adjacent grid matrix using the input image.
2. Calculate the total grid numbers in the rows and columns.
3. Generate a graph from an adjacent matrix, which must contain the minimum and

maximum weights of all vertices.
4. Create an MST-set to track all vertices.
5. Find a minimum weight for all vertices in the input graph.
6. Assign that weight to the first vertex.
7. As the MST-set does not include all vertices:

a. Select a vertex u not present in the MST-set that has the minimum weight;
b. Add u to the MST-set;
c. Update the minimum weights of all vertices adjacent to u by iterating through

all adjacent vertices. For every adjacent vertex v, if the weight of edge u-v is less
than the previous key value of v, update that minimum weight;

8. Iterate step 7 until the MST is complete.
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3.2.4. Feature Extraction and Selection

We now discuss morphological and distance-based features extracted from histological
sections. Both morphological and distance-based features were used for supervised and
unsupervised classification using traditional and modern AI techniques. The features
were extracted as numbers based on the area and distance. A total of 26 features were
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extracted, which include the total intra-cluster total MST distance, total intra-cluster nucleus
to nucleus maximum distance, inter-cluster centroid to centroid total distance, inter-cluster
total MST distance, number of clusters, total intra-cluster maximum MST distance, average
intra-cluster nucleus to nucleus minimum distance, average intra-cluster nucleus to nucleus
maximum distance, average intra-cluster maximum MST distance, average cluster area,
total intra-cluster nucleus to nucleus total distance, total intra-cluster minimum MST
distance, total intra-cluster nucleus to nucleus minimum distance, inter-cluster maximum
MST distance, average intra-cluster total MST distance, average intra-cluster minimum
MST distance, total cluster area, inter-cluster average MST distance, average intra-cluster
nucleus to nucleus average distance, inter-cluster centroid to centroid average distance,
minimum area of a cluster, average intra-cluster nucleus to nucleus total distance, inter-
cluster centroid to centroid minimum distance, inter-cluster centroid to centroid maximum
distance, maximum area of a cluster, and inter-cluster minimum MST distance.

We checked the significance of each feature; this is important, because irrelevant
features reduce model performance and lead to overfitting. The elimination of irrelevant
features reduces model complexity and makes it easier to interpret. In addition, it enables
the model to train faster and improves its performance. In this study, the combination
of filter (Chi-Square, ANOVA, Information Gain, and Fisher Score) [36–38] and wrapper
(recursive feature elimination, permutation importance, and Boruta) [39–41] methods were
used to select the significant features. Filter methods use statistical techniques to evaluate
the relationship between each input variable and the target variable, whereas the wrapper
method uses machine learning algorithms and tries to fit on a given dataset and selects the
combination of features that gives the optimal results. However, the best 16 features out of
26 were selected based on the majority votes. Here, we have set “minimum votes = 4” as
a threshold, which signifies that the features to be selected must have at least a total of 4
votes from the seven feature selection methods, and below a total of 4 votes will be rejected,
as shown in Table 2.

Table 2. Feature selection based on majority voting. The most significant features were selected based
on majority “True”. True: Selected, False: Not selected, χ2: Chi-Square Test, FS: Fisher Score, IG:
Information Gain, RFE: Recursive Feature Elimination, and PI: Permutation Importance.

Features χ2 FS IG ANOVA RFE PI Boruta Votes Select/Reject

total intra-cluster total MST distance True True True True True True True 7 Select
total intra-cluster nucleus to nucleus

maximum distance True True True True True True True 7 Select

inter-cluster centroid to centroid total
distance True False True True True True True 6 Select

inter-cluster total MST distance True True True True True False True 6 Select
number of clusters True True True True True False True 6 Select

total intra-cluster maximum MST
distance True True True True True False True 6 Select

average intra-cluster nucleus to nucleus
minimum distance False True True True True False True 5 Select

average intra-cluster nucleus to nucleus
maximum distance False True True True True False True 5 Select

average intra-cluster maximum MST
distance False True True True True False True 5 Select

average cluster area True True False False True True True 5 Select
total intra-cluster nucleus to nucleus

total distance True False False True True True True 5 Select

total intra-cluster minimum MST
distance True True True True False False True 5 Select

total intra-cluster nucleus to nucleus
minimum distance True True True True False False True 5 Select

inter-cluster maximum MST distance True True False False True False True 4 Select
average intra-cluster total MST distance False True True False True False True 4 Select

average intra-cluster minimum MST
distance False True True True False False True 4 Select
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Table 2. Cont.

