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Abstract

Background: Accurate genomic variant detection is an essential step in gleaning medically useful information from
genome data. However, low concordance among variant-calling methods reduces confidence in the clinical validity
of whole genome and exome sequence data, and confounds downstream analysis for applications in genome
medicine.

Here we describe BAYSIC (BAYeSian Integrated Caller), which combines SNP variant calls produced by different
methods (e.g. GATK, FreeBayes, Atlas, SamTooals, etc.) into a more accurate set of variant calls. BAYSIC differs from
majority voting, consensus or other ad hoc intersection-based schemes for combining sets of genome variant calls.
Unlike other classification methods, the underlying BAYSIC model does not require training using a “gold standard”
of true positives. Rather, with each new dataset, BAYSIC performs an unsupervised, fully Bayesian latent class analysis
to estimate false positive and false negative error rates for each input method. The user specifies a posterior probability
threshold according to the user’s tolerance for false positive and false negative errors; lowering the posterior probability
threshold allows the user to trade specificity for sensitivity while raising the threshold increases specificity in exchange
for sensitivity.

Results: We assessed the performance of BAYSIC in comparison to other variant detection methods using ten low
coverage (~5X) samples from The 1000 Genomes Project, a tumor/normal exome pair (40X), and exome sequences
(40X) from positive control samples previously identified to contain clinically relevant SNPs. We demonstrated BAYSIC's
superior variant-calling accuracy, both for somatic mutation detection and germline variant detection.

Conclusions: BAYSIC provides a method for combining sets of SNP variant calls produced by different variant calling
programs. The integrated set of SNP variant calls produced by BAYSIC improves the sensitivity and specificity of the
variant calls used as input. In addition to combining sets of germline variants, BAYSIC can also be used to combine sets
of somatic mutations detected in the context of tumor/normal sequencing experiments.
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Background

The decreasing cost of producing sequence data has made
the sequencing of genomes routine. Researchers use gen-
ome resequencing to identify how genomic changes are re-
lated to phenotype in their organism of interest. In the
case of humans and certain other genomes (e.g., dogs, cats
and livestock), resequencing projects aim to associate gen-
etic changes to disease risk, medical treatment efficacy or
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other traits of interest. In some applications it is desirable
to detect de novo somatic mutations, which may affect dis-
ease progression, prognosis and therapy. In other applica-
tions like genomic medicine for cancer, genomic variants
in normal tissue can be compared to genomic variants of
the tumor to identify relevant somatic mutations.
However, the accurate detection of single nucleotide
variants (SNPs) and small insertions or deletions (indels)
is not trivial. There is no standard protocol for detecting
SNP predictions with the highest sensitivity and specifi-
city. Each algorithm used in SNP detection creates a dif-
ferent balance of sensitivity and specificity, to either
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increase the number of true positives at the cost of add-
itional false positives or decrease the number of false
positives at the cost of reducing the number of true pos-
itives. Additionally, many variant calling algorithms do
not provide quantitative values for filtering the VCF out-
put file, or if they do provide users with numerical
values for quality score filtering, it often remains unclear
to the naive user what is an appropriate filter. Variant
calling programs like GATK and Atlas provide only
qualitative values for filtering, with language like “PASS”
or “LowQual”. In addition, some algorithms, e.g. GATK,
recommend the user include many samples in order to
recalibrate quality scores or classify SNPs with distinc-
tions between PASS and LowQual, and thereby increase
variant call accuracy.

Maximal sensitivity is desirable to minimize false nega-
tive calls and therefore avoid missing true mutations.
The consequences of not detecting real variation in-
clude: 1) failure to diagnosis or detect real disease and
correctly predict elevated or reduced risk for medical
problems or potential drug effects, and 2) excess mortal-
ity or suffering because of nonintervention or non-
optimal treatment. Maximal specificity is also essential
to minimize false positive calls and thereby avoid errone-
ous over-diagnosis and the time, patient distress and
expense of confirmatory testing and potential morbid-
ity from unneeded overtreatment. Unfortunately, any
classifier performing a nontrivial detection operation
on real-world data achieves improved sensitivity only
by accepting some elevated rate of false positives, and
thus reduced specificity. This detection error tradeoff
(DET) is an essential feature of detection task perform-
ance [1]. Because any single classifier has an inherent
sensitivity versus specificity tradeoff, we hypothesized
that more sophisticated methods for systematically inte-
grating the output from multiple independent classifiers
(here alternative methods of variant calling) — some with
higher inherent sensitivity, some with higher intrinsic
specificity - would result in overall improvement in the
receiver operating characteristics of the BAYSIC inte-
grated call set compared to the input call sets.

