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Abstract

The acquisition of reliable data strongly depends on experimental design. When studying

the effects of light on processes such as behaviour and physiology it is crucial to maintain

all environmental conditions constant apart from the one under study. Furthermore, the pre-

cise values of the environmental factors applied during the experiment should be known.

Although seemingly obvious, these conditions are often not met when the effects of light are

being studied. Here, we document and discuss the wavelengths and light intensities of natu-

ral and artificial light sources. We present standardised experimental protocols together with

building plans of a custom made instrument designed to accurately control light and temper-

ature for experiments using fresh water or marine species. Infrared light is commonly used

for recording behaviour and in electrophysiological experiments although the properties of

fish photoreceptors potentially allow detection into the far red. As an example of our experi-

mental procedure we have applied our protocol and instrument to specifically test the impact

of infrared light (840 nm) on the zebrafish circadian clock, which controls many aspects of

behaviour, physiology and metabolism. We demonstrate that infrared light does not influ-

ence the zebrafish circadian clock. Our results help to provide a solid framework for the

future study of light dependent processes in aquatic organisms.

Introduction

Light affects most life on earth. However, many of the functions and mechanisms underlying

these effects are far from understood. The vast extent of adaptations can be predicted from the

widespread occurrence of light receptors with unknown functions in taxa spanning large evo-

lutionary distances [1–5]. The advent of new genome editing technologies guarantees the

development of a range of new model organisms for the study of light controlled processes.

Furthermore, the broad scope of available aquatic species opens many possibilities for compar-

ative studies addressing specific light controlled functions. Thus, research can be performed

on species that inhabit very different light-environments, for example lunar rhythms are stud-

ied in a marine annelid [6], and the functions of photoreceptors have been studied in cavefish
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[7]. Furthermore, the two teleost species zebrafish and medaka are well-established genetic

models for studying the effects of light. Zebrafish embryos already become light sensitive at 5

hours post fertilisation (h.p.f.), far before the onset of retinal development [8, 9]. Zebrafish

cells, tissues and organs are directly light responsive [10], but the photoreceptors underlying

potentially a wide range of light-dependent functions have so far not been functionally charac-

terized. The diurnal zebrafish and medaka have also been established as useful models for

studying circadian rhythms and the circadian clock, which first emerge during their early

development [11, 12]. The environmental cues that set these clocks and thereby synchronise

them with the environment are called “zeitgebers”. Light in most organisms including zebra-

fish plays the role of the principal zeitgeber [13].

Understanding the link between molecular mechanisms, brain circuits, and behaviour is an

important aim for many photo- and chronobiologists. Rhythmic locomotor activity is there-

fore often assayed as a circadian clock output, typically recorded under infrared (IR) light.

Although blue light receptors have been implicated in the entrainment of the circadian clock

[14], it has been shown that rhythmic circadian clock gene expression can also be set by visible

red light [15, 16]. In addition, some lampreys, fishes, amphibians and reptiles have been

shown to contain a chromophore that predicts an ability to detect in the far red [17, 18], and

thus IR light might potentially act as a zeitgeber. However, to our knowledge there is no pub-

lished record on the absence or presence of the effects of IR light on the teleost circadian clock.

The only references about the effects of IR light on zebrafish behaviour were published in the

context of the visual system and at a time when the broad light sensitivity of its tissues and the

widespread occurance of non-visual photoreceptors were unknown [19, 20].

The high sensitivity of aquatic ectotherms for light [10, 21] and temperature [12, 22, 23]

makes them particularly susceptible to small fluctuations in these environmental conditions.

Thus a technical resource and standardised method that minimizes undesired experimental

variables is essential for addressing the various questions of photo- and chronobiological

research. To meet this requirement we have designed, tested and optimized an experimental

setup for reliably studying the influence of light on the photo- and chronobiology of aquatic

animals. Commercial systems (e.g. from Noldus Information Technology) exist, but are highly

expensive and thus not easily affordable for all labs that would benefit from the usage of the

system. In addition, these systems have been solely designed for behavioural studies, and thus

are not a multi-purpose tool that can be easily applied for sampling in order to investigate tran-

scriptomic or proteomic changes in parallel to behaviour. Here we present a set of construc-

tion drawings and detailed descriptions for an instrument that controls environmental

conditions together with an evaluation of how to apply and measure light. With these instruc-

tions a standard laboratory workshop can build the instrument, and it will cost about ten times

less than current commercial solutions. As behavioural studies using IR light have become

more common in aquatic species we applied our instrument and standardised protocol to

determine the effect of IR light (840 nm) on the zebrafish circadian clock while at the same

time demonstrating the features of our instrument. The instrument and data will be useful for

a broad scientific community, since photo- and chronobiology are relevant to many research

fields extending from cell proliferation, physiology and behaviour to immunology, metabo-

lism, toxicology and chronopharmaceutics.

Methods

Zebrafish husbandry

Animal care was conducted according to Austrian and European guidelines for animal

research (fish maintenance and care approved under: BMWFW-66.006/0012-WF/II/3b/2014).
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Work with zebrafish larvae under different light conditions is further approved by the experi-

mental plan BMWFW-66.006/0003-WF/V/3b/2016, which is cross-checked by: Geschäftsstelle

der Kommission für Tierversuchsangelegenheiten gemäß § 36 TVG 2012 p. A. Veterinärmedi-

zinische Universität Wien, A-1210 Wien, Veterinärplatz 1, Austria, before being issued by the

BMWFW. Zebrafish (Danio rerio) wild type strains were kept in a constant recirculating sys-

tem at approximately 28˚C [24]. Zebrafish were bred using standard protocols [25].

Experimental conditions

Zebrafish embryos were placed in 50 ml cell-culture flasks (Greiner bio-one, Cellstar, red stan-

dard cap without filter) in a total volume of 20 ml E3 water [25]. For each condition one Grei-

ner flask was used per biological replicate and three biological replicates were prepared for

each zeitgeber time (ZT) analyzed. Six embryos were placed in each flask. Control samples that

should remain in darkness were wrapped in a double layer of aluminium foil and placed in the

same tank with the IR light treated samples. The samples were transferred to the temperature-

controlled tank (28.0 ± 0.2˚C) in the instrument well before 5 h.p.f because at that stage zebra-

fish embryos become light responsive [9]. To monitor the temperature in the setup during the

course of the experiment the HOBO pendant light and temperature data logger (UA-002-64)

was submerged next to the samples in the water. To obtain a reliable indication of the gene

expression levels over the day the larvae were exposed to 12:12 hour infrared light-dark (IRD)

or white light-dark (LD) cycles, and controls were kept in constant darkness (DD). Larvae

from all conditions were sampled on day 6 at evenly distributed zeitgeber times; ZT3, ZT9,

ZT15, and ZT21. To collect the larvae, the contents of the Greiner flask were poured over a

mesh and transfered to a 2 ml reaction tube. Nearly all the water was removed and the sample

was directly frozen in liquid nitrogen. The samples were stored at -80˚C until all samples

were collected in order to process them together and prevent variations due to differences in

processing.