Features χ2 FS IG ANOVA RFE PI Boruta Votes Select/Reject

total cluster area True False False False False True True 3 Reject
inter-cluster average MST distance False False True True False False True 3 Reject

average intra-cluster nucleus to nucleus
average distance False False True True False False True 3 Reject

inter-cluster centroid to centroid average
distance False True False False True False False 2 Reject

minimum area of cluster True False False False True False False 2 Reject
average intra-cluster nucleus to nucleus

total distance True False False False False False True 2 Reject

inter-cluster centroid to centroid
minimum distance False False False False False False True 1 Reject

inter-cluster centroid to centroid
maximum distance False False False False False False True 1 Reject

maximum area of cluster True False False False False False False 1 Reject
inter-cluster minimum MST distance False False False False False False True 1 Reject

3.2.5. AI Classification

After performing feature extraction and selection, modern and traditional AI tech-
niques were used for supervised and unsupervised classification, respectively. For su-
pervised classification, we used ML algorithms, namely k-NN [42], RF [43], GBM [44],
XGBoost [45], and LR [46]. On the other hand, for unsupervised classification, we used a
traditional k-medoids clustering algorithm [47]. We subjected each model of supervised
learning to five-fold cross-validation (CV); the training data were divided into five groups,
and the accuracy was recorded after five trials. Similarly, the testing was also performed
based on a five-fold technique. This approach is useful for assessing model performance
and identifying hyperparameters that enhance accuracy and reduce error [48,49]. The
histological grades were classified as binary and multiclass to compare the performance of
the AI techniques.

The data were standardized across the entire dataset before classification. Every
feature has a magnitude and standardized unit. Occasionally, feature scaling is required;
here, we used the standard normal distribution for standard scalar scaling:

xstandardized =
x(i) − Avg

[
x(i)
]

√
Var

[
x(i)
] (12)

where x(i) is the feature values, Avg
[
x(i)
]

is the mean (µ) values, and
√

Var
[
x(i)
]

is the
standard deviations (σ) values.

We proposed an ensemble model for supervised classification, and it was designed
by stacking five different machine learning algorithms. Figure 8 shows how four different
classifiers get trained and tested. The initial predictions of all four base classifiers get stacked
and are used as features to train and test the meta-clasifier, which makes the final prediction.
The meta-classifier provides a smooth interpretation of the initial predictions made by the
base classifiers. This ensemble model is developed for the higher predictive performance.
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4. Experimental Results and Discussion

We performed qualitative and quantitative analyses to extract meaningful features and
classify those using AI algorithms. Both multiclass and binary classifications were carried
out to differentiate PCa grading. We subjected 900 images to preprocessing, segmentation,
cluster analysis, feature extraction, and classification. The data were equally distributed
among the three grades; the analyses were separate and independent. To perform super-
vised classification using modern AI techniques, we divided the dataset into training and
testing datasets according to an 8:2 ratio. On the other hand, we used the whole dataset for
unsupervised classification using a traditional AI technique. Table 3 shows the comparative
analysis between supervised and unsupervised classification, and the results are based on
the test dataset. Furthermore, the test and whole datasets were separated into five-split
while testing our ensemble supervised model and performing k-medoids unsupervised
classification for determining model generalizability. We used MATLAB (ver. R2020b;
MathWorks, Natick, MA, USA) and Python programming language for stain normalization,
nuclei segmentation, MST-based cluster analysis, feature extraction, and AI-based classifi-
cation. The equations used for computing the performance metrics/statistical parameters
can be expressed as:

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
× 100 (13)

Precision =
(TP)

(TP + FP)
× 100 (14)

Recall =
(TP)

(TP + FN)
× 100 (15)

F1− score =
2× (Precision× Recall)
(Precision + Recall)

(16)

where TP is a true positive (correct classification of positive samples), TN is a true negative
(correct classification of negative samples), FP is a false positive (incorrect classification of
positive samples), and FN is a false negative (incorrect classification of negative samples).
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Table 3. Comparative analysis of the performance of supervised and unsupervised classification
using test and whole datasets, respectively. A five-fold technique was used for both supervised and
unsupervised classification. Split 1 and 2 from supervised and split 2 from unsupervised shows the
best results marked in bold.

