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Abstract

Background

Charted vital signs and laboratory results represent intermittent samples of a patient’s

dynamic physiologic state and have been used to calculate early warning scores to identify

patients at risk of clinical deterioration. We hypothesized that the addition of cardiorespira-

tory dynamics measured from continuous electrocardiography (ECG) monitoring to inter-

mittently sampled data improves the predictive validity of models trained to detect clinical

deterioration prior to intensive care unit (ICU) transfer or unanticipated death.

Methods and findings

We analyzed 63 patient-years of ECG data from 8,105 acute care patient admissions at a

tertiary care academic medical center. We developed models to predict deterioration result-

ing in ICU transfer or unanticipated death within the next 24 hours using either vital signs,

laboratory results, or cardiorespiratory dynamics from continuous ECG monitoring and also

evaluated models using all available data sources. We calculated the predictive validity (C-

statistic), the net reclassification improvement, and the probability of achieving the differ-

ence in likelihood ratio χ2 for the additional degrees of freedom. The primary outcome

occurred 755 times in 586 admissions (7%). We analyzed 395 clinical deteriorations with

continuous ECG data in the 24 hours prior to an event. Using only continuous ECG mea-

sures resulted in a C-statistic of 0.65, similar to models using only laboratory results and

vital signs (0.63 and 0.69 respectively). Addition of continuous ECG measures to models
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using conventional measurements improved the C-statistic by 0.01 and 0.07; a model

integrating all data sources had a C-statistic of 0.73 with categorical net reclassification

improvement of 0.09 for a change of 1 decile in risk. The difference in likelihood ratio χ2

between integrated models with and without cardiorespiratory dynamics was 2158

(p value: <0.001).

Conclusions

Cardiorespiratory dynamics from continuous ECG monitoring detect clinical deterioration in

acute care patients and improve performance of conventional models that use only labora-

tory results and vital signs.

Introduction

When we admit acutely ill patients to the hospital, we make diagnoses and initiate therapies

with an aim to restore or improve health. We do not intend for patients to deteriorate and

thereby require transfer to an intensive care unit (ICU). Despite our intentions, escalation of

care requiring transfer to an ICU occurs at a rate of 4 to 5 for every 100 acute care admissions.

[1,2] Since mortality increases with every hour of delay in transferring critically ill patients to

the ICU[3,4] the acute care community has focused on identifying patients at risk of poten-

tially catastrophic conditions by developing and implementing Early Warning Scores (EWS)

from data contained in electronic medical records (EMR).[1,2,5–9] These EWS come in a vari-

ety of flavors, yet each comprises the same ingredients—intermittently measured vital signs

(VS) and laboratory results (LABS) stored in the EMR.

A fundamental feature of current EWS is that they are updated only as new laboratory test

results or vital sign measurements become available–this intermittent sampling may miss diag-

nostic patterns that would be revealed by sampling more often. Continuous physiological

monitoring is often available as electrocardiographic (ECG) telemetry, but in current practice

is only transiently displayed and then discarded. Analysis of continuous ECG reveals not only

heart rates (HR) and dynamics such as variability, but can also extract respiratory rates (RR).

[10,11] Thus, continuous ECG offers a window into cardiorespiratory dynamics, long known

to hold information about the physiological status of the patient.

Here, we tested the hypothesis that the addition of cardiorespiratory dynamics measured

from continuous ECG monitoring to conventional, intermittently sampled, data improves the

predictive validity of models trained to detect clinical deterioration prior to ICU transfer or

unanticipated death.

Methods

Study population

We studied consecutive adult (age > 18 years) patients admitted to acute care beds for whom

continuous ECG data was available at the University of Virginia Health System, from October

11, 2013 to September 1, 2015. The 71 beds are arranged in 3 units and are under the care of a

variety of hospital services, principally Cardiovascular Medicine and Cardiothoracic Surgery.

