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Abstract
There are two key requirements for medical lesion image super-resolution reconstruction in intelligent healthcare systems:

clarity and reality. Because only clear and real super-resolution medical images can effectively help doctors observe the

lesions of the disease. The existing super-resolution methods based on pixel space optimization often lack high-frequency

details which result in blurred detail features and unclear visual perception. Also, the super-resolution methods based on

feature space optimization usually have artifacts or structural deformation in the generated image. This paper proposes a

novel pyramidal feature multi-distillation network for super-resolution reconstruction of medical images in intelligent

healthcare systems. Firstly, we design a multi-distillation block that combines pyramidal convolution and shallow residual

block. Secondly, we construct a two-branch super-resolution network to optimize the visual perception quality of the super-

resolution branch by fusing the information of the gradient map branch. Finally, we combine contextual loss and L1 loss in

the gradient map branch to optimize the quality of visual perception and design the information entropy contrast-aware

channel attention to give different weights to the feature map. Besides, we use an arbitrary scale upsampler to achieve

super-resolution reconstruction at any scale factor. The experimental results show that the proposed super-resolution

reconstruction method achieves superior performance compared to other methods in this work.
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1 Introduction

With the development of deep learning and the internet of

things (IoT), the increase in visualization data, and the

improvement of computing power, medical science and

technology are coming together to provide better health-

care services. In IoT-based intelligent healthcare systems,

more than 90% of medical data are medical images, mainly

including X-ray imaging (X-CT), magnetic resonance

imaging (MRI), nuclear medicine imaging (NMI), and

ultrasound imaging (UI). Medical imaging data have

become an important basis for doctors to diagnose diseases.

The use of deep learning technology to analyze and process

medical images can assist doctors in qualitative and even

quantitative analysis of lesions in medical image recon-

struction, automatic marking, recognition, and annotation,

thereby effectively improving the accuracy and reliability

of medical diagnosis [1, 2]. It is of great significance to

alleviate the scarcity and uneven distribution of medical

resources. Intelligent healthcare systems based on deep

learning and IoT have been applied in related fields [3, 4].

For example, Philips’ OncoSuite, an application program

for intelligent tumor interventional therapy, can optimize

tumor focus display, guide catheter placement, treatment,

and efficacy evaluation, and other treatment links, making

tumor interventional therapy more rational and standard-

ized. Huawei’s artificial intelligence medical image
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analysis technology can assist doctors in cervical cancer

screening, stroke segmentation, and automatic generation

of plain film diagnostic reports, improving the efficiency

and accuracy of disease diagnosis. In 2019, Nature Medi-

cine published research from Guangzhou Medical

University and the University of California on the imple-

mentation status and future development of AI technology

in the medical and health field. It is believed that medical

imaging-based radiology, pathology, ophthalmology, and

dermatology combining computer vision technology to

achieve better automatic analysis or diagnosis prediction

will be the first clinical field to realize the transformation of

AI technology [5, 6]. In response to COVID-19, Huawei

has developed a telemedicine platform, which can not only

improve the efficiency and effectiveness of diagnosis, but

also effectively reduce the risk of infection through remote

online consultations with experts. The platform was

deployed in Thailand in March 2020 to help Thai people

fight COVID-19. Intelligent healthcare systems based on

deep learning and IoT require high-resolution (HR) medi-

cal images to assist diagnosis. However, interference from

equipment technology, hardware cost, network bandwidth,

shooting environment, and human factors, some medical

images have low-resolution (LR). LR medical images lack

high-frequency detailed information, and it is difficult to

identify lesions, which is not conducive to assisting doctors

in diagnosing diseases. Therefore, we study the super-res-

olution (SR) method based on medical images to restore

LR medical images to HR images with rich high-frequency

details and clear visual perception.

SR technology reconstructs the corresponding HR

image based on the LR image, which is widely used in

medical diagnosis, satellite communications, and other

fields [7]. Traditional SR methods are mostly based on

interpolation or example-based methods. The SR images

reconstructed by these methods have a serious loss of edge

and texture information and blurred visual perception. The

Chinese University of Hong Kong used convolutional

neural networks in SR for the first time and reconstructed

SR images by constructing a three-layer neural network

model [8–10]. SR convolutional neural networks (SRCNN)

surpass traditional SR methods in reconstruction quality

and efficiency. Enhanced deep super-resolution network

(EDSR) introduces a residual structure to enhance the

depth of the SR network level, which effectively improves

the quality of SR reconstruction. Residual feature aggre-

gation network for image super-resolution (RFASR) uses

the hierarchical features on the residual branch to enhance

the quality of SR reconstruction. SRCNN, EDSR, and

RFASR are SR methods based on pixel space optimization,

and the reconstructed SR image often lacks high-frequency

information, resulting in unclear visual perception. To

improve the quality of visual perception, Twitter has

applied generative adversarial networks (GAN) to solve the

super-resolution problem [11], and proposed the super-

resolution using a generative adversarial network

(SRGAN). SRGAN uses content and adversarial loss to

improve the realism of the restored picture. Enhanced

SRGAN (ESRGAN) further improves the SR image quality

by introducing the relativistic average discriminator,

improving the network structure, and optimizing the loss

function, and obtaining a better visual quality on the more

realistic and natural texture [12]. However, these SR

methods lack a comprehensive consideration of visual

perception quality and image structure distortion, do not

meet the requirements of clear and true medical image SR,

and are not suitable for direct use in medical image SR.

Therefore, this paper studies the SR method based on

medical images.

To ensure that the medical images in the IoT-based

intelligent healthcare system are clear and realistic, and can

effectively assist doctors in diagnosing diseases. We pro-

pose a realistic medical image super-resolution (RMISR)

method based on a pyramidal feature multiple distillation

network. First, we constructed a novel pyramidal feature

multi-distillation block (PFMDB). PFMDB gradually

extracts features through cascading shallow residual blocks

(SRBs), and uses pyramidal blocks (PYBs) to distill and

extract refined features while expanding the receptive field.

Second, we use PFMDB to build a lightweight SR network

as a baseline model. Finally, on the basis of the baseline

model, we increase the Laplacian gradient map branch to

improve the visual perception quality of the SR image

while ensuring the authenticity of the image structure. The

innovations of this paper include the following: (1) A

realistic medical image SR method based on pyramid

feature multiple distillations is proposed, and a novel

pyramid feature distillation block is designed, which can

distill and extract refined features to improve medical

image SR quality. (2) Based on the traditional digital image

Laplacian operator, a two-branch SR network (SR branch

and Laplacian gradient map branch) is designed, which can

integrate the information of the Laplacian gradient map

branch to ensure the real structure and improve the visual

perception quality of the SR image. (3) We propose to use

the contextual loss to optimize the high-frequency infor-

mation of medical SR images in the Laplacian gradient

map branch, use information entropy contrast-aware

channel attention (ICCA) to assign different weights to the

feature maps. (4) We propose to use two upsamplers in

RMISR (sub-pixel upsampler and meta upsampler) and use

an arbitrary scale upsampler to solve the problem of

medical images requiring any multiple SR.

We discuss the related work of SR in Sect. 2. In Sect. 3,

we define the SR process and baseline model of RMISR

and describe in detail the medical image SR method
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proposed in this paper in Sect. 4. Finally, we verify the

effectiveness of RMISR through experiments in Sect. 5

and conclude in Sect. 6.

2 Related works

Image SR technology can recover the corresponding HR

image from one or a series of related LR images [13, 14].