Light measurement

IR and white light LEDs were installed as described. The spectrum and light intensity of the

light was measured with the ILT950 spectrometer from International Light Technologies Inc.

(Peabody, U.S.A.). We measured the light intensity at the position of the sample as the inten-

sity depends on the distance from the source. The light intensity is given in irradiance (μW/

cm2/s) and photon flux (μmol/m2/s photons), the latter was calculated with the Planck-Ein-

stein relation (see S1 Table).

Detection of transcript levels

Gene expression levels were determined by qPCR. To isolate RNA a metal bead (Peqlab

Biotechnologie GmbH, Erlangen, Germany) and 350 μl RLT buffer (Qiagen N.V., Hilden, Ger-

many) including 1% β-mercaptoethanol was added to the frozen larvae, which were homoge-

nised for 3 min at 30Hz using a Qiagen tissue lyser followed by the Qiagen RNeasy mini

protocol. 500 ng total RNA was used for each reaction to transcribe the RNA into cDNA

with the QuantiTect reverse transcription kit (Qiagen). Intron spanning qPCR primers were

designed with the universal probe library software from Roche, and qPCR reactions were per-

formed using SYBR green PCR master mix from Applied Biosystems (Thermo Fisher Scien-

tific Inc., Waltham, U.S.A.). period1b (per1b; NM212439, primer forward: 5’-gtcggatga
tgacaaacagc-3’ and reverse: 5’-ccagagacacagacggacct-3’) and clock1a (clk1a;

NM130957, primer forward: 5’-tcggaaactttaagtccctcaa-3’ and reverse: 5’-cact
ccctcaaagccgttt-3’)were used as a read-out for core clock gene oscillations, period2
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(per2; NM182857, primer forward: 5’-ccaacgtggacgaagatgta-3’ and reverse: 5’-g
cagcaccttctggatgtct-3’) as a read out for a directy light regulated clock gene, and

thyrotroph embryonic factor α (tefα; NM131400, primer forward: 5’-aaggcaataaatgaata
atagtttgga-3’ and reverse: 5’- tcacctgcttctatcttgtctcc-3’) and arylalkyla-
mine N-acetyltransferase 2 (aanat2; NM131411, primer forward: 5’- ctggtggccttcatc
attg-3’ and reverse: 5’- agagtccggcacgtgtgt-3’) to determine the effect on two

genes that are under circadian clock control. The expression levels of the measured transcripts

were normalized to actin β (actb1; NM131031, primer forward: 5’-tcactccccttgttcac
aataa-3’ and reverse: 5’- ggcagcgatttcctcatc-3’),which does not show variation

in diel expression levels [8]. To determine if the transcript levels between two conditions are

significantly different the Student’s t-test [26] was applied.

Results

An instrument to control environmental conditions

General design. In order to keep environmental conditions constant, with the exception

of the one under study, we designed an experimental setup that consists of a light-sealed

ventilated chamber (Fig 1A and S1 Fig) containing a light source connected to a timer and a

temperature controlled water tank. The instrument is constructed from matte black PVC to

prevent reflection and damage from the exposure to humidity. The instrument consists of two

side panels, a top and a base, one front cover and one rear panel (Fig 1A and S1 Fig). For the

base a thick plate is used to support the weight of the equipment. The parts are assembled with

hexagonal button flange head screws, and the edges are sealed with black silicone on the inside

to prevent light from entering. The front cover is attached to the top panel with hinges so that

the door can be folded up and does not obstruct the user while at work. A single cover is opti-

mal for a simple and efficient light tight seal. The seal consists of a notch in the rim around the

inside of the cover (S1 Fig) in which rubber tubing (Körner GmbH) is inserted so that the tub-

ing presses against the rim around the chamber when the cover is closed. Two clips (Hettich

GmbH) are attached to each side panel and to the base to secure the cover and apply pressure

on the seal when closed. The cable inlet in the rear panel is shielded by a slotted cover on the

inside to prevent light from entering (S1 Fig), and a cable junction box is fixed to the outside.

An interchangeable light source is attached to the inside of the top panel and connected to an

outside timer for light regime control. A 50 l rectangular white (for light reflection) plastic con-

tainer is used as a temperature regulated tank (Linpac Stucki GmbH, Bad Salzufen, Germany).

A Thermomix (B. Braun Biotech International GmbH, Melsungen, Germany) or Lauda Alpha

(Lauda-Brinkmann LP, Delran, U.S.A.) immersion thermostat is attached to the tank (S1 Fig),

as these thermostats are capable of maintaining a constant water temperature within the ±
0.1˚C range. The Lauda thermostat can also be equipped with a dedicated cooling unit to cool

or generate temperature cycles. Since the display of the thermostat emits light the top part of

the thermostat should be covered with blackout material (e.g. aluminium foil). Ventilation is

essential to keep the temperature in the instrument constant and to avoid condensation. For

ventilation the instrument is equipped with a fan behind the air inlet in one side panel and an

air outlet in the opposite side panel. Importantly, to create an air flow through the closed

instrument while preventing the light from entering, the air in and outlets are covered with a

maze construction (Fig 1A and S1 Fig). To further block light from entering the instrument a

fan with scoops (AC centrifugal compact fan, ebm-papst RG 90-18/56) instead of blades is

installed behind the air inlet. Since the air outlet does not contain a fan, an extra cover to pre-

vent light from entering is placed on the outside (Fig 1A and S1 Fig). Wheels and handles are

attached to the instrument to facilitate movement. The sample holder is designed to keep the

Instrument and protocol for photobiology research
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A

B

Fig 1. Construction plan for an instrument to control environmental conditions, and an infrared background lighting design to track

small aquatic animals. (A) Technical drawing of the light-sealed temperature regulated instrument: 1) Front cover. 2) Side panels. 3) Rear panel.

4) Top panel. 5) Base. 6) Air vent cover. 7) Air vent flange. 8) Cap on air outlet. 9) Power supply cover. 10) Reflector plate (optional). For detailed

technical drawings see S1 and S2 Figs. (B) Section through infrared light box (left) and outside (right), which is designed to emit a particularly

even distribution of light. 1) IR light strip around the inside of the box. 2) White rigid projector screen on bottom and sides. 3) Two layers of opaque

Instrument and protocol for photobiology research
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samples submerged in water, and consists of a cover connected to a base, its cover is made of

transparent plexiglas and has holes for optimal light transmission, and the base has feet to keep

the samples off the ground so that water can flow under the samples.