An institutional electronic data warehouse archived the EMR including admission, discharge,

and transfer information and a log of medical emergency team (MET) activations.

Cardiorespiratory dynamics improves detection of deterioration

PLOS ONE | https://doi.org/10.1371/journal.pone.0181448 August 3, 2017 2 / 16

review, or approval of the manuscript; and decision

to submit the manuscript for publication.

Competing interests: Dr. Clark is employed by and

holds equity in Advanced Medical Predictive

Devices, Diagnostics, and Displays in

Charlottesville, VA, which has licensed

technologies from the University of Virginia

Licensing and Ventures Group. Dr. Moorman holds

equity and is the chief medical officer of Advanced

Medical Predictive Devices, Diagnostics, and

Displays in Charlottesville, VA, which has licensed

technologies from the University of Virginia

Licensing and Ventures Group. No other

disclosures were reported. This does not alter our

adherence to PLOS ONE policies on sharing data

and materials.

https://doi.org/10.1371/journal.pone.0181448


Electronic medical record vital signs and laboratory results

At 15-minute increments, we recorded the most recent charted VS measurements—tempera-

ture, HR, blood pressures, RR, oxygen saturation (SpO2), oxygen flow rate, Glasgow Coma

Scale—and LABS—comprehensive metabolic panel, complete blood counts, coagulation stud-

ies, arterial blood gases, lactic acid, troponin I. We excluded observations occurring after “Do

Not Resuscitate” (DNR) or “Do Not Intubate” (DNI) orders or after transition to comfort

measures-only (CMO).

Cardiorespiratory dynamics measured from continuous ECG monitoring

Heart rate dynamics and atrial fibrillation detection. We processed the continuous ECG

with three QRS detection algorithms–based on wavelet, Hilbert, and length transforms–on the

ECG lead with the highest signal to noise ratio. The three resulting heartbeat time series were

combined to determine the probability density of each detected heartbeat. Low confidence beats

were excluded from the analysis. The QRS detection scheme used here has 97.5% sensitivity and

99.5% positive predictive value on the MIT BIH arrhythmia database hosted by PhysioNet.[12,13]

We made observations every 15 minutes of the preceding 30 minutes and calculated the

mean interbeat interval, the standard deviation or HR variability, and nonlinear dynamics of

HR.[14–16] From these measurements, we used a previously validated algorithm to detect the

presence of atrial fibrillation (AF).[17–19]

Electrocardiography-derived respiratory rate and respiratory sinus arrhythmia. We

estimated RR from (1) the cyclic variation in ECG waveform characteristics that result from

respiratory movements and, when present, from (2) the respiratory sinus arrhythmia.[20] We

analyzed 60-second interbeat interval time series windows containing 20 or more heartbeats.

Windows overlapped by 75%. To analyze cyclic variation in ECG waveform characteristics, we

calculated the R-S amplitude[21] and the QRS area of each detected heartbeat in every lead.

[12] We defined the R-S amplitude to be the range of the ECG voltage within ±80 ms of each

detected beat–maximum and minimum values were based on a quadratic fit at the extreme

point. We calculated the QRS area by integrating the ECG voltage in each lead within ±80 ms

of each detected beat after subtracting the median value. We then estimated the mean cardiac

electrical axis between each pair of QRS area time series.[10] The unevenly sampled ECG

interbeat interval time series were resampled at 4 Hz. For each time series (i.e. R-S amplitude

and QRS axis), we calculated power spectra using a fast Fourier transform and selected the

lowest RR between 4 and 55 breaths per minute that had power of at least 95% of the maxi-

mum. As a measure of the degree of respiratory sinus arrhythmia, we recorded the amplitude

of the RR peak.

We combined the multiple measures of ECG RR following the methods of Nemati, Li, Clif-

ford and co-workers.[11,22] Briefly, each RR estimate was processed in a Kalman filter using

the spectral purity to estimate the observation noise. A fused ECG RR was calculated by averag-

ing the multiple estimates weighted by their innovation. We averaged the ECG RR and respira-

tory sinus arrhythmia amplitude measurements in 30-minute windows with 50% overlap.