When the pathological part is very small (such as retinal

images and coronary artery CT), or the resolution of

medical images is low due to hardware equipment, shoot-

ing environment and other factors, medical image pro-

cessing based on SR can reconstruct HR distillation help

doctors clearly observe the lesion in intelligent healthcare

systems [15]. The early SR methods were mostly based on

interpolation, such as nearest-neighbor interpolation,

bilinear interpolation, bicubic interpolation. The interpo-

lation method uses the pixels around the sampling point to

restore the target pixel. The bicubic interpolation method

uses the gray values of 16 pixels around the sampling point

for cubic interpolation and is often used to simulate the

degradation process of HR images. Bicubic downsamples

HR images, obtains corresponding LR images, and con-

structs pairs of images for training and testing of SR

models based on deep learning. Before deep learning

technology is applied to SR reconstruction, the most

advanced SR methods are based on examples, such as

sparse representation methods, which establish the map-

ping relationship between LR and SR images by learning

the sparse association between image blocks [8]. The

example-based SR method requires more preprocessing,

which leads to low efficiency, and the nonlinear mapping

from LR to high resolution is not optimized enough, which

makes the effect in the non-uniform grayscale area of the

SR image poor. Moreover, the reconstructed SR image has

blurred visual perception and is not suitable for medical

image SR.

The SR method based on a deep convolutional neural

network can obtain a larger receptive field, learn more

high-frequency detail information, and restore higher-

quality SR images [16]. However, SRCNN did not achieve

better results after increasing the number of network layers.

The residual neural network can use the shortcut connec-

tion to directly connect the input LR image ILR to the

output HR image ISR to achieve identity mapping. The SR

model uses the residual network as the backbone network,

which can increase the number of network layers while

ensuring the convergence performance of the model. The

SR methods super-resolution using very deep convolu-

tional networks (VDSR) and EDSR proposed by Seoul

National University in South Korea are both SR models

based on deep residual networks [17–19]. Liu Jie et al.

proposed a residual feature aggregation network for image

SR. They used a novel residual feature aggregation

framework and enhanced spatial attention block and made

full use of the layered features on the residual branches to

improve the quality of SR reconstruction [20]. These

methods have improved the objective evaluation indicators

of SR (PSNR, SSIM) and achieved higher quality recon-

struction results. However, VDSR, EDSR, RFASR and

other pixel-based SR methods neglected visual perception

when optimizing PSNR and SSIM, resulting in SR images

that were too smooth. The SR method based on GAN can

generate HR images with clear visual perception [21].

Ledig et al. [11] proposed a SR method based on genera-

tive adversarial network SRGAN, which used content loss

and adversarial loss to improve the visual perception

quality of generated pictures, and achieved good results.

Self-Supervised photo upsampling via latent space explo-

ration of generative models (PULSE) traverses the HR

natural image manifold in a self-supervised manner, sear-

ches for images reduced to the original LR image. And it

uses the characteristics of high-dimensional gaussian

functions to limit the search space to ensure the authen-

ticity of the output to generate SR images with clear visual

perception [22]. Also, DBPN, a SR method based on the

deep back-projection network, and Meta-SR, a SR method

based on a dynamic prediction of the magnification filter

weight, have achieved good results in high magnification

SR and arbitrary magnification SR [23, 24]. The image

reconstructed by the SR method based on pixel space

optimization (VDSR, EDSR, FRASR) is too smooth, lacks

detailed information, and is not clear enough. The image

generated by the SR method based on feature space opti-

mization (SRGAN, PULSE) has structural deformation and

artifacts, which is not realistic enough. Therefore, these

methods are not suitable for direct use in medical image SR

reconstruction.

The IBM Research Institute of Australia has proposed a

method of generating HR images from LR medical images

using a progressive generation confrontation network. This

method designs a multi-stage model that uses the triple loss

function to use the output of the previous stage as a

baseline to gradually improve the output image quality of

the next stage. It can generate SR images with high scale

factors while maintaining good image quality [25]. Xu

Huang et al. proposed an SR reconstruction method for

medical images based on GAN. The authors designed a

medical pathology image preprocessing system to extract

the image blocks of the tissue area, improve the discrimi-

nator by learning more prior information, and use the

Huber loss function to replace the MSE loss function to

improve the quality of the generated image [26]. Reference

[27] proposed a medical image SR method based on dense
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neural networks and a hybrid attention mechanism. This

method removes the batch normalization layer in the dense

neural network and adds a hybrid attention module to

improve the high-frequency detail information of the SR

image and improve the quality of the reconstructed image.

Ma et al. [28] proposed a medical image SR method based

on a relativistic average generative adversarial network,

which helps to improve the quality of SR medical images

in terms of numerical criteria and visual results. These SR

methods have made improvements to the characteristics of

medical images, but they lack a comprehensive consider-

ation of the clarity and authenticity of the reconstructed

image. For example, the medical image SR method based

on the relativistic average generative adversarial network

uses a feature space-based generative adversarial network

to improve the clarity of visual perception. This method

often causes structural distortions and even artifacts in the

generated medical images, which is not conducive to the

diagnosis of diseases by doctors.

To solve the above problems, this paper proposes a

realistic medical image SR method based on a pyramidal

feature multiple distillations network [29–31]. RMISR

aims at reconstructing SR images with clear visual per-

ception and real high-frequency detail information. By

constructing a two-branch fusion SR network, the quality

of visual perception is improved on the basis of ensuring

the authenticity of the SR image structure [32, 33]. The SR

branch learns the nonlinear mapping from LR images to

HR images through PFMDB. Pyramidal feature multiple

distillations can expand the receptive field while extracting

refined features step by step, improving the reconstruction

quality of SR images in pixel space [34–36]. The Laplacian

gradient map branch learns the nonlinear mapping from the

LR Laplacian gradient map to the HR Laplacian gradient

map and fuses the SR Laplacian gradient map into the SR

feature map to improve the visual perception quality of the

SR image. We propose to use the traditional Laplacian

gradient map to optimize the visual perception quality,

which can avoid the structural deformation and distortion

of the SR image caused by the feature space-based SR

method, and make the SR image real and clear.

3 Preliminary overview

3.1 Process of image SR

The goal of image SR is to reconstruct HR images from LR

images. Generally, the LR image ILR is degenerated from

the corresponding HR image, and the degradation process

can be described by formula 1. Among them, IHR is the

corresponding HR image, D represents a degradation

mapping function, and h represents the parameters of the

degradation process such as noise and scale factor [37, 38].

To facilitate the acquisition of paired images for training,

we use the bicubic (B) to simulate the degradation process,

as shown in formula 2, where e represents the degradation

scale factor. The process of SR can be described by for-

mula 3, S represents the nonlinear mapping function from

LR to HR, and d represents the parameter of the function.

ILR ¼ D IHR; h
� �

ð1Þ

ILR ¼ B IHR; e
� �

; ð2Þ

ISR ¼ S ILR; d
� �

; ð3Þ

The pixel space-based SR method aims to keep ISR as

consistent as possible with IHR in pixels. The SR loss

function based on pixel space is shown in formula 4, where

IHRi � ISRi calculates the pixel distance between HR image

and SR image. Through continuous optimization of the

network structure and training strategy, the performance on

the objective evaluation indicators PSNR and SSIM is

improving. However, PSNR tends to output results that are

too smooth without enough details [12]. Although the pixel

space-based SR method improves the PSNR index, the

high-frequency information of the SR image is seriously

lost and the visual perception is poor because the PSNR

metric is fundamentally different from the subjective

evaluation of human vision. Therefore, directly using the

SR method based on pixel space to reconstruct medical

images has difficulty meeting the requirements of medical

images for rich detail information and clear texture

information.