(A) Supervised Ensemble Classification—Modern AI Techniques

Multiclass Classification (Grade 3 vs. Grade 4 vs. Grade 5)

Test Split Accuracy Precision Recall F1-Score

Split 1 97.2% 97.3% 97.3% 97.3%
Split 2 91.7% 92.0% 91.7% 91.7%
Split 3 97.2% 97.3% 97.3% 97.3%
Split 4 94.4% 94.7% 94.7% 94.7%
Split 5 91.7% 91.7% 91.7% 91.7%

Average Split 94.4% 94.7% 94.3% 94.7%

Binary Classification (Grade 3 vs. Grade 5)

Test Split Accuracy Precision Recall F1-Score

Split 1 91.7% 91.6 0.916 0.916
Split 2 100% 100% 100% 100%
Split 3 95.8% 96.2% 95.8% 95.9%
Split 4 95.8% 96.2% 95.8% 95.9%
Split 5 91.7% 92.8% 91.6% 92.2%

Average Split 95.0% 95.0% 95.0% 95.0%

(B) K-Medoids Unsupervised Classification—Traditional AI Technique

Multiclass Classification (Grade 3 vs. Grade 4 vs. Grade 5)

Data Split Accuracy Precision Recall F1-Score

Split 1 86.1% 87.0% 86.0% 86.3%
Split 2 92.3% 92.7% 92.0% 92.3%
Split 3 86.7% 88.3% 86.7% 87.0%
Split 4 88.3% 88.3% 88.3% 88.0%
Split 5 91.6% 91.7% 91.7% 91.7%

Average Split 88.5% 89.7% 88.3% 88.7%

Binary Classification (Grade 3 vs. Grade 5)

Data Split Accuracy Precision Recall F1-Score

Split 1 81.7% 82.0% 81.5% 81.5%
Split 2 96.7% 96.5% 96.5% 97.0%
Split 3 89.2% 89.5% 89.0% 89.0%
Split 4 86.7% 87.5% 86.5% 86.5%
Split 5 93.3% 93.5% 93.5% 93.5%