Outcomes

The primary composite outcome was clinical deterioration leading to any of the following

events: (1) unanticipated direct transfer to the ICU, (2) MET activation with subsequent trans-

fer to the ICU within 12 hours, (3) emergent or urgent (within 1 hour) operating room proce-

dure with subsequent transfer to the ICU, or (4) unexpected death within 24 hours of last time

recorded in a telemetered bed. In cases without unexpected death, we did not classify events

with ICU dwell times of shorter than 4 hours. We defined the time of the event as the time of
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ICU transfer, urgent surgery, death, or MET activation that preceded death. Two investigators

reviewed unexpected deaths and transfers to the ICU for clinical deterioration. A third

reviewer adjudicated cases in which there was disagreement.

Statistical analysis

We calculated the median values and interquartile ranges (IQR) for continuous variables and

reported the counts and percentages of categorical measurements. During periods of continu-

ous ECG monitoring, we developed multivariable prediction models to predict the risk of the

primary composite outcome in the next 24 hours. We labeled observations during the time

window prior to the event as cases, and observations outside this timeframe as controls.

In model development we adhered to the Transparent Reporting of a multivariable predic-

tion model for Individual Prognosis Or Diagnosis (TRIPOD) statement recommendations.

[23] To minimize the inclusion of redundant measurements and to avoid overfitting, we elimi-

nated highly correlated predictors. We evaluated 48 candidate predictors derived from 39

component measurements (7 vital sign measurements, 25 lab results, 7 ECG calculations),

including the slope or change of HR and ECG RR over windows of up to 24 hours. As new AF

with rapid ventricular response commonly occurs and complicates critical illness, we also

tested the interaction between current AF status and that of the initial rhythm detected. To

impute missing values, we carried the last value forward for up to 24 hours for charted VS and

for up to 48 hours for LABS; thereafter we imputed median values. We allowed our pre-speci-

fied candidate predictors to have non-monotonic and non-linear associations by modeling

them with restricted cubic spline transformations.[24] We retained all significant higher-order

factors. We adjusted for the repeated and correlated observations within individual patients

with procedures that modify the variance-covariance matrix, and we quantified predictive

accuracy using a concordance index (C-statistic).[24]

We developed a first set of models from each independent data source (i.e. VS, LABS, ECG

monitoring data). We conducted a second round of model development by modeling from all

the pairwise combinations of independent data sources. Finally, we developed a combined

model that integrated all available data sources. At each round to quantify the impact of adding

the additional data source to the preceding model, we calculated the C-statistic and a categori-

cal NRI for a change of 1 decile in risk. To test the hypothesis that the addition of cardiorespi-

ratory dynamics to a model comprised of charted vital signs and laboratory results improves

predictive validity, we calculated the probability of achieving the difference in the likelihood

ratio χ2 of the two models accounting for the difference in degrees of freedom between the two

models and report this as a p-value. In sensitivity analysis we stratified the evaluation of model

discrimination by the admitting hospital service. We also calculated several well-known EWS

and compared their performance to that of our univariate and multivariate models.

We validated these models internally using bootstrap resampling (TRIPOD Type 1b model

study) to estimate the performance on a new sample of observations from the same patient pop-

ulation, and report the bias-corrected C-statistics.[23] We justify bootstrapping methodology

over split-sample or cross-validation techniques by noting that the estimates generated by these

alternative strategies are less stable (different splits lead to different results) and exhibit greater

bias (samples that vary only by chance will probably show similar performance).[23,25]

Results

Characteristics of admissions

We studied 8,105 consecutive admissions with available continuous ECG data. After exclusion

of observations occurring after DNR, DNI, or CMO orders, we analyzed the remaining 2.2
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million observations (63.3 patient-years; Fig 1). Table 1 provides descriptive statistics of the

cohort. The majority of patients were admitted to either Cardiovascular Medicine or Cardio-

thoracic Surgery services (5,504 admissions [68%], 81% of all patient-days). The median age

was 65 (IQR: 55–75; range: 18–99) years and the median hospital length of stay was 4 (2–7)

days.