LSRMSE ¼ 1

N

XN

i¼1

IHRi � ISRi
�� ��; ð4Þ

LSRVGG=i:j ¼
1

N

XN

x¼1

/i;j I
HR
x

� �
� /i;j GðILRx Þ

� ��� ��: ð5Þ

SR based on feature space is a perceptual driving

method that aims to improve the visual perception quality

of SR images. On the basis of GAN, it optimizes the fea-

ture space of SR models by using perceptual loss and

counter-loss. The content loss function of the feature space

is shown in formula 5, where /i;jðÞ represents the visual

geometry group (VGG) network that extracts features.

Different from the pixel space-based SR method, the fea-

ture-based SR method uses the VGG network to extract the

features of IHR and ISR, and aims to keep ISR as consistent

as possible with IHR in the feature space, to encourage the

generation of SR images with high visual perception.

However, it is difficult to guarantee the authenticity of the

SR image based on the feature space SR method, and the

generated SR image often has artifacts or structural
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deformation, which is not suitable for direct use in the SR

restoration of medical images.

The application of deep learning technology in the

medical field needs to fully measure the needs of society

and people [39, 40]. The key requirement for SR recon-

struction of medical images is clarity and reality. Based on

the research of pixel space and feature space SR methods,

we propose a medical image SR method combining tradi-

tional digital image processing and deep learning. In order

to avoid the structural deformation caused by the feature

space loss function, we use LSRMSE in the SR branch to

optimize the distance between ISR and IHR in the pixel

space. To improve the image smoothing caused by the

pixel space loss function, we combined the traditional

image processing method to construct the Laplacian gra-

dient map branch, and fused the Laplacian gradient image

into the SR image. We build a two-branch network model

to find a balance between pixel space and feature space-

based SR methods, and reconstruct clear and true SR

medical images.

3.2 RMISR baseline model

Medical images are an important basis for diagnosing

diseases and are playing an increasingly important role in

the medical field. Some medical images have low resolu-

tion due to small pathological parts or limitations of

equipment technology and shooting environments. Doctors

cannot clearly observe pathological parts through LR

medical images, which is not conducive to disease diag-

nosis and treatment. To reconstruct clear and real medical

images, this paper proposes a realistic medical image SR

method based on a pyramidal feature multi-distillation

network. We first designed a single-branch baseline model

and then constructed a two-branch visual perception model

based on the single-branch network. We have constructed a

baseline model (RMISR-BL) to compare PSNR and SSIM

with other methods to illustrate the advancement of

RMISR-BL in pixel space SR reconstruction in this paper.

Besides, RMISR-BL, as the basis of the two-branch SR

network, lays the foundation for the reconstructed SR

images with clear and realistic visual perception. The SR

image reconstructed by RMISR has rich high-frequency

information, clear texture details, and good visual percep-

tion quality. The baseline model of the RMISR method we

propose is shown in Fig. 1:

The RMISR baseline model SR process includes three

stages. First, we use a 3 9 3 convolutional layer (conv-3)

to extract the initial features of medical images. Then, we

use four PFMDB modules to construct a non-linear LR-to-

SR mapping, use residual connections to reduce the com-

putational complexity, and connect the output of PFMDB

of different depths to improve the detailed information of

the feature map. Finally, we place a 1 * 1 convolution

layer, two 3 * 3 convolution layers and a sub-pixel

upsampler at the end of the network to reconstruct the SR

image. Among them, we use 1 * 1 convolution to reduce

the dimensionality and increase the nonlinearity to improve

the SR reconstruction efficiency while ensuring the

reconstruction quality. The sub-pixel upsampler is based on

the depth information of feature maps, which can effec-

tively improve the quality of upsampling. The PFMDB

module includes SRB cascade components and PYB dis-

tillation components. We keep all the feature maps output

by the cascade SRB components and copy all the feature

maps for PYB multi-distillation to extract refined features

(PFMDB details are in Sect. 4.2, pyramidal feature multi-

distillation block).

4 Realistic medical image SR

4.1 Network architecture of RMISR

Our goal is to reconstruct clear and true HR images from

LR medical images. We first constructed the RMISR

baseline model (RMISR-BL). RMISR-BL is a lightweight

model suitable for devices with low computing power and

can be applied to primary hospitals lacking high-perfor-

mance servers. To improve the quality of visual perception,

we constructed a two-branch visual perception model

(RMISR-VP). RMISR-VP is composed of SR branch and

Laplacian gradient map branch, and its network structure is

shown in Fig. 2.

The goal of the Laplacian gradient map branch is to

learn the mapping from LR Laplacian gradient maps to HR

maps. The Laplacian operator is an isotropic differential

operator. We obtain the Laplacian gradient map of the

image I x; yð Þ by calculating the difference between the

center pixel and the surrounding four pixels, as shown in

formulas 6 and 7.

Ix x; yð Þ ¼ I xþ 1; yð Þ þ I xþ 1; yð Þ � 2I x; yð Þ; ð6Þ
Iy x; yð Þ ¼ I x; yþ 1ð Þ þ I x; y� 1ð Þ � 2I x; yð Þ; ð7Þ

r2I x; yð Þ ¼ Ix x; yð Þ; Iy x; yð Þ
� �

: ð8Þ

Laplacian is a kind of differential operator. The Lapla-

cian gradient map shows the gray-scale mutation area in

the image I x; yð Þ, including high-frequency information

such as edges and textures. The Laplacian gradient map

contains information that is seriously missing in the SR

reconstruction process. Therefore, fusing the information

of the Laplacian gradient map branch can effectively

improve the quality of the SR image. Define

Lap �ð Þ ¼ r2I x; yð Þ, which means the operation of
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extracting the Laplacian gradient map. The Laplacian

gradient map can be regarded as another kind of image, so

SR can be used to learn the mapping between Laplacian

gradient images from LR to SR mode. Most areas of the

Laplacian gradient map are close to zero, and the convo-

lutional neural network can focus on learning high-fre-

quency information. Therefore, the Laplacian gradient map

can more easily capture high-frequency information such

as edges and textures, thereby improving the visual per-

ception quality of SR images. As shown in Fig. 2, we fuse

the feature representation of the middle layer of the SR

branch in the Laplacian gradient map branch and use the

SR branch feature map as prior knowledge to reduce the

network depth and the number of parameters of the

Laplacian gradient map branch. We fuse the Laplacian

gradient feature map after the upsampling layer to the SR

branch, optimize the high-frequency information of the SR

map, and improve the edge and texture features of the

image. Besides, we use a 3 9 3 convolutional layer to

reconstruct the Laplacian gradient map.

SR branch is used to output the final SR image. To

improve the quality of visual perception, the SR branch

added two PFMDBs to the RMISR-BL. SR branch is

divided into two parts. The first part is the same as the

traditional SR method, mainly including 6 PFMDBs for

learning the nonlinear mapping from LR to SR. The second

part includes a fusion of SR features and Laplacian features

and reconstruction of the final SR image. We enhance the

edge and texture information by fusing the branch features

of the Laplacian gradient map. The first part of the SR

branch uses 3 9 3 convolutional layers to extract 64 initial

feature maps. Then, learn the detailed features of modal

mapping from LR to SR by building 6 PFMDB modules.

We connect the outputs of PFMDBs of different depths,

merge the outputs of the 6 PFMDB modules, and merge the

outputs of the second, fourth, and sixth PFMDB modules

into the Laplacian filter branch. We use a sub-pixel

upsampler to amplify the fusion features of the 6 PFMDB

modules. The second part of the SR branch integrates the

feature maps obtained from the Laplacian filter branch. We

merge the feature maps of the two branches before feature

map dimensionality reduction and use a 3 9 3 convolu-

tional layer to reconstruct the final SR map. The RMISR

method proposed in this paper uses the SR branch to learn

the mapping of medical images from the LR mode to the

SR mode in the pixel space to reconstruct the realistic and

objective SR image with a high objective evaluation index.