Average Split 88.3% 88.5% 88.5% 88.5%

From the obtained results, we have analyzed that the supervised ensemble classi-
fication using modern AI techniques outperformed unsupervised classification using a
traditional AI technique. However, both supervised and unsupervised performed well
and achieved astounding results. Regarding multiclass classification using the supervised
ensemble technique, the model performed the best at test split 1 and achieved an overall
accuracy, precision, recall, and f1-score of 97.2%, 97.3%, 97.3%, and 97.3%, respectively.
Moreover, in binary classification using the supervised technique, the model achieved
amazing results of 100% for all the performance measures at test split 2. In contrast, for
unsupervised multiclass classification, the k-medoids algorithm performed admirably at
data split 2 and achieved an overall accuracy, precision, recall, and f1-score of 92.5%, 92.7%,
92.0%, and 92.3%, respectively. Likewise, in binary classification, the k-medoids algorithm
performed exceptionally at data split 2 and achieved surprising results (i.e., accuracy: 96.7%,
precision: 96.5%, recall: 96.5%, and f1-score: 97.0%). Figure 9 shows the confusion matrices
generated to evaluate the performance of the supervised and unsupervised classification,
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and the results are based on the test dataset. We present the confusion matrices of both
multiclass and binary classifications and show data that were correctly and erroneously
classified during testing the ensemble model and unsupervised learning. In addition, we
can observe from the confusion matrices that the high cancer grade (i.e., grade 5) was per-
fectly and accurately classified using supervised and unsupervised techniques. Figure 10
shows the bar graph of the accuracy score of each grade separately, and the scores were
obtained from the confusion matrices, as shown in Figure 9.
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Figure 9. Confusion matrices of the supervised and unsupervised classification using test and
whole datasets, respectively. (a,b) Confusion matrices of multiclass and binary classification using
supervised ensemble technique based upon the test split 1 and 2 in Table 3A, respectively. (c,d)
Confusion matrices of multiclass and binary classification using an unsupervised technique based
upon the data split 2, respectively.
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class classification. (b) Binary classification. The performance of each PCa grade was obtained from
the confusion matrices.
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The current study was not planned using clinical data; instead, we used image data
of PCa. A total of 900 microscopic biopsy samples (i.e., 300 of grade 3, 300 of grade 4,
and 300 of grade 5) were selected in the present study. The data samples were distributed
equally among three grade groups of PCa, and therefore, our dataset had no issue with class
imbalance. For ML-based supervised ensemble classification, the dataset was separated
into two parts for training (720 data samples) and testing (180 data samples) according
to an 8:2 ratio. On the other hand, the whole dataset was utilized for unsupervised
classification instead of divided into training and testing. In the view of feature reduction,
after performing a majority voting approach using statistical and ML techniques, the
16 best features were selected based on optimum performance and 10 were rejected, as
shown in Table 2. Therefore, the final selected features were used for AI classification
and differentiating between the grades of PCa. Figure 11 shows the bar graph of the best
performance scores of supervised and unsupervised classifications.

1 
 

 
Figure 11. Bar chart of the overall performance scores of supervised and unsupervised classifications.

There are many feature selection methods, and it is quite difficult to select the best
one. In addition, we need to be very concerned about the features that are being fed to the
model because ML follows the rules of “garbage in” and “garbage out”. We know that
irrelevant features can increase computational cost and decrease the performance of the
models. However, it is challenging to identify which method is the best for our dataset,
and each method has a different way to select significant features. Therefore, the majority
voting approach was proposed to solve this problem.

The MST cluster analysis method was applied on the PCa tissue samples of dataset 1
and dataset 2, and the visualization results of intra- and inter-cluster MST are shown
in Figure 12. From the following figure, we can analyze that the structure and shape
of the clusters in each grade are different from each other. It is quite challenging for
researchers and doctors to analyze the microscopic biopsy images of PCa and identify
suitable biomarkers compared to other common cancers.
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Figure 12. The visualization of intra- and inter-cluster MST graphs. (a–c) The intra-cluster MST of
grade 3, grade 4, and grade 5, respectively. (d–f) The inter-cluster MST was generated from a, b, and
c, respectively. The dotted red circle indicates the cluster of cell nuclei. Different color lines in a-c and
d-f indicate intra- and inter-clusters, respectively.

The gold standard for the diagnosis of prostate cancer is a pathologist’s evaluation
of prostate tissue. To potentially assist pathologists, DL-based cancer detection systems
have been developed. Many of the state-of-the-art models are patch-based convolutional
neural networks. Patch-based systems typically require detailed, pixel-level annotations for
effective training. However, such annotations are seldom readily available in contrast to the
clinical reports of pathologists, which contain slide-level labels. Our study sliced annotated
and graded images from the pathologist, and we use an MST algorithm to perform cluster
analysis and extract significant information for AI classification. The proliferation and
cluster structure of cell nuclei, as shown in Appendix A, Figure A4 (Gleason pattern 3),
Figure A5 (Gleason pattern 4), and Figure A6 (Gleason pattern 5), will help the pathologist
to identify, classify, and grade more precisely the Gleason score assignment in the light of
heterogeneity and variability.

In this era, deep learning-based algorithms are mostly used for cancer image analysis
and classification. However, in this paper, we used traditional image processing algorithms
to analyze PCa biopsy images and performed classification using modern and traditional
AI techniques. In addition, we compared the performance of our proposed approach with
the other state-of-the-art methods, as shown in Table 4.

The limitations of our study are as follows:

• The size of the image datasets was too small to perform cluster analysis and apply
deep learning-based algorithms, such as graph convolution neural network (GCNN)
and LSTM network, and the study could be improved by increasing the data samples.