Managing sensitivity and specificity of variant calls is
critical in projects using genomic data for clinical care
[2]. Variant call accuracy may be affected by multiple
factors, including systematic sequencing error, sequence
read depth, allele variant fraction and position-specific
error rate, among others. While there have been recent
descriptions of other methods to improve variant call ac-
curacy, including means of combining read mapping and
variant call algorithms, these methods typically require
training on a gold standard dataset considered to be the
truth [3,4]. By contrast, BAYSIC is a completely un-
supervised machine learning method. BAYSIC does not
depend upon training and discordant call arbitration
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with validated data, yet still achieves gains in sensitivity
and specificity over input call sets. Moreover, clinical
genome sequencing often involves small sample num-
bers and/or variant calls in genomic regions with low se-
quencing coverage. For example, many clinical applications
involve only trios of exomes or genomes, comparing SNPs
differential between two healthy parents and a sick child
for diagnosis and treatment selection. In other clinical
cases, real SNPs could be missed in low read depth regions
where the number of reads containing a SNP do not meet
a strict a priori evidence threshold for inclusion in lists of
putative clinically relevant variants [5].

Here we describe BAYSIC (BAYeSian Integrated Caller),
a novel algorithm that uses a Bayesian statistical method
based on latent class analysis to combine variant sets pro-
duced by different bioinformatic packages (e.g, GATK,
FreeBayes, Samtools) into a high-confidence set of gen-
ome variants. The strengths of BAYSIC are several. First,
BAYSIC integrates data produced from multiple SNP
callers, each with differing biases, and produces a call set
with a posterior probability that is intuitive and can be
used for quantitative filtering. Equally important, BAYSIC
is a completely unsupervised method of clustering or clas-
sification and requires no training on a “gold standard” or
validated data sets.

Third, BAYSIC performance improves along with the
sensitivity or specificity gains of the input call sets. If new
calling methods yield improved specificity and sensitivity,
then BAYSIC will reap those rewards too. For example, in
applications in which sensitivity is a priority, the BAYSIC
posterior probability cutoff can be set low to minimize
false negatives, and for applications in which specificity is
a priority it can be set high to minimize false positives.
BAYSIC run with a posterior probability threshold of 0.9
produces more sensitive and specific SNP prediction than
any individual caller used as input.

Implementation

BAYSIC algorithm

The user provides variant calls from one or more variant
calling programs of their choice in VCF format and, op-
tionally, a posterior probability cutoff (default cutoff =
0.8). While not required, the user may also provide a
VCE file containing the contents of third party database
(e.g. dbSNP for germline variants or COSMIC for som-
atic mutations) as an additional source of variant infor-
mation for BAYSIC.

False positive and false negative error rates for each evi-
dence source (variant calling program (either a variant
calling program or evidence such as dbSNP) are estimated
using a latent class analysis (LCA) approach similar to the
approach previously used to combine sets of gene predic-
tion [6] and to infer orthologous genes from different ge-
nomes [7]. Briefly, this approach assumes a multinomial



Cantarel et al. BMC Bioinformatics 2014, 15:104
http://www.biomedcentral.com/1471-2105/15/104

probability model that uses the number of observed
counts for each possible combination of evidence sources
that detect a given SNP to calculate the underlying param-
eters for each evidence source: the background frequency
of true cases (alpha), and the independent and identically
distributed (iid) false positive and false negative error rates
of each evidence source. This LCA model is implemented
using a fully Bayesian Markov Chain Monte Carlo
(MCMC) simulation using the R2JAGS R package [http://
cran.r-project.org/web/packages/R2jags/index.html]. ~ For
each of the three parameters to be estimated (the back-
ground frequency of true cases, and the false positive or
false negative rates), a random value is selected from a
beta distribution with shape parameters a of 1 and b of 2
for 120,000 iterations to yield an estimated value for each
of these three parameters.