We use the Laplacian gradient map branch to learn the

gradient map from LR mode to SR mode in pixel space and

feature space to reconstruct the SR gradient map with rich

texture information. Finally, we merge the information of

the two branches to reconstruct a clear and undistorted

medical SR image.

4.2 Pyramidal feature multi-distillation block

Inspired by the information multi-distillation block

(IMDB) [29]. We designed the core component module

PFMDB for the RMISR network. The internal structure of

Fig. 1 RMISR baseline model

network structure

Fig. 2 RMISR visual perception model network structure
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the module is shown in Fig. 3b. PFMDB includes two core

components, SRB and PYB, as shown in Fig. 3c, d.

IMDB uses channel split to divide the 64 feature maps

output by the convolutional layer into 2 groups by 1:3, of

which 16 feature maps are directly input into the concat

layer as distillation features, and the other 48 feature maps

are used as the input of the next convolutional layer. We

rethink IMDB’s channel split strategy, by modifying the

number of two grouping features, and adding a feature

grouping selection algorithm to optimize the grouping

strategy. Our progressive refinement module includes a

pyramidal feature distillation module component and an

SRB cascade component. The pyramidal feature distillation

component is composed of three PYBs, and the SRB cas-

cade component is composed of three SRBs and a Conv-3.

Given the input feature Fin, the progressive refinement

module processing flow can be described as:

DC1 Fdc1 inð Þ;CC1 Fcc1 inð Þ ¼ Split1 L1 Finð Þð Þ; ð9Þ
DC2 Fdc2 inð Þ;CC1 Fcc2 inð Þ ¼ Split2 L2 Fcc1outð Þð Þ; ð10Þ
DC3 Fdc3 inð Þ;CC1 Fcc3 inð Þ ¼ Split3 L3 Fcc2outð Þð Þ; ð11Þ
DC4 distilled ¼ L4 Fcc3 outð Þ; ð12Þ

Fdistilled ¼ Concat DC1 Fdc1inð Þ;DC2 Fdc2inð Þ;DC3 Fdc3inð Þ;DC4 distilledð Þ:

ð13Þ

As shown in formula 9–13, we first input the output

features from the previous PFMDB to the cascade com-

ponent (CC1) and make a copy into the distillation module

(DC1). Second, we input the results of CC1 into the cas-

cade component (CC2) and make a copy into the distilla-

tion module (DC2). Then, we input the results of CC2 to

the cascade component (CC3) and make a copy into the

distillation module (DC3). Finally, we concatenate the

outputs of DC1, DC2, DC3, and CC3. The pyramidal block

consists of a pyramid convolution (PyConv-3) and a 1 9 1

convolution. PyConv-3 contains three different scale con-

volution kernels 7 9 7, 5 9 5, and 3 9 3. This pyramid

structure can directly expand the receptive field of RMISR,

capture more context information, and extract different

levels of detailed features [34]. Figure 3 shows that the

input Fin of PyConv-3 is 64 feature maps. To expand the

receptive field and reduce the number of model parameters

and calculations, we introduce grouped convolution.

Among them, 7 9 7 convolution inputs 64 feature maps

and outputs 16 feature maps, divided into 8 groups of

G = 8, 5 9 5 convolution inputs 64 feature maps, and

outputs 16 feature maps, divided into 4 groups G = 4,

3 9 3 convolution inputs 64 feature maps and outputs 32

feature maps, without grouping G = 1. In the traditional

3 9 3 convolution, the input and output are 64 feature

maps, and the number of parameters is 36,864. Under the

Fig. 3 The architecture of IMDB, PFMDB, SRB, and PYB: a information multi-distillation block. b Pyramidal feature distillation block,

c shallow residual block and d pyramidal block

Neural Computing and Applications

123



same conditions, the parameter amount of PyConv-3 is

31,104. Therefore, PYB can expand the receptive field

while reducing the number of model parameters and

calculations.

The SRB is composed of a 3 9 3 convolution, a residual

connection, and a Relu activation function [30]. SRB adds

a residual connection to the Conv-3 convolution of the

cascade branch, which can use the residual connection to

improve the learning ability from LR to SR mode, to make

full use of residual learning without adding additional

parameters. We use SRB cascade components to learn

detailed features step by step, use PYB distillation com-

ponents to extract distillation features, and measure the

information and contrast of the feature map through the

ICCA layer, and assign different weights to the feature

map. SR is a low-level computer vision problem that

focuses on the overall information of the image, such as

brightness, contrast, and information entropy. Brightness is

the average value of the gray value of the image, indicating

the brightness of the image. The mean square error reflects

the contrast of light and dark of the image. Information

entropy is a measure that characterizes the amount of

information. Entropy reflects the amount of information in

an image, that is, the richness of details. We propose a

channel attention mechanism ICCA based on information

entropy (IE), standard deviation (SD), and mean (ME) [41].

Its structure is shown in Fig. 4 below (Fig. 5):

As shown in formula 14, we use IE, SD, and ME to

replace global pooling, where the standard deviation and

mean measure the contrast of the feature map, and infor-

mation entropy measures the richness of the feature map.

Define the input feature map of ICAA as

X ¼ x1; x2. . .xc. . .xn½ �, which means that there are n = 64

feature maps with space size H 9 W, xc represents the cth

feature map, and the information entropy contrast channel

attention is calculated as:

sc ¼
1

N

X

i;jð Þ2xc
xi;jc log2 x

i;j
c

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

HW

X

i;jð Þ2xc
xi;jc � 1

HW

X

i;jð Þ2xc
xi;jc

0

@

1

A

2
vuuut

þ 1

HW

X

i;jð Þ2xc
xi;jc : ð14Þ

where sc represents the output of the cth feature map, and

N = 256 is used to normalize the value of information

entropy. ICCA assigns different weights to different

channels by learning the contrast and information entropy

of feature maps, which can effectively help RMISR to

reconstruct SR images with clear visual perception.

4.3 Upsampling module of RMISR

The upsampling module in the SR model is a vital com-

ponent. Different SR methods have different upsampling

methods, and the positions of upsampling modules in the

model are also different. SRCNN and VDSR use bicubic

interpolation to first upsample the LR image, and then use

the convolutional neural network to learn the nonlinear

mapping from LR to HR to reconstruct the SR image.

FSRCNN, EDSR, and RDN upsample the LR feature map

at the end of the SR model. Medical images need to be

upsampled at any scale. We use an upsampling unit based

on position projection, weight prediction, and feature

mapping [24].

We believe that each pixel of the medical SR image has

the most relevant pixel on the LR image, and it is closely

related to the magnification scale. To improve the quality

of upsampling, we find the corresponding pixel ðp0x; p0yÞ of
each pixel ðpx; pyÞ of the medical SR image in the LR

image through position projection, where the position

projection relationship can be expressed as formula 15. We

reconstruct the medical SR image based on the most rele-

vant pixels of LR. Then, we use a shallow fully connected

network to predict the corresponding weight of each

ðpx; pyÞ of the medical SR image. The arbitrary scale

upsampling module uses the shallow fully connected
Fig. 4 Information entropy contrast-aware channel attention

Fig. 5 The architecture of sub-pixel and meta upsampler
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network to dynamically predict the weight of the SR image

based on the projection of the LR and SR pixel positions,

according to the corresponding pixel offset and magnifi-

cation. Based on the projection of the LR and SR pixel

positions, we use the shallow fully connected network to

dynamically predict the weight of the SR image according

to the corresponding pixel offset and magnification scale,

which can be expressed in formula 16.