Light sources. The light source represents a key element of the instrument. The impor-

tance of carefully considering its spectrum and intensity is exemplified by the fact that different

qualities of light have been demonstrated to differentially impact on zebrafish growth and

development [27]. There are two principles for choosing a light source: Either light covering a

broad range of the spectrum, i.e. “white light”, is used, or the light source is wavelength-spe-

cific (e.g. to study a specific photoreceptor). Which “white light” should be chosen? From eco-

logical and evolutionary considerations a light source that generates a broad light spectrum

resembling that of sunlight (Fig 2A) would be a logical choice. However, it is complicated to

define natural light as the intensity and spectrum of sunlight below the earth’s atmosphere

vary enormously, and depend on the latitude, the season, the weather, and on the the time of

the day (Fig 2A). Furthermore, the water depth and turbidity will selectively filter wavelengths

[28]. Nevertheless, ideally an artificial light source should have a continuous spectrum so that

photoreceptors from a range of absorption optimums will all receive the optimal wavelengths

of light. To choose the appropriate light source for the study of light dependent processes, we

compared the photon flux (μmol/m2/s) of the spectra instead of the irradiance (μW/cm2/s) as

photoreceptors are activated by photons. The compact fluorescent lamp (CFL) shows large dif-

ferences in light intensity over the visible spectrum (compare Fig 2B with 2A) and gaps are

present. An incandescent (Tungsten) lamp emits light over the whole visible spectrum with a

higher intensity in the red part of the spectrum than the blue (Fig 2C), its light distribution

thus resembling that of twilight. The emission of white light emitting diodes (LED) covers the

visible spectrum and shows only gaps in the UV and IR (Fig 2D), thus this continuous spec-

trum is suitable for a wide range of studies. Importantly, a standard white light LED has a col-

our temperature (6500K) similar to that of daylight while a warm white LED mimics twilight

(compare Fig 2D with Fig 2A). The high clarity and relatively low water depth used in the

setup prevents significant alterations in the intensities of the emitted wavelengths.

Which considerations should be made when choosing light sources with a specific narrow

spectrum? With many Opsins present in fish and other aquatic organisms, redundancy may

be an obstacle when studying the function of a particular photoreceptor or group of photore-

ceptors. An approach to circumvent this problem is to use a light source that emits in a narrow

band of the spectrum where the photoreceptor under study has its absorption optimum,

thereby avoiding activation of photoreceptors that exhibit an absorption optimum far outside

that range. Furthermore, to narrow down which wavelengths and/ or photoreceptors play a

role in a particular process one can use different light sources that emit in distinct parts of the

spectrum [27]. For instance, blue light is sufficient for entraining the zebrafish circadian clock

[14, 15]. LED technology has the advantage that a light source can be chosen which emits a

spectrum with narrow bandwidth fitting the process under study (Fig 3A). Note that the green

LED in Fig 3A produces a lower light intensity than the blue and red LEDs due to a lower effi-

ciency in converting electrical power into light. When we compare the photon flux with the

energy of different spectra from LEDs (Fig 3A and 3B), such as the blue and IR LEDs, we

observe that although the IR LED produces only half the absolute irradiance (19.76 μW/cm2)

of the blue LED (39.09 μW/cm2) it emits nearly as many photons (respectively 1.39 μmol/m2/s

and 1.69 μmol/m2/s, Fig 3B). Thus the higher number of photons from an IR light source

plexiglass separated by 3 mm. 4) Top aluminium frame. 5) Bottom aluminium frame. 6) Base. 7) Aluminium profiles on corners that connect the

top and bottom frames. 8) Screws with nuts.

doi:10.1371/journal.pone.0172038.g001
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could potentially compensate for the inefficiency of activating a photoreceptor with an absorp-

tion that only partially overlaps with the IR spectrum. Importantly, the width at the base of the

curve of the blue, green, red and infrared LEDs (Fig 3A) shows that the emitted light covers a

considerable part of the spectrum. Note that although the light intensity has a near linear cor-

relation with the current, the bandwidth of the experimental spectrum is affected dispropor-

tionally (Fig 3C).

LEDs have the advantage that a light source, which emits a specific spectrum, can be

selected and the light intensity can be regulated. To install LEDs (Winger Electronics GmbH,

Dessau-Roßlau, Germany) mount them on cooling blocks (37 mm x 33 mm x 10 mm, Winger

Electronics GmbH) using heat conducting metal glue (Arctic Alumina, Winger Electronics

GmbH) to facilitate the release of heat. For attachment a 6 mm hole is drilled and tapered into

the middle of the cooling block, a 6M screw (length 2 cm) with a countersunk head and a flat

top is glued in the hole, on top of which the LED is glued. Nylon washers and a low-profile T-

nut (Thorlabs Inc. Newton, U.S.A.) are placed on the screw, thereafter the LED on the cooling
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Fig 2. Spectra of sunlight and artificial light sources. For light dependent processes the photon flux has a higher relevance than the irradiance since

photoreceptors are activated by photons, thus we compared spectra plotted in μmol/m2/s photons versus the wavelength. (A) Spectrum of sunlight on a

cloudless summer day in Vienna at 12:00 hours in grey (22437 μmol/m2/s photons) and at 19:00 hours during sunset in orange (1268 μmol/m2/s photons). (B)

Spectrum of a Philips compact fluorescent lamp (14W, 5.1 μmol/m2/s photons). Red arrowheads indicate gaps in the spectrum. (C) Spectrum of an Osram

incandescent lamp (15W, 5.8 μmol/m2/s photons). (D) Spectra of a Winger white daylight LED (1W, 6500K, 1.4 μmol/m2/s photons) in grey, and warm white

LED (1W, 3200K, 1.1 μmol/m2/s photons) in orange. The main difference between a daylight and a warm white LED is the light intensity around 450 nm. Note

the similarity of these light sources to respectively daylight and twilight in A. All measurements except for sunlight were performed at a distance of 60 cm from

the light source, which corresponds to the distance between light source and sample in our experimental instrument.

doi:10.1371/journal.pone.0172038.g002
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block is attached to a 25 mm (length 37 cm) optical construction rail (Thorlabs Inc.). We

wired three or four, 1W or 3W, LEDs in series (depending on the photon flux of the LEDs)

and four of these sets in parallel. Since the current stays the same through any component in a

series circuit and voltage stays the same over all components in a parallel circuit, the number

of these sets depends on the power of the LEDs and the maximal output of the power supply.

The light intensity should be set by driving the LEDs with the current (Fig 3C), as a small

change in voltage produces a large change in current and thus in the light intensity. The optical

rails with LEDs are attached to the ceiling of the instrument with screw and nut, and can be

easily exchanged by sliding them out.