The posterior probability for each possible combin-
ation of agreement amongst the evidence sources (as in
Figure 1) are then calculated as:
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where r is the number of evidence sources used, q; is the
false positive rate for the i™ program, B; is the false nega-
tive rate for the i™ evidence source, and 0 is the estimate
of rate of overall SNP occurrence, x; is 0 or 1 depending
on whether the i™ evidence source called a SNP at the
given location. For each variant, a posterior probability
is determined based on which evidence source(s) de-
tected the variant, and the posterior probability cutoff is
applied to yield a set of integrated variant calls.

BAYSIC is implemented as a Perl script that receives in-
put parameters from the user (VCF files, posterior prob-
ability cutoffs, and output file names). The Perl script
invokes a separate R script, which computes the o,
and 0 parameters and the posterior probabilities for
each possible combination of programs. The Perl script
then determines the posterior probability for each SNP
variant based on which callers detected the variant,
and writes out to a VCF those variants whose posterior
probability is greater than the posterior probability
cutoff specified by the user or a default value of 0.8 if
no cutoff was specified.

Methods

Detection of genome variants using samples from the
1000 genome project

To detect genome variants, GATK version 2.1-9 [8],
Atlas version v1.4.3 [9], Samtools version 0.1.18 (http://
samtools.sourceforge.net/) and FreeBayes version 0.9.7
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[10] were used. BAM files for the following ten samples
were downloaded and used as input for the four variant
calling programs above: NA12341, NA18566, NA12489,
NA18959, NA18498, NA19007, NA18519, NA19700,
NA18532 and NA19819. VCEF files output by these pro-
grams as well as a VCF for dbSNP build version 137
were used as input for BAYSIC.

Measurement of sensitivity and specificity using data
from the 1000 genome project

Sensitivity of each variant detection program was mea-
sured as the percent of SNPs detected by the given pro-
gram that were confirmed by orthogonal technology
(OmniChip) detected by each program. Specificity for
each program was measured as the ratio of transitions
to transversion (Ti/Tv) for the set of SNP variants pro-
duced by each program using VCFTools [11].

Detection of clinically associated genome variants in a
previously verified sample

Peripheral blood was taken from a male patient diag-
nosed with vanishing white matter leukodystrophy, as
well as from the unaffected father, mother and sister.
Genomic DNA was extracted from each sample using
standard protocols, and exome capture was carried out
using Illumina’s TruSeq technology according to the
manufacturer’s protocols. Enriched exome libraries were
then subjected to next generation sequencing using stand-
ard TruSeq sample preparation protocols from the manu-
facturer (Illumina), and paired end sequencing was carried
out on an Illumina HiSeq. Image analysis and base calling
was carried out using CASAVA 8.2. BWA was used to
align sequence reads to reference genome hgl9 with subse-
quent processing by Samtools (http://samtools.sourceforge.
net) and Picard (http://picard.sourceforge.net/) to ensure
proper file formatting. Alignments were then recalibrated
and realigned using GATK [8].

Detection of somatic mutations and measurement of
sensitivity and specificity in tumor versus normal pair
data

Using sequencing data from tumor and normal pair
from a single patient available in COSMIC (patient
PD3404), we produced somatic mutation calls using
MuTect [12], VarScan2 [13], Shimmer [14] and Strelka
[15]. These four sets of somatic mutation calls were
combined using BAYSIC with a posterior probability
cutoff of 0.8. Sensitivity was approximated as the over-
all number of somatic mutations detected by the pro-
gram, and specificity was measured as percent of somatic
mutation calls produced by the program that were present
in COSMIC version v63 [16].
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Figure 1 Contingency table and posterior probabilities for SNP variant detection programs. Variants were detected jointly on ten samples from
The 1000 Genomes Project using FreeBayes, SamTools, GATK, and Atlas as described in Methods. For each possible combination of agreement amongst
the variant calling programs and dbSNP, the observed number of SNP variant positions and the posterior probability calculated by BAYSIC is shown.
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Results and discussion

Overview of BAYSIC algorithm

Several programs exist for the detection of genome vari-
ants such as SNPs and insertions and deletions (http://
sourceforge.net/p/atlas2/wiki/ Atlas2%20Suite/) [9,17,18].
Previous studies have demonstrated that the agreement
between sets of genome variants produced by these
methods is poor [19]. The impact of this disagreement
among callers on the analytical validity and clinical util-
ity of genomic sequencing is obvious.