ðp0x; p0yÞ ¼
px
s
;
py
s
; ð15Þ

Wðpx; pyÞ ¼ f
px
s
� px

s
;
py
s
� py

s

� �
; h

� �
; ð16Þ

ISR ¼ ILRðp0x; p0yÞWðpx; pyÞ: ð17Þ

where f represents the weight prediction network, and h is

the weight of the weight prediction network. Based on the

position projection and weight prediction, we use the

matrix product to reconstruct the medical LR image into

the corresponding SR image. The feature projection can be

expressed in formula 17. The execution algorithm of the

RMISR upsampling module can be described as follows:

The time complexity of the whole algorithm is

O(H * W), where H is the height of the SR image, W is the

width of the SR image. In addition to the arbitrary scale

upsampler, we also use sub-pixel upsamplers in RMISR-

BL and RMISR-VP. The sub-pixel up-sampler includes a

convolutional layer and a sub-pixel convolutional layer,

which is different from adding a large number of zeros

during the up-sampling of the deconvolution layer. The

sub-pixel layer regards the pixels on the feature map as

sub-pixels of the SR image. All the pixels on the feature

map are combined to reconstruct the pixels on the SR map.

The sub-pixel upsampler has a simpler structure than the

arbitrary scale upsampler, with fewer parameters and high

execution efficiency.

4.4 Loss functions of RMISR

We propose an optimization method using L1 loss and

contextual loss. Different loss function combination opti-

mization schemes are designed and the effectiveness of the

proposed method is verified through experiments. The loss

function proposed in this paper is shown in formula 18,

where LT represents total loss, LMAE represents mean

absolute error (MAE) loss, LC represents contextual loss,

and a and b are coefficients used to balance different los-

ses. When calculating the loss function, we obtain the LR

image ILR by downsampling the given HR image IHR using

bicubic interpolation. The SR image is obtained from the

RMISR network ISR ¼ FRMISR ILRi
� �

, where FRMISR �ð Þ
represents the RMISR network we built. Given the training

set ILRi ; IHRi

� 	N

i¼1
, the MAE loss function uses the L1

paradigm to compare the difference between IHR and ISR

pixel by pixel, which can be expressed by formula 19.

LT ¼ aLMAE þ bLC; ð18Þ

LMAE ¼ 1

N

XN

i¼1

kFRMISR ILRi
� �

� IHRi k1; ð19Þ

LC /ðISRÞ;/ðIHRÞ; l
� �

¼ � log CX /l ISR
� �

;/l IHR
� �� �� �

:

ð20Þ

Perceptual loss is used to measure the perceptual simi-

larity of two images, by mapping SR and HR images to the

same feature space and calculating the distance between
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feature maps [42]. The perceptual loss function measures

the distance between the ISR and IHR feature maps, and is

used to constrain the similarity of global high-frequency

features. The lack of constraints on the similarity of local

features may lead to structural deformation of the ISR.

Therefore, from the perspective of a probability distribu-

tion, we hope that the feature distribution between the SR

image and the target HR image is as similar as possible.

The context loss LC can measure the similarity between the

features of the SR image ISR and the target image IHR. By

comparing the similarity of local features, it can ensure that

the visual perception of the restored SR image is clear and

natural. The context loss used in this paper is shown in

formula 20, where CXij is the similarity of local features xi
and yj. By optimizing the distance measurement between

the local feature distribution of ISR and IHR, it is ensured

that the restored SR image is closer to the real HR image in

the feature space, and the goal of a clear and true medical

SR image is achieved. Our SR branch uses the L1 loss

function to optimize the SR image in the pixel space to

ensure the authenticity of the image. Laplacian gradient

map branch uses L1 loss function and contextual loss,

where the coefficients of L1 loss and contextual loss are 10

and 1, respectively. Laplacian gradient map branch can

reconstruct a gradient map with rich high-frequency

information. We can reconstruct the realistic SR medical

image with clear visual perception by fusing the feature

maps of the two branches.

5 Experimental results

5.1 Implementation details

In the experiment, we use the DIV2K dataset as the

training set and Set5, Set14, BSD100, Urban100, and

Manga109 as the test set. In the same software and hard-

ware environment, using the same data set and setting the

same training rounds, we trained the two network models

we designed RMISR-BL, RMISR-VP, and some compar-

ison method network models, such as SRCNN, FSRCNN,

VDSR, EDSR. We randomly crop the HR images in the

DIV2K training set to 192 9 192 as the input of the SR

model and set the mini-batch size to 16. Two RMISR

models use the ADAM optimizer and set the momentum

parameter b1 ¼ 0:9;b2 ¼ 0:999. The initial learning rate is

set to 2 9 10–4, and halved at every 2 9 102 iterations. We

use a pre-trained VGG-19 model in the contextual loss

function to measure the similarity of features between SR

images and HR images. We use PyTorch to build a realistic

medical image SR model. In the model training phase, we

use a high-performance server to train and verify the

effectiveness of our model. The high-performance server

with Linux operating system and the GPU is NVIDIA

Tesla T4.

SR methods based on pixel space generally use PSNR

and SSIM as evaluation indicators. The higher the values of

PSNR and SSIM are, the better the quality of the SR image.

PSNR and SSIM are relatively sensitive to image bright-

ness, structure, contrast, pixel location, and are objective

evaluation indicators widely used in the SR field. However,

the PSNR and SSIM evaluation methods do not match the

human visual perception to a high degree. Therefore, this

paper uses PSNR and SSIM to evaluate the pixel space-

based SR method RMISR-BL, and mean opinion score

(MOS) testing to evaluate the visual perception-based SR

method RMISR-VP.

5.2 Experimental results of RMISR-BL

Through experimental observations, the model that uses the

L1 or L2 loss function as the optimization target in the SR

method will cause the high-frequency information of the

reconstructed medical SR image to be too smooth, and the

overall visual perception is blurred. However, based on the

pixel space SR method, the higher the PSNR value, the

better the visual perception quality. Therefore, we first

constructed the SR model RMISR-BL based on the L1 loss

function. The goal is to construct a model with a small

number of parameters and a high PSNR value. Then, based

on RMISR-BL, the Laplacian filter branch is used to enrich

the high-frequency information of medical SR images,

improve the details and texture characteristics, and

improve the quality of visual perception. We selected 15

comparison methods, including bicubic interpolation and

MemNet, ESPCN, CARN-M and so on. The comparison

results are shown in Table 1 [43–45].

It can be seen from Table 1 that the RMISR-BL pro-

posed in this paper has achieved the best performance on

the BSDS and Urban100 datasets, and PSNR and SSIM are

higher than the other 15 comparison methods. On the Set5

and Set14 data sets, the PSNR and SSIM values of RMISR-

BL are very close to SelNet, but the parameter of RMISR-

BL is 0.848 M, which is much smaller than SelNet’s

1.417 M. On the Manga109 dataset, the PSNR and SSIM

values of RMISR-BL rank second, second only to the

comparison method SRMDNF. The parameter amount of

RMISR-BL is approximately half of SRMDNF. It should

be noted that our RMISR-BL in Table 1 is only trained on

the DIV2K dataset for 5000 rounds, which is far less than

the training times of other comparison methods.