Laboratory tests, vital signs, continuous ECG measurements

Fig 2 shows that the numbers of measurements varied widely, from 1.8M LABS (right inset,

brown) to 4.1M VS (right inset, beige) to 600M breaths (left, gray) and 2600M heartbeats (left,

gray). The green distribution in the middle inset represents 35M every-15-minute calculations

from continuous physiologic measures used for the ECG monitoring statistical models.

There was good agreement of HR and RR from the charted VS and the ECG analysis. RR

from charted VS was most frequently one of three values: 18 (15.0%), 20 (11.7%), and 16

Fig 1. Flowsheet of analysis.

https://doi.org/10.1371/journal.pone.0181448.g001
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(9.9%) breaths per minute (Fig 3). The distribution of ECG RR, as expected, was more contin-

uous. AF was the first detected rhythm in 655 admissions (8.1%) and was present in 9.3% of all

observations during ECG monitoring.

Missing data were extremely rare among continuously measured data (range: 0–2.4%) and

among most intermittent VS (0.1%) with the exception of Glasgow Coma Scale (7.2%) and

oxygen flow rate (55.0%). Missing data were more or extremely common among LABS (basic

metabolic panel: 14.4%, complete blood count: 17.0%, coagulation studies: 48.7–65.6%, liver

function tests: 75.4%, troponin I: 86.2%, and lactic acid: 95.0%).

Outcomes

The primary composite outcome of deterioration leading to unanticipated ICU transfer or

death occurred 755 times in 586 admissions (7%). Many events triggered MET activations (n:

341; 45.2%). While 159 patients died within 24 hours of last time recorded in a telemetered

bed, only a minority were unanticipated and not accompanied by new DNR, DNI, or CMO

orders (n: 30; 4% of all events). Admissions with events had 3-fold longer median hospital

lengths of stay (11 vs 4 respectively) and a 43-fold increase in hospital mortality (17.2% vs 0.4%

respectively; Table 1). Continuous ECG data was available prior to 395 of these events (52%)

with which we developed new statistical models.

Table 1. Characteristics of admissions by primary outcome.

No Event Event

Percentage (n) 93 (7,519) 7 (586)

Age, years 65 (55–75) 67 (57–76)

Male 59 (4,457) 60 (352)

Race

White 81 (6,077) 82 (482)

Black 17 (1,279) 16 (95)

Other 2 (163) 2 (9)

Admitting Service

Cardiology 49 (3,711) 42 (250)

Cardiothoracic Surgery 19 (1,441) 17 (102)

Other Medicine 16 (1,194) 24 (139)

Other Surgery 16 (1,173) 16 (95)

Number of Events

1 — 94 (551)

2 — 6 (33)

� 3 — <1 (2)

Event Criteria

MET activation — 64 (371)

Direct Transfer — 32 (185)

Unanticipated Death — 5 (30)

Emergent Surgery — 4 (23)

Hospital Outcomes

Length of Stay, days 4 (2–7) 11 (7–19)

ICU Length of Stay, days 0 (0–1) 4 (2–7)

Mortality 0.4 (28) 17.2 (101)

Values are percentages (counts) or median value (interquartile range).

https://doi.org/10.1371/journal.pone.0181448.t001
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Models derived from individual data sources

A model derived from intermittently measured VS had a bias-corrected C-statistic of 0.687

(optimism: 0.008) and all predictors but temperature were associated with clinical deteriora-

tion (Fig 4). A model derived from intermittently measured LABS had a C-statistic of 0.629

(optimism: 0.025). A model derived from cardiorespiratory dynamics featuring HR, ECG-RR,

AF, and the slopes of both HR and ECG-RR had a C-statistic of 0.651 (optimism: 0.010).