BAYSIC allows users to combine two or more sets of
genome variants. The user supplies one or more VCF files
containing the sets to be combined and a posterior prob-
ability cutoff based on the user’s tolerance for false posi-
tive and false negative errors (Figure 2). Optionally, the
user may also supply a set of known variants from third
party databases in order to increase accuracy, such as
dbSNP or COSMIC. The rate of false positive and false
negative errors for each set of variant calls are estimated
based on the input data using a MCMC simulation, and
the posterior probability for each possible combination of
agreement between the sets of calls is determined (see
Methods). The posterior probability cutoff is then applied,
and each variant that passes the cutoff is written out to a
new VCF file containing the integrated set of variant calls.

Sensitivity and specificity of BAYSIC algorithm

To evaluate BAYSIC, we first detected genome variants
using ten samples from the 1000 Genomes Project [20]
using GATK version 2, FreeBayes, Atlas and SamTools.

As seen previously [19], there was alarming disagree-
ment among the four sets of genome variant calls. Many
SNPs were present only in one set (296,756; 956,927;
233,557; 261,251 for SNP detected only by SamTools,
FreeBayes, Atlas and GATK, respectively) (Figure 3A).
Further, only 36.8% (3,666,983) of calls were present in
all four sets (Figure 3B), and only 82.5% (8,222,619) of
SNPs were present in two or more sets.

We next combined these four sets of variant calls using
BAYSIC. We used as input to BAYSIC the VCEF files gener-
ated from GATK, FreeBayes, Atlas and Samtools as well as
a VCF containing variants from dbSNP version 137. The
number of positions and posterior probabilities for each
possible combination of variant callers and dbSNP are
shown in Figure 1. For this particular dataset, SNPs de-
tected by any two prediction methods (including dbSNP)
would have passed the 0.8 posterior probability threshold
with the exception of a prediction by Atlas and dbSNP.

To evaluate the performance of BAYSIC in comparison
to existing variant calling programs, we measured the sen-
sitivity and specificity of each method. Sensitivity was mea-
sured as the percent of SNPs detected using an orthogonal
technology — array based genotyping (OmniChip) [21].
Specificity was measured as the ratio of transitions and
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transversions (Ti/Tv), previously demonstrated to be ap-
proximately 3 in coding regions and approximately 2 in
non-coding regions for true positive SNPs [22,23], but 0.5
for false positive SNPs [24]. Contamination of SNP call sets
with many false positives results in a Ti/Tv closer to 0.5,
while fewer false positives will result in a value close to the
normal value of Ti/Tv: 3 or 2 for coding regions and non-
coding regions, respectively. Ti/Tv may therefore be used
as a measure of specificity since it is proportional to the
rate of false positive SNP detection.

As expected, as a more stringent posterior probability
cutoff was applied, the specificity of the variant set pro-
duced by BAYSIC improved at the expense of a slight
decrease in sensitivity. The sensitivity of BAYSIC (using
a posterior probability cutoff of 0.8 and using as input
the set of SNP calls from GATK, FreeBayes, Atlas and
Samtools, along with SNPs from dbSNP) in detecting
SNPs in coding regions was identical to the union of the
set of all SNPs detected by these same four programs,
which represents maximal sensitivity (Figure 4A, com-
pare horizontal dashed line with black circle labeled 0.8).
Similarly, the sensitivity of BAYSIC calls in noncoding
regions was nearly identical to the union of all variant
calls. For SNPs in coding regions, BAYSIC, using a de-
fault posterior probability cutoff of 0.8, detected 16,978
(100%) of the OMNI CHIP-confirmed SNPs in coding
regions, and the union of the call sets, combining calls
from each of the callers detected 16,978 (100%) of the
OMNICHIP-confirmed SNPs in coding regions. For
SNPs in non-coding region, BAYSIC detected 903,984
(83.7%) of OMNICHIP-confirmed SNPs, while the union
of all SNPs detected by these four programs yielded
903,998 (83.7%) of these OMNI CHIP-confirmed SNPs.
As the posterior probability cutoff applied to the BAYSIC
set was increased from 0.8 to 1.0, the specificity increased
while the sensitivity decreased (Figure 4A, black circles).
At a posterior probability cutoff of 1.0, the specificity
approached the specificity of the intersection of the set of
SNPs called by all four programs with default parameters,
which represents maximal specificity (Figure 4A, vertical
dashed lines).