• Cell nuclei segmentation using traditional-based algorithms is a major issue, but
we can improve this problem gradually by performing cell-level analysis applying
different state-of-the-art methods.

• We know that unsupervised classification is very important in the real-world environ-
ment, the classifiers used in our study performed well but did not achieve astounding
results compared to supervised classification. Therefore, we can improve this problem
by analyzing the feature dissimilarities between the PCa grades.
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Table 4. Comparison with other state-of-the-art approaches. AUC: Area under the curve, DL: Deep
learning, ML: Machine learning.

Authors Methods Classification Type Performance

Uthappa et al., 2019 [13] Hybrid DL Multiclass (grade 2, 3, 4, and 5) 98.0% (Accuracy)

Khouzani et al., 2003 [14] ML Multiclass (grade 2, 3, 4, and 5) 97.0% (Accuracy)

Kwak et al., 2017 [15] CNN Binary (benign and cancer) 0.95 (AUC)

Wang et al., 2020 [16] Graph CNN Binary (score 3 + 3 and 3 + 4) 88.6% (Accuracy)

Bhattacharjee et al., 2019 [18] ML Binary

benign vs. malignant 88.7% (Accuracy)

grade 3 vs. grade 4, 5 85.0% (Accuracy)

grade 4 vs. grade 5 92.5% (Accuracy)

Bhattacharjee et al., 2020 [19] DL Binary (benign vs. malignant) 94.0% (Accuracy)

Nir et al., 2018 [20] ML Binary
benign vs. all grades 88.5% (Accuracy)

grade 3 vs. grade 4, 5 73.8% (Accuracy)

Ali et al., 2013 [21] ML Binary (no recurrence vs. recurrence) 83.1% (Accuracy)

Kim et al., 2021 [22] DL Binary
benign vs. malignant 98.6% (Accuracy)

low- vs. high-grade 93.6% (Accuracy)

Proposed

ML
Binary (Split 2) grade 3 vs. grade 5 100% (Accuracy)

Multiclass (Split 1) grade 3 vs. grade 4 vs. grade 5 97.2% (Accuracy)

K-Medoids Clustering Binary (Split 2) grade 3 vs. grade 5 96.7% (Accuracy)

Multiclass (Split 2) grade 3 vs. grade 4 vs. grade 5 92.3% (Accuracy)

5. Conclusions

In the paper, we focused principally on the cluster features of nuclei in tissue images,
which facilitate cancer grading. Two-dimensional tissue images stained with H&E were
subjected to cluster shape and size analyses. The distribution of cell nuclei and the shape
and size of the clusters have changed as the cancer grade progressed. We developed
multiple methods for histopathological image analysis (i.e., stain normalization, cell nuclei
segmentation, cluster analysis, feature selection, and classification). The majority voting and
stacking-based ensemble techniques are proposed for feature selection and classification,
respectively. All the methods were executed successfully and achieved promising results.
Cell-level analysis in the field of diagnostic cytopathology is important to analyze and
differentiate the clusters of cell nuclei in each cancer grade. Although we performed several
types of research, many challenges remain.

In conclusion, this research contributes useful information about the proliferation and
community structure of cell nuclei that exist in the histological sections of PCa. Although we
used several state-of-the-art methods and achieved astounding results, in-depth research is
required for the segmentation and cluster analysis of cell nuclei using other state-of-the-art
algorithms. Therefore, to overcome the challenges in the field of medical image analysis,
we should think beyond the borderline. In the future, we will update this research work by
performing cluster-based graph convolution neural network (GCNN) classification and
apply our approach to other types of cancers.
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Appendix A

The pathology annotated WSIs used in this research to analyze the pattern and com-
munity structure of cell nuclei in grades 3, 4, and 5, shown in Figures A1–A3, respectively.
The cluster analysis was performed successfully on histological images of PCa. For visu-
alization of the community structure of cell nuclei, we plot the clusters in the annotated
regions of grade 3, grade 4, and grade 5 in WSIs, shown in Figures A4–A6, respectively.
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