Recording with IR light and tracking. The instrument can be further adapted for beha-

vioural studies. For analysis of activity levels an industrial camera (acA2040-90um, Basler AG,
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Fig 3. Light sources with narrow bandwidth spectra. For comparison all spectra were measured from LEDs (Winger Electronics GmbH) of the same

manufacturer near their maximum power (1W, 340 mA) and at a distance of 60 cm in air. (A) Spectrum of a blue LED (39 μW/cm2,1.7 μmol/m2/s photons),

green LED (11 μW/cm2, 0.5 μmol/m2/s photons), red LED (23 μW/cm2, 1.2 μmol/m2/s photons), and IR LED (20 μW/cm2, 1.4 μmol/m2/s photons). (B)

The same spectra as in A, with instead of absolute irradiance the photon flux plotted on the y-axis. Note when comparing two LEDs that emit at different

wavelengths but produce similar absolute irradiance (compare blue with IR), that the photon flux of the photons with a larger wavelength will be higher. (C)

Reducing the intensity narrows the bandwidth of the spectrum. Compare blue LED driven at a current of 340 mA (39 μW/cm2, 1.69 μmol/m2/s photons) in

dark blue with the same LED at 170 mA (21 μW/cm2,0.94 μmol/m2/s photons) and at 50 mA (6 μW/cm2, 0.29 μmol/m2/s photons) in light blue. This chart

shows that the light intensity affects the bandwidth of the spectrum disproportionally. Also note the near linear correlation between the current and the light

intensity. (D) A long-pass filter (Lee filter #87) is inserted between the camera and the lens to block visible light below 730 nm. Note that the spectra of the IR

LED (red) and the white LED (grey) are on opposite sides of the filter. As the white LED does not emit IR, a LD cycle will not produce intensity fluctuations in

the recording and thereby affect the tracking.

doi:10.1371/journal.pone.0172038.g003
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Ahrensburg, Germany) is installed and visible light is blocked by inserting a 730 nm long-pass

filter (LeeFilter, Infrared polyester #87) (Fig 3D). A lens with the optimal focal length (http://

www.baslerweb.com/en/support/tools/lens-selector) is attached to the camera (Kowa, 25mm

or 16mm F1.4). The lens should be compatible with the pixel size of the camera and should

not block IR light (SWIR type).

An even distribution of background light is crucial for high quality tracking. To achieve this

we designed a box (Fig 1B, S2 Fig) in which IR light is reflected by a projector screen on the

bottom and the out going indirect light is scattered by opaque plexiglas on the top. The IR

light box consists of eight unequal L-shaped aluminium profiles (3.0 cm x 5.0 cm). Each profile

is cut on both short sides in a 45˚ angle (35.8 cm x 35.8 cm), and four profiles are glued (Arctic

Alumina) together to form a square frame. The two frames are placed on top of each other so

that the longest sides of the L stand on each other and the shortest form the top and bottom.

Four equal L-shaped (3.0 cm x 3.0 cm) aluminium profiles of 10.0 cm length are secured on

the outside corners with 6M hexagonal flange head screws (10 mm length) and nuts to connect

the frames and provide support. A rigid ProWhite projector screen (Carl’s Place, Milton, U.S.

A.) is glued to a plexiglas base, which is fixed to the bottom frame with double sided construc-

tion tape. Two opaque plexiglas plates, OM200 SC and 7D007 RP (Evonik Industries AG,

Essen, Germany) are glued to respectively the outside and inside of the top frame. A strip of IR

LEDs (840 nm Solarox, Winger Electronics GmbH) is glued in the corner along the sides of

the top frame. This design releases the heat from the IR LEDs to the sides instead of below the

animals, which is an advantage. A hole is drilled on one corner for the outlet of electric cables.

For locomotor experiments each animal is placed in a well of a temperature controlled track-

ing plate (S2 Fig). This is a 32 cm (width) x 32 cm (length) x 2 cm (height) transparent sanded

acrylic plate with an array of 5 by 5 concave wells (diameter: 34 mm and depth: 17 mm) milled

in the top, and a 3 mm grove milled 1.5 cm from the rim in the bottom. A silicone seal is placed

in the grove. The plate with wells is placed on top of a plate from the same size and material

that has the center part, except for the 25 mm wide rim, milled out (depth: 17 mm) and that

has two in- and outlet holes on opposite sides for the flow of temperature controlled water

under the tracking plate. The plates are connected with 4M screws. The IR light box is placed

under the tracking plate to avoid shadows from the fish and reflections from the water.

The open source frame grabber software VirtualDub (http://sourceforge.net/projects/

virtualdub/) can be used for recording as it is compatible with Pylon (the interface software

provided with the camera), and frames can be saved in MPEG or AVI format. The movies can

be tracked using free tracking software (www.idtracker.es/) [29] or the commercially available

tracking software EthoVision from Noldus Information Technology B.V. (Wageningen, The

Netherlands) or software from loopbio (Kritzendorf, Austria).

Testing infrared light effects on the zebrafish circadian clock

In order to demonstrate the method and to illustrate the features of the instrument while pro-

viding an important control for reliable experimental conditions, we have followed our experi-

mental procedure to test the impact of IR light on the circadian clock of the zebrafish.

Behaviour is often used as a readout in neuroscience, including studies of photoreceptors

and chronobiology. For behavioural recordings IR light (Fig 3F) is commonly used as it allows

activity to be documented in the absence of visible light. While most vertebrate photoreceptors

contain the light absorbing chromophore retinal, many fish, amphibians and reptiles use

3,4-didehydroretinal, which allows them to detect longer wavelengths further into the red. In

addition, visible red light has been demonstrated to induce clock gene expression in zebrafish

[15]. Thus IR light might potentially act as a zeitgeber. We assessed whether IR light can set

Instrument and protocol for photobiology research

PLOS ONE | DOI:10.1371/journal.pone.0172038 February 17, 2017 9 / 15

http://www.baslerweb.com/en/support/tools/lens-selector
http://www.baslerweb.com/en/support/tools/lens-selector
http://sourceforge.net/projects/virtualdub/
http://sourceforge.net/projects/virtualdub/
http://www.idtracker.es/


the circadian clock, and thus significantly impact on behaviour, metabolism and physiology.