BAYSIC improved the sensitivity and specificity of the
SNP detection programs used as input to BAYSIC. In
detecting SNPs in non-coding regions, BAYSIC with the
default posterior probability cutoff of 0.8 was more sen-
sitive than FreeBayes, Samtools and Atlas2 and GATK
with no filter applied, and more specific than FreeBayes,
GATK and Atlas2, and comparable in specificity to Sam-
tools (Figure 4A, bottom panel). In detecting SNPs in
coding regions, BAYSIC with the default posterior prob-
ability cutoff of 0.8 was more sensitive than FreeBayes,
Samtools and Atlas2 and GATK with the low quality fil-
ter applied, and higher in specificity than GATK and
Samtools in non-coding regions. FreeBayes, Atlas2 and
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Figure 2 Overview of BAYSIC algorithm. Sets of variant calls produced from one or more programs are input in VCF format. Optionally,
variants from third party databases are included as additional sources of information, e.g. dbSNP for normal variant calling and COSMIC for
somatic mutation calling. False positive and false negative error rates are estimated using Markov Chain Monte Carlo simulation, and a posterior
probability is calculated for each possible combination of agreement between the variant calling programs (see Methods). Finally, variants whose
posterior probability is greater than the cutoff specified by the user (default value = 0.8) are output to generate a set of integrated variant calls.

GATK with low quality filter applied, however, were
higher in specificity in coding regions than BAYSIC with
the default posterior probability cutoff of 0.8. When the
BAYSIC posterior probability threshold was increased to
0.9, the specificity of BAYSIC in coding regions exceeded
Samtools, FreeBayes and GATK with low quality filter,

and the specificity of BAYSIC in non-coding regions
exceeded all 4 input call sets. Samtools sensitivity was
slightly higher than BAYSIC with a posterior probability
cutoff of 0.9, and Atlas2 coding region specificity is
slightly higher than BAYSIC with posterior probability
set to 0.9.
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Figure 3 Agreement amongst variant calling programs. Variants were detected jointly on ten samples from The 1000 Genomes Project using
FreeBayes, SamTools, GATK, and Atlas, as in Figure 1. A. For each SNP, agreement amongst the variant calling programs was calculated. The
number of SNPs detected by each of the programs is indicated by the number in the enclosing ellipses. B. Agreement amongst the variant
calling programs displayed as a barplot. A = Atlas, F = FreeBayes, G=GATK, S = Samtools. Left-hand y-axis indicates number of SNPs detected by
the programs denoted on the x-axis. Right-hand y-axis indicates the percent of all SNPs detected by the programs denoted on the x-axis.

Programs

Since other variant calling programs offer filtering op-
tions to increase the specificity of SNP detection at the
expense of sensitivity similar to the posterior probability
cutoff available in BAYSIC, we compared the perform-
ance of these filtering options with those of BAYSIC.
BAYSIC performed favorably compared with GATK
SNP call sets filtered using the Tranche and VQSLOD
options, and also with FreeBayes SNP call sets filtered
using the QUAL score. In SNPs occurring in non-coding
regions, BAYSIC (run with input from the Samtools,
FreeBayes, Atlas and GATK with default parameters)
with increasing posterior probability cutoffs described a
curve that was above and to the right of curves for
GATK with increasingly stringent Tranche and VQSLOD
filtering, and FreeBayes with increasingly stringent QUAL
score filtering (Figure 4B, lower panel). In SNPs occurring
in coding regions, BAYSIC (using Samtools, FreeBayes,
Atlas and GATK with default settings as input) with in-
creasingly stringent filtering described a curve that was
above and to the right of FreeBayes using QUAL filtering,
and more sensitive and specific than GATK using Tranche
filtering when BAYSIC was run with a posterior prob-
ability p > 0.99 (Figure 4B, top panel). At p >0.999 and
p =1.0, BAYSIC was slightly more sensitive but less
specific than GATK Tranche 99 and Tranche 99.9, and
less sensitive and specific than Tranche 90. Compared
with GATK using with VQSLOD filtering, BAYSIC
(again using as input Samtools, FeeBayes, Atlas and
GATK with default parameters) was generally more
sensitive, but less specific.