Models derived from integrated data

Combining significant terms from the VS model to the cardiorespiratory dynamics model

resulted in a C-statistic of 0.703 (optimism: 0.011) with categorical NRI of 0.09 and 0.19 for

Fig 2. Histograms of the time between measurements, logarithmic scale. The area of each histogram indicates the

quantity of measurements available. R wave to R wave (RR) inter-beat and inter-breath intervals (gray) occur on the order

of seconds, 2.6 billion heart beats and 600 million breaths. (Middle Inset) Features from the continuous ECG monitors

(green) were aggregated at q15 minute increments. (Upper Right Inset) Standard nursing vital signs (yellow) were most

frequently obtained at every 1 to 4 hour intervals, 4.1 million measurements. Automated entries into the EMR are evident

at every 1 minute. Laboratory results (red) were most frequently measured every 12 hours or daily.

https://doi.org/10.1371/journal.pone.0181448.g002
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cardiorespiratory dynamics and VS respectively (Fig 5). Adding cardiorespiratory dynamics to

the LABS model resulted in a C-statistic of 0.704 (optimism: 0.011) with NRI of 0.14 and 0.16

for LABS and cardiorespiratory dynamics respectively. Combining VS with LABS resulted in a

C-statistic of 0.714 (optimism: 0.014) with NRI of 0.20 and 0.13 for VS and LABS respectively.

A fully integrated model using all available data sources had the best C-statistic: 0.729 (opti-

mism: 0.014) with NRI of 0.15, 0.13, and 0.09 for the addition of VS, LABS and cardiorespira-

tory dynamics respectively. The difference in likelihood ratio χ2 between integrated models

with and without cardiorespiratory dynamics was 2158 with a difference of 13 degrees of free-

dom (p value:<0.001). The most important predictors were RR, supplemental oxygen use,

SpO2, and ECG signal to noise ratio (ECG-SNR).

Effect of admitting hospital service

The incidence of clinical deterioration ranged from 1.15 to 2.24 per 100 monitored patient-

days (Table 2). While there were differences in model discrimination amongst various hospital

services, as additional data sources were integrated into the model, and consistent with our

more general analysis, the predictive validity incrementally improved. The fully integrated

model had C-statistics of 0.715, 0.716, 0.775, and 0.796 for Cardiovascular Medicine, Cardio-

thoracic Surgery, Other Medicine, and Other Surgery respectively. The minimal anonymized

data set necessary to replicate regression model analysis above is publicly available on the

Fig 3. Distributions of measured heart rate and respiratory rate. Heart rate (left) and respiratory rate (right) measurement distributions according to

source, charted vital signs (VS; blue) vs electrocardiography (ECG; red) where each source had equal numbers of measurements.

https://doi.org/10.1371/journal.pone.0181448.g003
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Fig 4. Relative statistical significance of component predictors included. Heatmap depiction of

statistical significance of predictors (rows) in each model (columns) with corresponding C-statistics.

Saturation or transparency depicts the statistical significance as calculated by the square root of (χ2 minus

degrees of freedom (df)) and can be likened to the absolute value of a Z score adjusted for the degrees of

freedom associated with a predictor due to higher order terms. Hue or color represents the data source:

individual data sources (green), pairwise combinations (blue), fully integrated model using all available data

(red). Predictors that failed to achieve statistical significance in any of the models are not displayed. VS-HR:

charted heart rate, VS-RR: charted respiratory rate, O2.Flow: charted oxygen flow rate, SpO2: charted

oxygen saturation, GCS: Glasgow Coma Scale, SBP: systolic blood pressure, WBC: white blood cell count,