Wildtype zebrafish larvae were exposed for 6 days to a 12–12 hour infrared light-dark (IRD)

regime and compared with larvae kept in constant darkness (DD) and larvae exposed to a 12–

12 hour white light-dark (LD) regime, all maintained at a constant temperature of 28.0 ±
0.2˚C. Samples were taken at four time points separated by 6 hour intervals. We analysed the

expression levels of five genes: the core circadian clock genes per1b and clk1a, part of the nega-

tive and positive transcription-translation feedback loop respectively, the directly light regu-

lated circadian clock gene per2, which had been shown to exhibit rhythmic transcript levels

under a red LD cycle [15], and the genes tefα and aanat2, which are under circadian clock con-

trol [30]. The transcript levels of per1b under IRD conditions do not show a significant differ-

ence with the levels under DD (ZT3; p = 0.53, ZT9; p = 0.83, ZT15; p = 0.43, ZT21; p = 0.54,

equal unpaired Student’s t-test), which are both non-rhythmic intermediate levels when com-

pared to the peak and trough levels of robust gene expression cycling under a LD regime (Fig

4A). Also the transcript levels of clk1a do not show a significant difference between IRD and

DD conditions (Fig 4B) at each ZT (ZT3; p = 0.78, ZT9; p = 0.39, ZT15; p = 0.52, ZT21; p =

0.83, equal unpaired Student’s t-test). Consistently, also aanat2 (ZT3; p = 0.90, ZT9; p = 0.75,

ZT15; p = 0.57, ZT21; p = 0.60, equal unpaired Student’s t-test) and tefα (ZT3; p = 0.74, ZT9;

p = 0.80, ZT15; p = 0.39, ZT21; p = 0.43, equal unpaired Student’s t-test) do not show a signifi-

cant difference in transcript levels at each ZT between the IRD and DD conditions (Fig 4D

and 4E). As reported previously [12, 31] we observe a non-rhythmic increase in transcript lev-

els during development for clk1a and aanat2 (ZT3 vs ZT21 equal unpaired Student’s t-test

clk1a IRD: p = 0.00763, clk1a DD: p = 0.00979, aanat2 IRD: p = 0.00548, aanat2 DD: p =

0.00140). In contrast to the LD regime overall levels of per2 are low under IRD and DD condi-

tions with no significant difference in transcript levels between these conditions (ZT3; p =

0.27, ZT9; p = 0.82, ZT15; p = 0.57, ZT21; p = 0.93, equal unpaired Student’s t-test), thus this

directly light controlled gene is not induced by IR light (Fig 4C).

The transcript levels of per1b, clk1a, per2, tefα and aanat2 under an IRD regime are in the

same range as the levels observed in DD, which implies that the zebrafish circadian clock is

not set by 840 nm IR light. We interpret the arrhythmicity under DD and IRD to reflect the

presence of multiple circadian oscillators that are out of phase and are not set by light [12, 13,

32–34]. Importantly, these data also demonstrate that the instrument presented here, when

operated under constant darkness and constant temperature, eliminates all stimuli that set the

circadian clock.

Discussion

With the instrument presented here one can test the effect of specific light and temperature

parameters on biological processes by chosing wavelength, light intensity and temperature on

a range of aquatic organisms. A temperature controlled environment is a crucial feature of any

setup when studying the effect of light on aquatic ectotherms, which are easily affected by envi-

ronmental temperature fluctuations [23] as they lack homeostatic body temperature control

and also lose body heat much more rapidly than terrestrial animals due to the high heat capac-

ity of water [35]. It is therefore not surprising that daily temperature fluctuations of ± 1.0˚C

have been demonstrated to entrain the zebrafish circadian clock [22]. In additon to preventing

temperature fluctuations our design also eliminates light contamination. This can be tested by

developing a film which has been inside the closed setup while the light inside the setup was

off and outside the setup was switched on. We found that not all commercially available setups

are light-tight. This is problematic since even short exposure to low intensity visible light can

re-set the circadian clock [13]. As IR light is used in many studies, it is crucial to determine if it

Instrument and protocol for photobiology research
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Fig 4. IR light does not entrain the zebrafish circadian clock. The transcript levels of three core circadian clock genes and two clock output genes in

larvae exposed to six 12–12 hour white light-dark or IR light-dark cycles and larvae raised in constant darkness, all at 28.0 ± 0.2˚C, were used as readout. (A)

per1b (circadian clock negative feedback loop) transcript levels are compared between larvae kept in constant darkness (DD, black bars) and under an IR

light-dark (IRD, red bars) and white light-dark regime (LD, grey bars). The white-black bar below the chart indicates the light-dark interval and the black bar

indicates constant darkness. (B) clk1a (circadian clock positive feedback loop), (C) per2 (circadian clock directly light regulated), (D) aanat2 (circadian clock

output) and (E) tefα (circadian clock output) transcript levels under the same conditions as in A. None of the analyzed genes exhibit significant differences in

transcript level between the IRD and DD conditions for each ZT (p>0.05, two-sample equal unpaired Student’s t-test). Error bars: standard deviations. (F)

Intensities of IR light (154 μW/cm2, 10.96 μmol/m2/s photons) in red and white daylight (33 μW/cm2, 1.57 μmol/m2/s photons) in grey to which the larvae were

exposed in this experiment.

doi:10.1371/journal.pone.0172038.g004
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affects the circadian clock. A previous study showed that optokinetic motor response, which

fully depends on vision, is not affected by IR [20]. However so far the effect of IR light on non-

visual processes has not been assessed, even though red light has been shown to entrain the

zebrafish circadian clock [15], and the tail of the IR LED spectrum reaches below the 800 nm

(Fig 3A and 3B). We addressed this issue by exposing zebrafish larvae to an IRD cycle instead

of constant IR light and by using high intensity IR light thereby increasing the IR under 800

nm (Fig 4F). We here show that IR light does not induce a rhythm in the transcript levels of

the core circadian clock genes per1b, clk1a, per2 and the clock output genes aanat2 and tefα
(Fig 4A–4E). We conclude that 840 nm IR light sources can be used to study the zebrafish cir-

cadian clock.

Since food intake also acts as a zeitgeber [36, 37], this environmental cue can interfere with

other zeitgebers and should be controlled to minimize its impact when studying light-depen-

dent processes. We discuss some of its known effects here in order to manipulate the impact of

this zeitgeber. Zebrafish larvae do not require food until the sixth day post fertilisation when

kept at 28˚C. Obviously, this advantage is partially lost when studying later stages, and in this

case the strength of the zeitgeber depends on the biological process under study and the timing

of food administration. For instance in Medaka, feeding entrains a circadian rhythm of agonis-

tic behaviour, which continues through a fasting period of three days. However, the daily

rhythms of mating stay fixed to the light-dark cycle and are not phase-shifted by the feeding

time [38]. The differential effects of these zeitgebers indicate that these behaviours are linked

to different parts of a multi-oscillator system that is loosely connected or may not be connected

at all [39]. Thus food as a zeitgeber may set only a subset of clocks in specific organs and

tissues. Although it has been demonstrated that the timing of food availability entrains the

circadian clock [40], a separate food entrainable oscillator could exist [41]. The differential

response to random feeding and feed-fast cycles demonstrates that the strength of this zeitge-

ber depends on its timing. In gold fish, the feeding associated cortisol rhythms are entrained to

the light-dark cycle when the animals are held on a random feeding regime [42]. However, this

rhythm becomes independent of the light-dark cycle and entrained by food when the animals

are fed a single meal at a fixed time of the day [43]. Thus, when the effect of food as a zeitgeber

is not desired, it is an option to restrict research to (zebrafish) larval stages. Alternatively, ran-

dom feeding and/or feeding on alternate days will reduce its effect.