To assess the importance of each individual variant
calling program used as input to BAYSIC, we next inves-
tigated the effect of leaving out one of the four variant
calling programs (GATK, Atlas, FreeBayes and Sam-
tools) on the sensitivity and specificity of BAYSIC. Over-
all, the sensitivity and specificity of BAYSIC using as
input any three of variant caller programs were compar-
able to the specificity using all four variant calling pro-
grams (Figure 5, top and bottom, compare colored
curves to black curves), although the sensitivity of two
sets (GATK/Atlas/FreeBayes and GATK/Atlas/Samtools)
dropped markedly when applying the highest posterior
probability cutoff of 1.0. Also, applying the same poster-
ior probability cutoff to sets of variant produced by dif-
ferent programs resulted in different sensitivity and
specificity (for example, compare filled triangles). It is also
noteworthy that the inclusion of the GATK set as input
into BAYSIC had little effect on the sensitivity and specifi-
city of the resulting integrated SNP set produced by
BAYSIC. The sensitivity and specificity of BAYSIC using
Atlas, FreeBayes and SamTools as input was comparable
to that of BAYSIC using Atlas, FreeBayes, SamTools and
GATK as input (Figure 5, compare black and blue curves).

BAYSIC analysis of exome data from a subject with a
previously detected known clinically relevant mutation
To evaluate the performance of BAYSIC in a clinical
setting, we tested the ability of these programs to de-
tect a compound heterozygous mutation (rs113994057
and rs113994049) in the EIF2B5 gene, mutations in
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Figure 4 Sensitivity and specificity of BAYSIC and other variant calling programs. A. Improvement of sensitivity and specificity of BAYSIC
compared with input variant calling programs used with default parameters. SNP variants were detected jointly on ten samples from The 1000
Genomes Project using FreeBayes, SamTools, GATK (low quality filtered) and Atlas as in Figure 1, and the four variant sets and dbSNP were
combined using BAYSIC. Sensitivity of each of the variant calling programs and BAYSIC was measured as the percent of SNPs confirmed by an
orthogonal platform (SNP-chip) that was detected by the given program. Specificity was measured as the transition/transversion ratio (Ti/Tv) of all
SNP variants called by each program. The sensitivity and specificity for SNPs in coding (top) and non-coding regions (bottom) are shown. Numbers
accompanying black symbols indicate posterior probability cutoff used for generating the BAYSIC integrated variant sets. Horizontal dashed line
indicates the specificity of the intersection of the four sets of variant predictions produced by FreeBayes, SamTools, GATK and Atlas. Vertical
dashed line indicates sensitivity of the union of the four sets of variant predictions produced by FreeBayes, SamTools, GATK and Atlas. B. BAYSIC
sensitivity and specificity compared with variant calling programs with continuous estimates of variant probability. Variants were detected using
FreeBayes and GATK with varying stringency by applying cutoffs based on quality scores (for FreeBayes) or either Tranche scores or VQSLOD
scores (for GATK). Sensitivity and specificity are shown for FreeBayes with cutoffs of Q10, Q20 (blue points) and GATK with Tranche cutoffs
(open purple points, no cutoff, Tranche90, Tranche99 and Tranche99.9) or VQSLOD cutoffs (closed purple points, VQSLOD cutoffs of 0, 2.9,
4.4 or 54 from left to right). Sensitivity and specificity of BAYSIC using FreeBayes, Samtools, GATK and Atlas with default parameters as input

are shown for comparison.

which have been shown to be causative for vanishing
white matter leukodystrophy [25]. The genotypes at
these two SNPs were characterized in a family consist-
ing of one child affected with vanishing white matter
leukodystrophy, two healthy parents and one healthy
child using standard clinical genetic testing by Sanger
sequencing. (In this family, Sanger sequencing indicates
that two of the total of eight alleles for all individuals for
rs113994057 are ALT, and three of the eight alleles for
rs113994049 are ALT). Whole exome sequence data was
obtained for these same four individuals, and sequence
variants were detected using GATK, Atlas, Samtools,
FaSD (http://wanglab.hku.hk/FaSD/) and SNP calls from
these four programs were then integrated using BAYSIC.
BAYSIC with a default posterior probability cutoff (0.8)
correctly identified the genotypes of both SNPs in all fam-
ily members. Both SNPs were identified by three of the
four callers, and the posterior probability calculated by
BAYSIC for each SNP was greater than 0.999, far above
the default cutoff of 0.8. GATK and Samtools were able

to detect the risk allele in all four family members, but
GATK did so only when operating with the most re-
laxed filtering option (LQF). Atlas2 only detected one
(rs113994057) of the two causal SNPs (Table 1). FaSD
did not predict genotypes for healthy family members;
failing to detect the variants as candidates. Therefore,
results from Samtools or GATK with low quality filter
would have lead researchers to correctly identify the
compound heterozygous SNPs. However, if researchers
were to use any of the more stringent filtering options
commonly used in GATK, e.g., Tranche 90, 99, 99.9 or
a PASS filter, these SNPs would not have been de-
tected. Because one of the two SNPs is rare, our inte-
grated approach provides additional confidence for
researchers interested in detecting rare SNPs.