BUN: blood urea nitrogen, AST: aspartate aminotransferase, Plts: platelets, CO2: carbon dioxide, Glu:

glucose, pCO2: partial pressure of carbon dioxide, K: potassium, Na: sodium, sCr: creatinine, ECG-SNR:

Signal-to-Noise metric from ECG-derived respirations, ECG-HR: heart rate from continuous ECG, HR-D:

trend of HR over prior 24 hours, ECG-RR: ECG-derived respiratory rate, RR-D: trend of RR over prior 24

hours, AF: atrial fibrillation, EMR: electronic medical record.

https://doi.org/10.1371/journal.pone.0181448.g004
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University of Virginia Dataverse (Moss, Travis 2017, “Replication Data for: Cardiorespiratory

dynamics measured from continuous ECG monitoring improves detection of deterioration in

acute care patients: A retrospective cohort study”, doi:10.18130/V3/MKY17T, University of

Virginia Dataverse).

Fig 5. Schematic of sequential integration of additional data sources. Each circle represents an individual

model with the C-statistic reported below each model abbreviation. Area of each circle is proportionate to the total

likelihood ratio test χ2 minus two times the degrees of freedom (df) of all non-intercept terms.

https://doi.org/10.1371/journal.pone.0181448.g005

Table 2. Event incidence and model performance stratified by admitting service.

Cardiology Cardiothoracic Surgery Other Medicine Other Surgery

Admissions (%) 3,961 (49%) 1,543 (19%) 1,317 (16%) 1,284 (16%)

Patient Years Monitored (%) 33.1 (52%) 11.4 (18%) 9.5 (15%) 9.2 (15%)

Events (%) 207 (52%) 48 (12%) 78 (20%) 62 (16%)

Event Rate

(per 100 patient-days)

1.71 1.15 2.24 1.84

C-statistic

Vital Signs 0.699 0.631 0.710 0.688

Lab Results 0.627 0.684 0.674 0.664

ECG Monitoring 0.666 0.587 0.664 0.673

VS + LABS 0.705 0.710 0.760 0.758

VS + ECG 0.706 0.648 0.732 0.744

ECG + LABS 0.685 0.697 0.742 0.765

Integrated 0.715 0.716 0.775 0.796

https://doi.org/10.1371/journal.pone.0181448.t002
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Comparison to other early warning scores

In evaluating all univariate predictors, our newly derived models, and common EWS, we

found that the top 5 performing models for the composite outcome were those newly devel-

oped and presented in this paper with the exception that the electronic Cardiac Arrest Risk

Triage (eCART) score[8] outperformed our model derived from only continuous ECG met-

rics, and both the National Early Warning Score (NEWS)[7] and the VitalPac Early Warning

Score (ViEWS)[6] outperformed our model derived only from LABS (Table 3). Systemic

Inflammatory Response Syndrome (SIRS)[26] came next as the 11th best model evaluated

while qSOFA[9] and Acute Physiology and Chronic Health Evaluation (APACHE) II[27] both

performed more poorly than the univariate predictor of mean HR taken from either the con-

tinuous ECG monitor or from the EMR charted VS.

Table 3. Ranking of model/predictor performance for primary outcome.

Predictor or Model Rank C-statistic d.f. Χ2 –d.f.

Integrated 1 0.742 38 441.9

VS + LABS 2 0.726 25 378.2

ECG + LABS 3 0.713 26 285.2

VS + ECG 4 0.712 25 382.3

VS 5 0.692 16 335.7

eCART 6 0.674 15 235.8

ECG 7 0.660 19 201.6

ViEWS 8 0.652 6 193.8

NEWS 9 0.652 6 193.0

LABS 10 0.649 29 153.7

SIRS 11 0.641 3 162.3

ECG HR 12 0.627 1 93.3

MEWS 13 0.622 6 162.5

EMR HR 14 0.621 1 96.9

qSOFA 15 0.593 2 94.6

O2 Flow 16 0.589 1 100.7

ECG RR 17 0.589 1 49.2

BUN 18 0.575 1 39.2

NEWS component >3 19 0.569 1 69.9

APACHE II 20 0.568 25 -8.9

All univariate predictors, models, and Early Warning Scores were evaluated in identical fashion where

observations within 24-hours of the primary outcome were labeled as cases and all other at-risk

observations were labeled as controls. Ranking is from best discrimination to worst as quantified by C-

statistic (non bias-corrected). We also report the degrees of freedom and the total statistical significance or