Here we have presented an optimized instrument and protocol for photo- and chronobiol-

ogy research, and demonstrated its application for aquatic organisms. Together with the knowl-

edge how to manipulate the relative strength of non-photic zeitgebers we have introduced an

affordable multi-purpose tool for reliable molecular and behavioural data acquisition.

Supporting information

S1 Fig. Drawings of instrument for photobiology.

(PDF)

S2 Fig. Drawings of infrared light box and tracking plate.

(PDF)

S1 Table. Tables of spectra.

(XLS)

Acknowledgments

We like to thank M. Hofbauer for advice on lighting and tracking software, H. Werner for

building the instrument, L. Burger and S. Winkler for technical advice, and D.L. Baauw for

Instrument and protocol for photobiology research

PLOS ONE | DOI:10.1371/journal.pone.0172038 February 17, 2017 12 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0172038.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0172038.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0172038.s003


technical drawings. MPSD is supported by VIPS (#GM100402), FWF “Lise Meitner”

(#AM0167411) fellowships and received payment from the FWF grant #I2972. NSF is finan-

cially supported by the BioInterfaces programme of the Helmholtz Association. KTR is sup-

ported by grants from the University of Vienna (research platform “Marine Rhythms of Life”),

the FWF (http://www.fwf.ac.at/en/) START award (#AY0041321) and research project grant

(#P28970), and the European Council under the European Community’s Seventh Framework

Programme (FP7/2007-2013)/ ERC Grant Agreement 337011.

Author Contributions

Conceptualization: MPSD NSF KTR.

Data curation: MPSD KTR.

Formal analysis: MPSD.

Funding acquisition: MPSD NSF KTR.

Investigation: MPSD.

Methodology: MPSD NSF.

Resources: MPSD NSF KTR.

Validation: MPSD NSF KTR.

Writing – original draft: MPSD KTR.

Writing – review & editing: MPSD NSF KTR.

References
1. Davies WI, Tamai TK, Zheng L, Fu JK, Rihel J, Foster RG, et al. An extended family of novel vertebrate

photopigments is widely expressed and displays a diversity of function. Genome research. 2015; 25

(11):1666–79. Epub 2015/10/10. PubMed Central PMCID: PMCPMC4617963. doi: 10.1101/gr.189886.

115 PMID: 26450929

2. Davies WL, Hankins MW, Foster RG. Vertebrate ancient opsin and melanopsin: divergent irradiance

detectors. Photochemical & photobiological sciences: Official journal of the European Photochemistry

Association and the European Society for Photobiology. 2010; 9(11):1444–57. Epub 2010/10/06.

3. Fischer RM, Fontinha BM, Kirchmaier S, Steger J, Bloch S, Inoue D, et al. Co-expression of VAL- and

TMT-opsins uncovers ancient photosensory interneurons and motorneurons in the vertebrate brain.

PLoS biology. 2013; 11(6):e1001585. Epub 2013/06/19. PubMed Central PMCID: PMCPMC3679003.

doi: 10.1371/journal.pbio.1001585 PMID: 23776409

4. Koyanagi M, Terakita A. Diversity of animal opsin-based pigments and their optogenetic potential. Bio-

chimica et biophysica acta. 2014; 1837(5):710–6. Epub 2013/09/18. doi: 10.1016/j.bbabio.2013.09.003

PMID: 24041647

5. Peirson SN, Halford S, Foster RG. The evolution of irradiance detection: melanopsin and the non-visual

opsins. Philosophical transactions of the Royal Society of London Series B, Biological sciences. 2009;

364(1531):2849–65. Epub 2009/09/02. PubMed Central PMCID: PMCPMC2781857. doi: 10.1098/rstb.

2009.0050 PMID: 19720649

6. Zantke J, Ishikawa-Fujiwara T, Arboleda E, Lohs C, Schipany K, Hallay N, et al. Circadian and circalu-

nar clock interactions in a marine annelid. Cell reports. 2013; 5(1):99–113. Epub 2013/10/01. PubMed

Central PMCID: PMCPMC3913041. doi: 10.1016/j.celrep.2013.08.031 PMID: 24075994

7. Tarttelin EE, Frigato E, Bellingham J, Di Rosa V, Berti R, Foulkes NS, et al. Encephalic photoreception

and phototactic response in the troglobiont Somalian blind cavefish Phreatichthys andruzzii. The Jour-

nal of experimental biology. 2012; 215(Pt 16):2898–903. Epub 2012/07/28. PubMed Central PMCID:

PMCPMC3404804. doi: 10.1242/jeb.071084 PMID: 22837464

8. Gavriouchkina D, Fischer S, Ivacevic T, Stolte J, Benes V, Dekens MP. Thyrotroph embryonic factor

regulates light-induced transcription of repair genes in zebrafish embryonic cells. PLoS One. 2010; 5

Instrument and protocol for photobiology research

PLOS ONE | DOI:10.1371/journal.pone.0172038 February 17, 2017 13 / 15

http://www.fwf.ac.at/en/
http://dx.doi.org/10.1101/gr.189886.115
http://dx.doi.org/10.1101/gr.189886.115
http://www.ncbi.nlm.nih.gov/pubmed/26450929
http://dx.doi.org/10.1371/journal.pbio.1001585
http://www.ncbi.nlm.nih.gov/pubmed/23776409
http://dx.doi.org/10.1016/j.bbabio.2013.09.003
http://www.ncbi.nlm.nih.gov/pubmed/24041647
http://dx.doi.org/10.1098/rstb.2009.0050
http://dx.doi.org/10.1098/rstb.2009.0050
http://www.ncbi.nlm.nih.gov/pubmed/19720649
http://dx.doi.org/10.1016/j.celrep.2013.08.031
http://www.ncbi.nlm.nih.gov/pubmed/24075994
http://dx.doi.org/10.1242/jeb.071084
http://www.ncbi.nlm.nih.gov/pubmed/22837464


(9):e12542. PubMed Central PMCID: PMCPMC2935359. doi: 10.1371/journal.pone.0012542 PMID:

20830285

9. Tamai TK, Vardhanabhuti V, Foulkes NS, Whitmore D. Early embryonic light detection improves sur-

vival. Current biology: CB. 2004; 14(3):R104–5. Epub 2004/02/28. PMID: 14986634

10. Whitmore D, Foulkes NS, Sassone-Corsi P. Light acts directly on organs and cells in culture to set the

vertebrate circadian clock. Nature. 2000; 404(6773):87–91. Epub 2000/03/15. doi: 10.1038/35003589