Using BAYSIC to combine sets of somatic mutation calls
produced with tumor/normal pair data

A common application of genome sequencing is to se-
quence samples taken from normal and tumorous tissue
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Figure 5 Effect of variant calling programs used as input on sensitivity and specificity of BAYSIC. SNP variants were detected with BAYSIC
using as input all possible combinations FreeBayes, SamTools, GATK and Atlas. The sensitivity and specificity of each set was then measured as in
Figure 4 for SNPs occurring in coding regions (top) or non-coding regions (bottom). The sensitivity and specificity for each combination of input
call sets and for a range of posterior probability cutoffs is shown.

and detect somatic mutations that may be involved in can-
cer [26]. Many programs exist to detect somatic mutations,
but as with programs for detecting SNP variants, the agree-
ment of these programs is poor [27]. The problem of com-
bining these sets of somatic mutations is analogous to the
problem of combining disparate sets of SNPs produced by
different SNP detection programs.

We applied BAYSIC to this related problem of com-
bining disparate sets of somatic mutation calls. Using se-
quencing data from tumor and normal pair from a
single patient available in a catalog of previously ob-
served somatic mutations (COSMIC; patient PD3404),
we produced somatic mutation calls using MuTect [12],
VarScan2 [13], Shimmer [14] and Strelka [15], and then
combined these four sets of somatic mutation calls using
BAYSIC with a default posterior probability cutoff of 0.8.

As a measure of specificity, we determined the overall
number of somatic mutations detected by each program
that were present in COSMIC (a database of previously ob-
served somatic mutations). MuTect, VarScan2, Shimmer,
Strelka and BAYSIC, using as input the sets of somatic mu-
tation produced by all four callers, detected 330, 165, 222,
165 and 510 somatic mutations that were present in COS-
MIC, respectively (Figure 6, Table 2); this translates to
3.3%, 0.2%, 2.7%, 2.6% and 7.1% of the total SNPs. Using
this as a measure, BAYSIC therefore improves the specifi-
city of all four callers used as input. BAYSIC predicted a
lower number of somatic mutations (7,914) compared to
MuTect, VarScan and Shimmer (9,977; 79,313; 8,222, re-
spectively), but more than Strelka (6,887). If the overall
number of somatic mutations is taken as a measure of sen-
sitivity, the sensitivity of BAYSIC is lower than Mutect and

Table 1 Identification of independently verified, disease causative SNPs

SNP Atlas GATK Samtools FaSD BAYSIC
rs113994057 Detected Detected (Tranche90) Detected Not detected Detected
rs113994049 Not detected Detected (LQF) Detected Detected Detected

SNP variants were detected in samples from four individuals from a single family with one individual affected with white matter leukodytrophy 2 healthy parents
and a healthy sibling. For each of two causative SNPs in the EIF2B5 gene associated with white matter leukodystrophy (rs113994057 and rs113994049), the ability
of Atlas, GATK, Samtools, FaSD or BAYSIC (with the default posterior probability cutoff of 0.8) to detect each variant is shown. For GATK, the most stringent filter
that could be applied and still detect each variant is shown in parentheses. “Detected” indicates that the SNP was predicted for one of the four subjects.
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Figure 6 Combining somatic mutation calls from tumor/normal pair samples using BAYSIC. Somatic mutations from exome data from a
single patient were predicted using Mutect, Strelka, Varscan2 and Shimmer and these four sets of somatic mutation calls were combined using
BAYSIC with a posterior probability cutoff of 0.8. As a measure of sensitivity, the number of somatic mutations predicted by each caller that are
present in COSMIC, a database of somatic mutation calls from other samples, is shown (top). As a measure of specificity, the percent of each set
of somatic mutation calls that are present in COSMIC is shown (bottom). A horizontal dashed line indicating the percent of BAYSIC somatic
mutational calls present in COSMIC is shown.