χ2 penalized by added complexity by subtracting two times the degrees of freedom of the model. VS: model

derived from electronic medical record vital signs; LABS: model derived from electronic medical record

laboratory results; eCART: electronic Cardiac Arrest Risk Triage score; MEWS: Modified Early Warning

Score; qSOFA: quick Sequential [Sepsis-related] Organ Failure Assessment; ViEWS: VitalPac Early

Warning Score; NEWS: National Early Warning Score; BUN: blood urea nitrogen; NEWS component > 3:

any single NEWS component score >3; APACHE II: Acute Physiology and Chronic Health Evaluation; SIRS:

Systemic Inflammatory Response Syndrome; ECG: electrocardiography; HR: heart rate; d.f.: degrees of

freedom.

https://doi.org/10.1371/journal.pone.0181448.t003
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Example cases

Fig 6 depicts 4 different admissions marked by deterioration resulting in unanticipated ICU

transfer. In panel A, developing shock is recognized by models derived from multiple sources,

but charted VS alone would have been sufficient to identify this patient several hours before

ICU transfer. Panel B provides an example of a patient with developing confusion and acute

renal failure where laboratory results but neither of the other data sources identified her trajec-

tory. Panel C represents a patient on post-operative day #3 from an uncomplicated vascular

surgery whose progressive abdominal pain and tachycardia prompted CT imaging and a lab

draw, both of which were consistent with intra-abdominal hemorrhage leading to urgent

exploratory laparotomy. ECG monitoring of cardiorespiratory dynamics identified this deteri-

oration long before the other diagnostic tests were obtained that prompted urgent surgery.

Panel D represents a patient with progressive respiratory failure and renal failure despite ther-

apeutic drainage of a pleural effusion. While all data sources identified her as at increased risk,

the integration of all data sources accentuated the severity and acuity of her deterioration.

Discussion

We studied continuous physiological monitoring prior to adverse events in patients hospital-

ized in acute care beds. We found that cardiorespiratory dynamics measured from continuous

ECG monitoring improved the predictive validity of models based on intermittent measure-

ments of VS and LABS.

While multiple parameters helped to detect the deteriorating patient, RR, supplemental

oxygen use, and SpO2 were the most important. These findings underscore the need for accu-

rate counts of RR and assessment of respiratory status. The quality of the ECG signal, mea-

sured as the ECG-SNR, was also important; underscoring that careful attention to subtle

changes in skin properties—like temperature, dryness, and texture—may provide warning of

impending patient decline.

Fig 6. Example cases of deterioration. A: Patient post-procedure day #1 from stenting of left posterior tibial artery for non-healing ulcer deteriorated into

mixed cardiogenic and septic shock. Here charted vital signs were sufficient to identify deterioration in the several hours preceding ICU transfer. B: Patient

with heart failure undergoing evaluation for coronary artery bypass grafting quickly deteriorated due to acute renal failure. Progressive derangement of

laboratory results identified the deterioration without appreciable change in charted vital signs or continuous ECG monitoring. C: Patient post-operative day

#3 from left renal vein transposition who developed abdominal pain with associated tachycardia. CT imaging demonstrated intraabdominal hemorrhage and

subsequent hemoglobin level had dropped from 9.6 to 6.0. EMR charted vital signs and lab results failed to appreciate a trend that was apparent for several

hours by analytics of ECG monitoring. D: Patient admitted with acute hypoxic respiratory failure and acute kidney injury post-procedure day #0 from chest

tube insertion to drain a pleural effusion. While charted vital signs and laboratory results were abnormal, integration of all available data sources accentuates

her increasing risk in the several hours prior to ICU transfer.