We selected 1 to 1000 rounds of training data, including

the L1 loss value and PSNR value. A total of 109 data

points, including [1, 2, 3… 100] and [200, 300… 1000] are

used in the chart. Figure 6 shows that the SRCNN

Neural Computing and Applications

123



converged stably to 0.0054 within 100 rounds of training,

and the PSNR value rose to 25.57 db. The loss value of the

baseline model RMISR-BL and information multi-distil-

lation network (IMDN) did not fully converge in 1000

rounds of training, and the PSNR value gradually increased

during the training process. The PSNR value of RMISR-

BL was the highest at 1000 rounds, reaching 30.11 db.

Because the PSNR value of SRCNN is much lower than

IMDN and RMISR-BL, to facilitate the display, we

replaced 109 data points with the highest PSNR value of

SRCNN. Besides, by introducing additional data sets

(Flickr2K, OST, etc.) and increasing the number of training

rounds, we can further improve the PSNR and SSIM values

of RMISR-BL. It can be found from Table 1 and Fig. 5

that our RMISR-BL obtains a better pixel space

reconstruction effect than the state-of-the-art SR method.

Based on RMISR-BL, the construction of a double-branch

structure SR network can effectively ensure the authen-

ticity of SR images and play an important role in improving

the clarity of visual perception of SR images.

5.3 Experimental results of RMISR-VP

We designed the SR branch of RMISR-VP on the basis of

RMISR-BL, and improved the quality of visual perception

by fusing information from the Laplacian gradient map

branch. Medical image SR reconstruction improves visual

perception while ensuring the authenticity of medical SR

images. Therefore, the SR branch in this paper includes 6

PFMDBs, and 2 more PFMDBs than RMISR-BL, and the

Table 1 Performance comparison with state-of-the-art algorithms for 9 4 image super-resolution

SR algorithms Params (M) Scale Set5 Set14 BSDS100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic – 4 28.42 0.810 26.10 0.702 25.96 0.667 23.15 0.657 24.92 0.789

SRCNN [9] 0.057 4 30.48 0.863 27.49 0.750 26.90 0.710 24.52 0.722 27.66 0.851

FSRCNN [10] 0.012 4 30.71 0.866 27.59 0.754 26.98 0.715 24.62 0.728 27.90 0.852

VDSR [13] 0.665 4 31.35 0.884 28.01 0.767 27.29 0.725 25.18 0.752 28.83 0.881

DRCN [19] 1.774 4 31.53 0.885 28.02 0.767 27.23 0.723 25.14 0.751 28.98 0.882

LapSRN [35] 0.502 4 31.54 0.885 28.09 0.770 27.32 0.726 25.21 0.756 29.09 0.890

CNF [33] 0.337 4 31.55 0.8856 28.15 0.768 27.32 0.7253 – – – –

DRRN [13] 0.297 4 31.68 0.889 28.21 0.772 27.38 0.728 25.44 0.764 29.46 0.896

BTSRN [14] 0.410 4 31.85 – 28.20 – 27.47 – 25.74 – – –

MemNet [43] 0.667 4 31.74 0.889 28.26 0.772 27.40 0.728 25.50 0.763 – –

ESPCN [44] – 4 29.21 0.851 26.40 0.744 25.50 0.696 24.02 0.726 23.55 0.795

SRGAN [11] 1.6 4 29.46 0.838 26.60 0.718 25.74 0.666 24.50 0.736 27.79 0.856

SRMDNF [37] 1.555 4 31.96 0.893 28.35 0.777 27.49 0.734 25.68 0.773 30.12 0.902

SelNet [38] 1.417 4 32.00 0.893 28.49 0.778 27.44 0.733 – – – –

CARN-M [45] 0.412 4 31.92 0.890 28.42 0.776 27.44 0.730 25.62 0.769 – –

RMISR-BL 0.848 4 31.96 0.890 28.44 0.780 27.49 0.735 25.77 0.775 30.08 0.900

The italic number indicates the best result and the bold number indicates the second best result. ‘‘–’’ denotes the results that are not reported

Fig. 6 Convergence and PSNR comparison of different SR methods during training
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rest of the network structure is the same as RMISR-BL. By

adding two PFMDBs, the PSNR value of the SR branch is

increased by 0.1 ± 0.02 db compared with RMISR-BL,

which further improves the quality of SR image recon-

struction based on L1 loss function optimization. The

Laplacian gradient map branch contains 3 PFMDBs, and

the output feature maps of the second, fourth, and sixth

PFMDB of the SR branch are merged to reduce the number

of parameters and improve the quality of reconstruction. To

improve the quality of high-frequency detail features such

as edges and textures, we have added a contextual loss

function to the L1 loss function. The CT Laplacian gradient

map of the lung reconstructed by different SR methods is

shown in Fig. 7. We choose SRCNN, SRGAN, and IMDN

as the comparison methods of visual effects. SRCNN and

IMDN are SR methods based on pixel space, and SRGAN

is an SR method based on feature space. We choose these

methods to compare our approach from the two dimensions

of pixel space and feature space and verify clear and

realistic SR reconstruction targets. We adopt the commonly

used scale factor (9 4) by both the Laplacian gradient map

branch and the SR branch to reconstruct the lung CT

image.

RMISR-L1 represents the Laplacian gradient map

branch that only uses L1 as the loss function. RMISR-CX

represents the Laplacian gradient map branch that only

uses contextual loss as the loss function, and RMISR-

L1 ? CX represents the Laplacian gradient map branch

that uses L1 and contextual loss as the loss function. It can

be seen from Fig. 7 that when the loss function is L1, the

medical SR image reconstructed by our Laplacian gradient

map branch is clearer than other methods (Bicubic,

SRCNN, VDSR, IMDN), and the edge texture is sharper.

However, like other SR methods based on the L1 loss

function, the tiny edges and textures are smoothed out

during the reconstruction process and almost all are lost.

The medical SR image reconstructed by the Laplacian

gradient map branch based on the contextual loss function

has a wealth of high-frequency information, including a

large amount of tiny edge and texture information. To

ensure the authenticity of high-frequency information, we

comprehensively apply L1 loss and contextual loss, set

a = 10 and b = 1 in formula 16, to reconstruct a more

natural medical image.

It can be seen from Fig. 8 that by fusing the information

of the Laplacian gradient map branch, the lung CT image

reconstructed by RMISR-VP has rich high-frequency

information such as edges and textures, and the visual

perception is natural and clear. RMISR-VP is based on the

traditional Laplacian operator, and the reconstruction of

high-frequency information does not rely on GAN.

Therefore, the medical SR image reconstructed by RMISR-

VP does not have structural deformation and artifacts. To

verify the visual perception effect of RMISR-VP recon-

structed medical images, we cooperated with dermatolo-

gists at Xiangya Hospital to reconstruct 100 demodicosis,

100 flat warts, and 100 seborrheic keratosis dermoscopy

images. The SR reconstruction methods include Bicubic,

SRCNN, SRGAN, IMDN, RMISR-BL, and RMISR-VP.

We set the 300 SR medical images reconstructed by

Bicubic to 1 (bad quality) and 300 HR images to 5 (ex-

cellent quality). Sixteen raters were asked to rate the SR

images from 1 to 5. According to statistics, the average

score of SRCNN is 2.2, SRGAN is 3.7, IMDN is 3.3,

RMISR-BL is 3.4, and RMISR-VP is 4.1. Mean opinion

score testing further proves the effectiveness of the pro-

posed SR method.

5.4 Experimental results of RMISR arbitrary
magnification

Traditional SR methods generally include 9 2, 9 3,

and 9 4 scale SR reconstruction, which lack flexibility.