Shimmer, much lower than VarScan and higher than
Strelka. In general, each of the four individual callers is
highly concordant with the genotype predicted by the
genotype chip, one measure of accuracy. For all programs,
all somatic mutations that occurred at positions present on
the genotype chip predicted genotypes in agreement with
the genotype chip (Table 2).

Conclusions

Clinical applications of genomics demand reliable detection
of real variants and discrimination and rejection of false
alarms due to sequencing error, low sequence coverage

genomic medicine will be improved by better methods for
accurately identifying SNPs and other genomic variants.
Our analyses support our initial hypothesis: BAYSIC vari-
ant calls demonstrated improved variant detection accuracy
and superior receiver operating characteristics compared to
the variant call methods used as input for BAYSIC.
Importantly, BAYSIC will accept as input any number
of alternative variant detection algorithms, allowing the
user to combine methods that emphasize sensitivity with
methods that enhance specificity and achieve overall gains
in detection accuracy. As the sensitivity or specificity of in-
put call sets improve, the sensitivity and specificity of

or low allelic variant fraction. Accordingly, the utility of =~ BAYSIC variant calls also increases.

Table 2 Comparison of somatic mutation prediction methods
MuTect Strelka VarScan2 Shimmer BAYSIC
# of somatic mutations 9977 6887 79313 8222 7194
Positions on chip 2 2 120 23 3
100% (2/2) 100% (2/2) 100% (104/104) 100% (10/10) 100% (3/3)

Agreement with chip (SM on chip/SM with
genotype agreeing with chip)

#in COSMIC 330 179 165 222 510

% in COSMIC 3.3% 2.6% 0.2% 2.7% 7.1%
% unique somatic mutations 36% 8% 83% 51% -

# of somatic mutations causing coding changes 58 58 458 13 164

Somatic mutations from exome data from a single patient were predicted using Mutect, Strelka, Varscan2 and Shimmer and these four sets of somatic mutation
calls were combined using BAYSIC with a posterior probability cutoff of 0.8. The total number of somatic mutations detected by each program, as well as the
agreement of these somatic mutations with those COSMIC and with sets determined by chip are shown.
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Likewise, BAYSIC may be used to focus on specific
types of variant detection problems such as somatic mu-
tations in cancer, and achieves similar gains in receiver
operating characteristics compared to the individual
somatic variant calling algorithms used as input. An-
other program was recently described to combine som-
atic mutation calls [28]. Future work will determine the
relative performance of BAYSIC compared with this pro-
gram, and assess how inclusion of improved somatic
mutation call sets, as input to BAYSIC, affects BAYSIC’s
overall performance in somatic mutation detection.

It is possible that the degree of improvement offered
by BAYSIC in combining sets of germline SNP variant
calls compared to somatic mutation calls is explainable
by the different error rates in these two different experi-
mental settings. That is, germline SNP discovery has
very low false positive and low false negative rates rela-
tive to somatic mutation calls, with generally good sensi-
tivity and specificity [12,28]. Therefore, producing a
consensus set of germline SNP variants with BAYSIC
provides marginal but noticeable improvements to both
sensitivity and specificity (Figures 4 and 5). In contrast,
somatic mutation discovery has very high false positive
(and possibly also high false negative) rates, with poor
specificity (and perhaps also poor sensitivity). Producing
a consensus SNP set using BAYSIC therefore makes dra-
matic improvements to specificity without losing sensi-
tivity (Figure 6).

It is possible that correlations between the errors in
the sets of variant calls used as input to BAYSIC could
result in false positive errors in the integrated variant set
produced by BAYSIC. To address this, future versions of
BAYSIC will measure the bivariate residuals after latent
class analysis is performed, and will penalize the signifi-
cance of input sets that are highly correlated [7].

BAYSIC currently only integrates sets of SNP variant
calls. Future work will expand this to include other sorts
of variants such as insertions/deletions (indels), and add-
itional modifications to facilitate improved performance
in somatic mutation detection.

Availability and requirements

Project name: BAYSIC

Project home page: http://genformatic.com/baysic
Operating systems: Linux, OS X, Windows
Programming languages: Perl, R

Other requirements: JAGS, JSON File:Temp Getopt:
Long List::Util File:Next Test:Warn File::Slurp PerlIO::
gzip File::Which local:lib

License: Free for academic use, license needed for com-
mercial use
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