https://doi.org/10.1371/journal.pone.0181448.g006
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Detecting the deteriorating patient on the hospital ward is a major goal. The causes are var-

ied, and range from underestimation of the admission diagnosis to the development of new

and unrelated illnesses. The consequences range from altered management plans on the ward

to ICU transfer and in some cases even to cardiac arrest and death. Physicians and nurses

agree that early warning signs are often present, but are sometimes recognized only in retro-

spect. Beginning with APACHE for ICU patients in 1981[28] and EWS for acute care patients

in 1997[29], many systems have been developed using charted elements–VS, level of con-

sciousness, laboratory test results. In 2008, Smith and coworkers reviewed more than 60 such

systems using single or multiple predictive parameters.[30,31] These systems benefit from sys-

tematically examining all the available data, and from the clinical wisdom of their developers.

They lack, however, information from continuous physiological monitoring that is available

for many hospitalized patients.

We hypothesized that the cardiorespiratory dynamics held information about the changing

state of the hospital patient vulnerable to deterioration leading to ICU transfer, and we tested

this hypothesis using advanced ECG signal processing techniques and a large, well-annotated

database. From the ECG waveform signals, we determined linear and non-linear dynamical

properties, identified AF, and detected respiration. From individual review of charts, we

selected only patients whose ICU transfer was prompted by clinical deterioration, as opposed

to elective transfer such as after cardiac surgery. The robustness of these approaches enhances,

in our view, the validity of the results.

Our findings may be viewed in light of a paradigm shift in approaches to early detection of

the deteriorating patient. This work began in intensive care units. In the neonatal ICU,

advanced signal processing and HR time series analysis are used for early detection of neonatal

sepsis, where it saves lives[32–34], as well as for other adverse outcomes.[35] In adult ICUs,

signatures of illness have been identified in sepsis, respiratory failure leading to urgent intuba-

tion and hemorrhage leading to multi-unit transfusion of red blood cells.[36,37] In adult ICU

patients already known to be septic, shock may be predicted.[38]

The idea is spreading to the problem of early detection of the deteriorating floor patient.

Zimlichman and coworkers have introduced contactless motion detection to derive HR and

RR.[39–41] Tarassenko and coworkers developed a probability-based model of patient status

from distributions of VS.[42] Hu and coworkers have used advanced data mining to analyze

monitor alarms to produce SuperAlarms.[43] Churpek, Edelson and coworkers have devised

EMR-based alerts of increasing risk of in-hospital cardiac arrest.[2]

In this work, we introduce advanced time series analysis of continuous ECG telemetric

monitoring to capture physiological dynamics in acute care patients. We captured these

dynamics in the time, frequency, and non-linear dynamical domains.[14,15,17,18,44] We see

many opportunities to apply these and other mathematical approaches to large, well-annotated

clinical data sets to develop sophisticated and useful monitoring that use all available data.

Limitations

This is a single-center observational study in which Cardiovascular Medicine and Cardiotho-

racic Surgery were the predominant provider teams and thus our results may not generalize to

other environments. MET or Rapid Response teams are varied in their composition and

implementation across institutions. Because MET activation at our institution is not restricted

to objective criteria, we included only MET activations that were followed by ICU transfer. We

employed advanced logistic regression models, but note that ensemble methods in machine

learning are well-suited for classification of heterogeneous groups.
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Conclusions

Integration of cardiorespiratory dynamics measured from continuous ECG monitoring with

intermittent vitals and LABS improves the predictive validity of models to detect clinical dete-

rioration in acute care patients. We look forward to improved care through earlier detection of

patient deterioration that incorporates advanced medical analytics of continuous physiologic

monitoring.
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