Medical image SR reconstruction needs to be reconstructed

at any scale according to the actual application. As shown

in Fig. 5, this paper uses a sub-pixel upsampler and an

arbitrary scale upsampler. According to the specific situa-

tion of the hospital, our SR model can choose different

upsamplers. To improve computational efficiency and

reduce the amount of parameters, a sub-pixel upsampler

can be used. To solve the problem of SR reconstruction of

medical images at any scale, we replaced the sub-pixel

upsampler in RMISR-VP with an arbitrary scale upsam-

pler, and trained an RMISR-VP model that can realize SR

reconstruction at any scale. The arbitrary scale upsampler

is an up-sampling unit based on position projection, weight

prediction and feature mapping. By learning the most rel-

evant pixels of LR and SR, the medical SR image can be

reconstructed at any multiple.

The results of SR reconstruction of retinopathy images

at any scale are shown in Fig. 9. RMISR-VP can recon-

struct SR images of any scale according to the needs of

doctors. We use fractional scale factors

(9 2.5, 9 3.5, 9 4.5) that are not commonly used in other

SR methods to reconstruct retinopathy images and also

display integer scale factor (9 5) reconstructed SR image.

The medical images reconstructed by RMISR-VP have real

and clear visual perception. We can see from the zoomed-

in details that the retinopathy texture reconstructed by the

fractional scale factor and the integer scale factor is not

only visually clear but also free of structural deformation

and artifacts. This flexible SR reconstruction strategy can

effectively assist doctors in diagnosing the disease. To

facilitate doctors’ use of the RMISR model to reconstruct

medical images, and promote the promotion of deep

learning models in the medical field. We use PyQt5 to
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encapsulate the trained RMISR-BL, RMISR-VP and other

SR models. By designing a simple and easy-to-use inter-

face, doctors can use the deep learning-based SR model to

perform SR reconstruction on medical images with a

simple mouse operation. To improve the efficiency of SR

reconstruction, we designed the image area selection

Fig. 8 Comparison of lung CT images reconstructed by different SR methods

Fig. 7 Comparison of Laplacian gradient maps reconstructed by different SR methods
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function according to the doctor’s needs. The doctor can

only perform SR reconstruction on the key areas of the LR

image (such as the lesion) through the operation of the

mouse. Besides, we also designed SR reconstruction mul-

tiple selection, SR algorithm selection and SR image

quality analysis functions.

6 Conclusion

To solve the problem of real and clear SR reconstruction of

medical images in IoT-based intelligent healthcare sys-

tems, this paper proposes the RMISR method. First, we

designed a core module PFMDB based on PFB and SRB.

PFMDB gradually extracts feature maps by cascading

SRB, and uses PFB distillation to extract different levels of

detailed features. By calculating the information entropy

and contrast of the feature map, we designed a channel

attention mechanism ICCA, which assigns different

weights to the output feature map of PFMDB. Then, we

constructed the baseline model RMISR-BL based on

PFMDB. Comparative experiments show that RMISR-BL

is superior to other methods in PSNR and SSIM. Finally,

on the basis of RMISR-BL, we constructed a two-branch

visual perception model RMISR-VP, which improves the

edge and texture characteristics of medical SR images by

fusing the information of the Laplacian gradient map

branch, and improves the quality of visual perception.

Besides, we propose to use the L1 loss function and con-

textual loss function in the Laplacian gradient map branch.

Then we use an arbitrary scale upsampler to achieve any

scale SR reconstruction of medical images and develop a

medical auxiliary diagnosis component for IoT-based

intelligent healthcare systems, which is convenient for

doctors to use deep learning-based models to perform

medical image SR reconstruction. RMISR can effectively

solve the adverse effects of LR images on IoT-based

intelligent healthcare systems and assist doctors in diag-

nosing diseases. Our next step is to study the lightweight

medical image SR method.

Authors’ contribution SR and KG are the main writers of this paper,

and they proposed and deduced the main idea. JM, FZ, BH, and HZ

completed the simulations and analyzed the results. SR mainly

translated the Chinese manuscript into English. All authors read and

approved the final manuscript.

Funding This work was supported in part by the Natural Science

Foundation of China under Grant 62076255; in part by the Hunan

Provincial Science and Technology Plan Project 2020SK2059; in part

by the National Science Foundation of Hunan Province, China, under

Grants 2019JJ20025 and 2019JJ40406; in part by the National Social

Science Fund of China (No. 20&ZD120); in part by the Postgraduate

Scientific Research Innovation Project of Hunan Province

(CX20200210); in part by the Fundamental Research Funds for the

Central Universities of Central South University (2020zzts137). The

authors declare that they have no conflict of interests.

Availability of data and materials Not applicable.

Code availability Not applicable.

Fig. 9 SR reconstruction of retinopathy images at any scale

Neural Computing and Applications

123



Declaration

Conflict of interest The authors declare that they have no conflict of

interest.

References

1. Guo K, Ren S, Bhuiyan MZA et al (2019) MDMaaS: medical-

assisted diagnosis model as a service with artificial intelligence

and trust. IEEE Trans Ind Inf 16(3):2102–2114

2. Wang X, Yang LT, Wang Y, Ren L, Deen MJ (2020) ADTT: a

highly-efficient distributed tensor-train decomposition method for

IIoT big data. IEEE Trans Ind Inf. https://doi.org/10.1109/TII.

2020.2967768

3. Zhou X, Liang W, Kevin I et al (2020) Deep-learning-enhanced

human activity recognition for Internet of healthcare things. IEEE

Internet Things J 7(7):6429–6438

4. Hao F, Pei Z, Yang LT (2020) Diversified top-k maximal clique

detection in social internet of things. Future Gener Comput Syst

107:408–417

5. Long E, Lin H, Liu Z et al (2017) An artificial intelligence

platform for the multihospital collaborative management of

congenital cataracts. Nat Biomed Eng 1(2):1–8

6. Wang X, Yang LT, Song L, Wang H, Ren L, Deen J (2020) A

tensor-based multi-attributes visual feature recognition method

for industrial intelligence. IEEE Trans Ind Inf. https://doi.org/10.

1109/TII.2020.2999901

7. Ren S, Jain DK, Guo K, Xu T, Chi T (2019) Towards efficient

medical lesion image super-resolution based on deep residual

networks. Signal Process Image Commun 75:1–10

8. Yang J, Wright J, Huang TS et al (2010) Image super-resolution

via sparse representation. IEEE Trans Image Process

19(11):2861–2873

9. Dong C, Loy CC, He K et al (2014) Learning a deep convolu-

tional network for image super-resolution. In: European confer-

ence on computer vision. Springer, Cham, pp 184–199

10. Dong C, Loy CC, Tang X (2016) Accelerating the super-reso-

lution convolutional neural network. In: European conference on

computer vision. Springer, Cham, pp 391–407

11. Ledig C, Theis L, Huszár F et al (2017) Photo-realistic single

image super-resolution using a generative adversarial network.

In: Proceedings of the IEEE conference on computer vision and

pattern recognition, pp 4681–4690

12. Wang X, Yu K, Wu S et al (2018) Esrgan: enhanced super-

resolution generative adversarial networks. In: Proceedings of the

European conference on computer vision, pp 1–17

13. Tai Y, Yang J, Liu X (2017) Image super-resolution via deep

recursive residual network. In: Proceedings of the IEEE confer-

ence on computer vision and pattern recognition, pp 3147–3155

14. Fan Y, Shi H, Yu J et al (2017) Balanced two-stage residual

networks for image super-resolution. In: Proceedings of the IEEE

conference on computer vision and pattern recognition work-

shops, pp 161–168

15. Zhou X, Li Y, Liang W (2020) CNN-RNN based intelligent

recommendation for online medical pre-diagnosis support. IEEE/

ACM Trans Comput Biol Bioinf. https://doi.org/10.1109/TCBB.