PMID: 10716448

11. Cuesta IH, Lahiri K, Lopez-Olmeda JF, Loosli F, Foulkes NS, Vallone D. Differential maturation of rhyth-

mic clock gene expression during early development in medaka (Oryzias latipes). Chronobiology inter-

national. 2014; 31(4):468–78. Epub 2014/01/25. doi: 10.3109/07420528.2013.856316 PMID:

24456338

12. Dekens MP, Whitmore D. Autonomous onset of the circadian clock in the zebrafish embryo. EMBO J.

2008; 27(20):2757–65. PubMed Central PMCID: PMCPMC2572168. doi: 10.1038/emboj.2008.183

PMID: 18800057

13. Carr AJ, Whitmore D. Imaging of single light-responsive clock cells reveals fluctuating free-running peri-

ods. Nature cell biology. 2005; 7(3):319–21. Epub 2005/03/02. doi: 10.1038/ncb1232 PMID: 15738976

14. Cermakian N, Pando MP, Thompson CL, Pinchak AB, Selby CP, Gutierrez L, et al. Light induction of a

vertebrate clock gene involves signaling through blue-light receptors and MAP kinases. Current biology:

CB. 2002; 12(10):844–8. Epub 2002/05/17. PMID: 12015122

15. Mracek P, Pagano C, Frohlich N, Idda ML, Cuesta IH, Lopez-Olmeda JF, et al. ERK Signaling Regu-

lates Light-Induced Gene Expression via D-Box Enhancers in a Differential, Wavelength-Dependent

Manner. PLoS One. 2013; 8(6):e67858. Epub 2013/07/11. PubMed Central PMCID:

PMCPMC3694018. doi: 10.1371/journal.pone.0067858 PMID: 23840779

16. Cavallari N, Frigato E, Vallone D, Frohlich N, Lopez-Olmeda JF, Foa A, et al. A blind circadian clock in

cavefish reveals that opsins mediate peripheral clock photoreception. PLoS biology. 2011; 9(9):

e1001142. Epub 2011/09/13. PubMed Central PMCID: PMCPMC3167789. doi: 10.1371/journal.pbio.

1001142 PMID: 21909239

17. Bridges CDB. The Rhodopsin-Porphyropsin Visual System. In: Dartnall HJA, editor. Photochemistry of

Vision. Berlin, Heidelberg: Springer Berlin Heidelberg; 1972. p. 417–80.

18. Enright JM, Toomey MB, Sato SY, Temple SE, Allen JR, Fujiwara R, et al. Cyp27c1 Red-Shifts the

Spectral Sensitivity of Photoreceptors by Converting Vitamin A1 into A2. Current biology: CB. 2015; 25

(23):3048–57. Epub 2015/11/10. PubMed Central PMCID: PMCPMC4910640. doi: 10.1016/j.cub.

2015.10.018 PMID: 26549260

19. Lythgoe JN. Light and Vision in the Aquatic Environment. In: Atema J, Fay RR, Popper AN, Tavolga

WN, editors. Sensory Biology of Aquatic Animals. New York, NY: Springer New York; 1988. p. 57–82.

20. Brockerhoff SE, Hurley JB, Janssen-Bienhold U, Neuhauss SC, Driever W, Dowling JE. A behavioral

screen for isolating zebrafish mutants with visual system defects. Proceedings of the National Academy

of Sciences of the United States of America. 1995; 92(23):10545–9. Epub 1995/11/07. PubMed Central

PMCID: PMCPMC40648. PMID: 7479837

21. Weger BD, Sahinbas M, Otto GW, Mracek P, Armant O, Dolle D, et al. The light responsive transcrip-

tome of the zebrafish: function and regulation. PLoS One. 2011; 6(2):e17080. Epub 2011/03/11.

PubMed Central PMCID: PMCPMC3039656. doi: 10.1371/journal.pone.0017080 PMID: 21390203

22. Lahiri K, Vallone D, Gondi SB, Santoriello C, Dickmeis T, Foulkes NS. Temperature regulates transcrip-

tion in the zebrafish circadian clock. PLoS biology. 2005; 3(11):e351. Epub 2005/09/24. PubMed Cen-

tral PMCID: PMCPMC1233578. doi: 10.1371/journal.pbio.0030351 PMID: 16176122

23. Rensing L, Ruoff P. Temperature effect on entrainment, phase shifting, and amplitude of circadian

clocks and its molecular bases. Chronobiology international. 2002; 19(5):807–64. Epub 2002/10/31.

PMID: 12405549

24. Mullins MC, Hammerschmidt M, Haffter P, Nusslein-Volhard C. Large-scale mutagenesis in the zebra-

fish: in search of genes controlling development in a vertebrate. Current biology: CB. 1994; 4(3):189–

202. Epub 1994/03/01. PMID: 7922324

25. Westerfield M. The zebrafish book: a guide for the laboratory use of zebrafish (Brachydanio rerio).

[Eugene, OR]: M. Westerfield; 1995.

26. Student. THE PROBABLE ERROR OF A MEAN. Biometrika. 1908; 6(1):1–25.

27. Villamizar N, Vera LM, Foulkes NS, Sanchez-Vazquez FJ. Effect of lighting conditions on zebrafish

growth and development. Zebrafish. 2014; 11(2):173–81. Epub 2013/12/26. PubMed Central PMCID:

PMCPMC3991973. doi: 10.1089/zeb.2013.0926 PMID: 24367902

28. Smith RC, Baker KS. Optical properties of the clearest natural waters (200–800 nm). Applied optics.

1981; 20(2):177–84. Epub 1981/01/15. doi: 10.1364/AO.20.000177 PMID: 20309088

Instrument and protocol for photobiology research

PLOS ONE | DOI:10.1371/journal.pone.0172038 February 17, 2017 14 / 15

http://dx.doi.org/10.1371/journal.pone.0012542
http://www.ncbi.nlm.nih.gov/pubmed/20830285
http://www.ncbi.nlm.nih.gov/pubmed/14986634
http://dx.doi.org/10.1038/35003589
http://www.ncbi.nlm.nih.gov/pubmed/10716448
http://dx.doi.org/10.3109/07420528.2013.856316
http://www.ncbi.nlm.nih.gov/pubmed/24456338
http://dx.doi.org/10.1038/emboj.2008.183
http://www.ncbi.nlm.nih.gov/pubmed/18800057
http://dx.doi.org/10.1038/ncb1232
http://www.ncbi.nlm.nih.gov/pubmed/15738976
http://www.ncbi.nlm.nih.gov/pubmed/12015122
http://dx.doi.org/10.1371/journal.pone.0067858
http://www.ncbi.nlm.nih.gov/pubmed/23840779
http://dx.doi.org/10.1371/journal.pbio.1001142
http://dx.doi.org/10.1371/journal.pbio.1001142
http://www.ncbi.nlm.nih.gov/pubmed/21909239
http://dx.doi.org/10.1016/j.cub.2015.10.018
http://dx.doi.org/10.1016/j.cub.2015.10.018
http://www.ncbi.nlm.nih.gov/pubmed/26549260
http://www.ncbi.nlm.nih.gov/pubmed/7479837
http://dx.doi.org/10.1371/journal.pone.0017080
http://www.ncbi.nlm.nih.gov/pubmed/21390203
http://dx.doi.org/10.1371/journal.pbio.0030351
http://www.ncbi.nlm.nih.gov/pubmed/16176122
http://www.ncbi.nlm.nih.gov/pubmed/12405549
http://www.ncbi.nlm.nih.gov/pubmed/7922324
http://dx.doi.org/10.1089/zeb.2013.0926
http://www.ncbi.nlm.nih.gov/pubmed/24367902
http://dx.doi.org/10.1364/AO.20.000177
http://www.ncbi.nlm.nih.gov/pubmed/20309088


29. Perez-Escudero A, Vicente-Page J, Hinz RC, Arganda S, de Polavieja GG. idTracker: tracking individu-

als in a group by automatic identification of unmarked animals. Nature methods. 2014; 11(7):743–8.

Epub 2014/06/02. doi: 10.1038/nmeth.2994 PMID: 24880877

30. Ben-Moshe Livne Z, Alon S, Vallone D, Bayleyen Y, Tovin A, Shainer I, et al. Genetically Blocking the

Zebrafish Pineal Clock Affects Circadian Behavior. PLoS Genetics. 2016; 12(11):e1006445. doi: 10.

1371/journal.pgen.1006445 PMID: 27870848

31. Kazimi N, Cahill GM. Development of a circadian melatonin rhythm in embryonic zebrafish. Develop-

mental Brain Research. 1999; 117(1):47–52. PMID: 10536231

32. Cahill GM, Hurd MW, Batchelor MM. Circadian rhythmicity in the locomotor activity of larval zebrafish.

Neuroreport. 1998; 9(15):3445–9. Epub 1998/12/17. PMID: 9855296

33. Ziv L, Gothilf Y. Circadian time-keeping during early stages of development. Proceedings of the

National Academy of Sciences of the United States of America. 2006; 103(11):4146–51. Epub 2006/03/

16. PubMed Central PMCID: PMCPMC1449661. doi: 10.1073/pnas.0600571103 PMID: 16537499

34. Dekens MP, Santoriello C, Vallone D, Grassi G, Whitmore D, Foulkes NS. Light regulates the cell cycle

in zebrafish. Current biology: CB. 2003; 13(23):2051–7. Epub 2003/12/05. PMID: 14653994

35. Osborne NSS H.F.; Ginnings D.C. Measurements of heat capacity and heat of vaporization of water in

the range 0 degrees to 100 degrees C. J Res Natl Bur Stand. 1939; 23(2):197–259.

36. Lopez-Olmeda JF, Tartaglione EV, de la Iglesia HO, Sanchez-Vazquez FJ. Feeding entrainment of

food-anticipatory activity and per1 expression in the brain and liver of zebrafish under different lighting

and feeding conditions. Chronobiology international. 2010; 27(7):1380–400. Epub 2010/08/28. doi: 10.

3109/07420528.2010.501926 PMID: 20795882

37. Davis RE, Bardach JE. Time-co-ordinated prefeeding activity in fish. Animal Behaviour. 1965; 13

(1):154–62.

38. Weber DN, Spieler RE. Effects of the light-dark cycle and scheduled feeding on behavioral and repro-

ductive rhythms of the cyprinodont fish, Medaka, Oryzias latipes. Experientia. 1987; 43(6):621–4. Epub

1987/06/15. PMID: 3595795

39. Spieler RE. Feeding-Entrained Circadian Rhythms in Fishes. In: Ali MA, editor. Rhythms in Fishes.

Boston, MA: Springer US; 1992. p. 137–47.

40. Feillet CA, Ripperger JA, Magnone MC, Dulloo A, Albrecht U, Challet E. Lack of food anticipation in

Per2 mutant mice. Current biology: CB. 2006; 16(20):2016–22. Epub 2006/10/24. doi: 10.1016/j.cub.

2006.08.053 PMID: 17055980

41. Storch KF, Weitz CJ. Daily rhythms of food-anticipatory behavioral activity do not require the known cir-

cadian clock. Proceedings of the National Academy of Sciences of the United States of America. 2009;

106(16):6808–13. Epub 2009/04/16. PubMed Central PMCID: PMCPMC2666092. doi: 10.1073/pnas.

0902063106 PMID: 19366674

42. Noeske TA, Spieler RE. Photoperiod and diel variations of serum cortisol, thyroxine and protein in gold-

fish, Carassius auratus L. Journal of Fish Biology. 1983; 23(6):705–10.

43. Spieler RE, Noeske TA. Effects of Photoperiod and Feeding Schedule on Diel Variations of Locomotor

Activity, Cortisol, and Thyroxine in Goldfish. Transactions of the American Fisheries Society. 1984; 113

(4):528–39.

Instrument and protocol for photobiology research

PLOS ONE | DOI:10.1371/journal.pone.0172038 February 17, 2017 15 / 15

http://dx.doi.org/10.1038/nmeth.2994
http://www.ncbi.nlm.nih.gov/pubmed/24880877
http://dx.doi.org/10.1371/journal.pgen.1006445
http://dx.doi.org/10.1371/journal.pgen.1006445
http://www.ncbi.nlm.nih.gov/pubmed/27870848
http://www.ncbi.nlm.nih.gov/pubmed/10536231
http://www.ncbi.nlm.nih.gov/pubmed/9855296
http://dx.doi.org/10.1073/pnas.0600571103
http://www.ncbi.nlm.nih.gov/pubmed/16537499
http://www.ncbi.nlm.nih.gov/pubmed/14653994
http://dx.doi.org/10.3109/07420528.2010.501926
http://dx.doi.org/10.3109/07420528.2010.501926
http://www.ncbi.nlm.nih.gov/pubmed/20795882
http://www.ncbi.nlm.nih.gov/pubmed/3595795
http://dx.doi.org/10.1016/j.cub.2006.08.053
http://dx.doi.org/10.1016/j.cub.2006.08.053
http://www.ncbi.nlm.nih.gov/pubmed/17055980
http://dx.doi.org/10.1073/pnas.0902063106
http://dx.doi.org/10.1073/pnas.0902063106
http://www.ncbi.nlm.nih.gov/pubmed/19366674