2020.2994780

16. Shamsolmoali P, Zareapoor M, Jain DK, Jain VK, Yang J (2019)

Deep convolution network for surveillance records super-reso-

lution. Multimed Tools Appl 78(17):23815–23829

17. Kim J, Kwon LJ, Mu LK (2016) Accurate image super-resolution

using very deep convolutional networks. In: Proceedings of the

IEEE conference on computer vision and pattern recognition,

pp 1646–1654

18. Lim B, Son S, Kim H et al (2017) Enhanced deep residual net-

works for single image super-resolution. In: Proceedings of the

IEEE conference on computer vision and pattern recognition

workshops, pp 136–144

19. Kim J, Kwon LJ, Mu LK (2016) Deeply-recursive convolutional

network for image super-resolution. In: Proceedings of the IEEE

conference on computer vision and pattern recognition,

pp 1637–1645

20. Liu J, Zhang W, Tang Y, Tang J, Wu G (2020) Residual feature

aggregation network for image super-resolution. In: Proceedings

of the IEEE/CVF conference on computer vision and pattern

recognition, pp 2359–2368

21. Jain DK, Zareapoor M, Jain R, Kathuria A, Bachhety S (2020)

GAN-Poser: an improvised bidirectional GAN model for human

motion prediction. Neural Comput Appl 32(18):14579–14591

22. Menon S, Damian A, Hu S, Ravi N, Rudin C (2020) PULSE: self-

supervised photo upsampling via latent space exploration of

generative models. In: Proceedings of the IEEE/CVF conference

on computer vision and pattern recognition, pp 2437–2445

23. Haris M, Shakhnarovich G, Ukita N (2018) Deep back-projection

networks for super-resolution. In: Proceedings of the IEEE con-

ference on computer vision and pattern recognition,

pp 1664–1673

24. Hu X, Mu H, Zhang X et al (2019) Meta-SR: a magnification-

arbitrary network for super-resolution. In: Proceedings of the

IEEE conference on computer vision and pattern recognition,

pp 1575–1584

25. Mahapatra D, Bozorgtabar B, Garnavi R (2019) Image super-

resolution using progressive generative adversarial networks for

medical image analysis. Comput Med Imaging Graph 71:30–39

26. Huang X, Zhang Q, Wang G et al (2019) Medical image super-

resolution based on the generative adversarial network. In: Chi-

nese intelligent systems conference. Springer, Singapore,

pp 243–253

27. Liu K, Ma Y, Xiong H et al (2019) Medical image super-reso-

lution method based on dense blended attention network. arXiv:

1905.05084

28. Ma Y, Liu K, Xiong H et al (2021) Medical image super-reso-

lution using a relativistic average generative adversarial network.

Nucl Instrum Methods Phys Res Sect A 992(165053):1–6

29. Hui Z, Gao X, Yang Y et al (2019) Lightweight image super-

resolution with information multi-distillation network. In: Pro-

ceedings of the 27th acm international conference on multimedia,

pp 2024–2032

30. Liu J, Tang J, Wu G (2020) Residual feature distillation network

for lightweight image super-resolution. arXiv:2009.11551

31. Zhou X, Liang W, Shimizu S, Ma J, Jin Q (2020) Siamese neural

network based few-shot learning for anomaly detection in

industrial cyber-physical systems. IEEE Trans Ind Inf

17(8):5790–5798

32. Ma C, Rao Y, Cheng Y et al (2020) Structure-preserving super

resolution with gradient guidance. In: Proceedings of the IEEE/

CVF conference on computer vision and pattern recognition,

pp 7769–7778

33. Ren H, El-Khamy MLJ (2017) Image super resolution based on

fusing multiple convolution neural networks. In: Proceedings of

the IEEE conference on computer vision and pattern recognition

workshops, pp 54–61

34. Duta IC, Liu L, Zhu F et al (2020) Pyramidal convolution:

rethinking convolutional neural networks for visual recognition.
arXiv:2006.11538

35. Lai WS, Huang JB, Ahuja N et al (2017) Deep Laplacian pyramid

networks for fast and accurate super-resolution. In: Proceedings

of the IEEE conference on computer vision and pattern recog-

nition, pp 624–632

Neural Computing and Applications

123

https://doi.org/10.1109/TII.2020.2967768
https://doi.org/10.1109/TII.2020.2967768
https://doi.org/10.1109/TII.2020.2999901
https://doi.org/10.1109/TII.2020.2999901
https://doi.org/10.1109/TCBB.2020.2994780
https://doi.org/10.1109/TCBB.2020.2994780
http://arxiv.org/abs/1905.05084
http://arxiv.org/abs/1905.05084
http://arxiv.org/abs/2009.11551
http://arxiv.org/abs/2006.11538


36. Zareapoor M, Jain DK, Yang J (2018) Local spatial information

for image super-resolution. Cogn Syst Res 52:49–57

37. Zhang K, Zuo W, Zhang L (2017) Learning a single convolu-

tional super-resolution network for multiple degradations. In:

Proceedings of the IEEE conference on computer vision and

pattern recognition, pp 3262–3271

38. Choi JS, Kim M (2017) A deep convolutional neural network

with selection units for super-resolution. In: Proceedings of the

IEEE conference on computer vision and pattern recognition

workshops, pp 154–160

39. Hao F, Pang G, Wu Y et al (2019) Providing appropriate social

support to prevention of depression for highly anxious sufferers.

IEEE Trans Comput Soc Syst 6(5):879–887

40. Zhou X, Xu X, Liang W et al (2021) Intelligent small object

detection based on digital twinning for smart manufacturing in

industrial CPS. IEEE Trans Ind Inf. https://doi.org/10.1109/TII.

2021.3061419

41. Jain DK, Kumar A, Garg G (2020) Sarcasm detection in mash-up

language using soft-attention based bi-directional LSTM and

feature-rich CNN. Appl Soft Comput 91:106198

42. Mechrez R, Talmi I, Shama F et al (2018) Maintaining natural

image statistics with the contextual loss. In: Asian conference on

computer vision. Springer, Cham, pp 427–443

43. Tai Y, Yang J, Liu X et al (2017) Memnet: a persistent memory

network for image restoration. In: Proceedings of the IEEE

international conference on computer vision, pp 4539–4547

44. Shi W, Caballero J, Huszár F et al (2016) Real-time single image

and video super-resolution using an efficient sub-pixel convolu-

tional neural network. In: Proceedings of the IEEE conference on

computer vision and pattern recognition, pp 1874–1883

45. Timofte R, Gu S, Wu J et al (2018) Ntire 2018 challenge on

single image super-resolution: methods and results. In: Proceed-

ings of the IEEE conference on computer vision and pattern

recognition workshops, pp 852–863

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications

123

https://doi.org/10.1109/TII.2021.3061419
https://doi.org/10.1109/TII.2021.3061419

	Realistic medical image super-resolution with pyramidal feature multi-distillation networks for intelligent healthcare systems
	Abstract
	Introduction
	Related works
	Preliminary overview
	Process of image SR
	RMISR baseline model

	Realistic medical image SR
	Network architecture of RMISR
	Pyramidal feature multi-distillation block
	Upsampling module of RMISR
	Loss functions of RMISR

	Experimental results
	Implementation details
	Experimental results of RMISR-BL
	Experimental results of RMISR-VP
	Experimental results of RMISR arbitrary magnification

	Conclusion
	Authors’ contribution
	Code availability
	References




