npj | precision oncology

Brief communication

Published in partnership with The Hormel Institute, University of Minnesota

https://doi.org/10.1038/s41698-024-00746-z

Immune infiltration correlates with
transcriptomic subtypes in primary
estrogen receptor positive invasive
lobular breast cancer
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Understanding interplay of breast cancer and microenvironment is critical. Here we identified two
transcriptomic subtypes and five immune infiltration patterns from RNA-seq and multiplex
immunohistochemistry from 21 ER + /HER2- ILCs. We found proliferative subtype associated with
increased suppressive immune infiltration, and defined a signature associated with lower proliferative,
pro-inflammatory TAM infiltration, and improved survival in ER+ breast cancer. Our work identified
genes related to ILC immune microenvironment and prognosis.

Immunotherapy (IO) is becoming an important option in breast cancer
treatment. In triple-negative breast cancer (TNBC), pembrolizumab
showed potential benefits in high-risk early-stage disease and metastases"”.
In estrogen receptor-positive, HER2-negative (ER + /HER2-) early-stage
breast cancer, tumors with lower ER and higher PD-1 were more likely to
respond to neoadjuvant immune checkpoint inhibitors (ICI)**. However,
most trials excluded invasive lobular breast cancer, and the investigation of
clinical biomarkers beyond ER, PD-1, or TILs is limited.

Transcriptomic data is useful to identify prognostic biomarkers,
including tumor subtypes and immune patterns. The intrinsic
molecular subtype was one of the first classification systems derived
from patient tumor RNA expression’. In TCGA, three ILC subtypes
were revealed from tumor RNA-seq data by unsupervised clustering,
where the reactive-like subtype had better disease free survival and
overall survival than the proliferative subtype’. Similar classifications
were also derived in the RATHER study’. More recently, HR +/
HER2- breast cancer was defined further into four subtypes—cano-
nical luminal, immunogenic, proliferation subtypes, and receptor
tyrosine kinase (RTK)-driven subtypes, in which RTK-driven subtype

showed worst prognosis®. For patterns of immune infiltrate, quanti-
fication data is scarce, yet high spatial immune scores have been
shown to be related to poor outcome in ER+ breast cancer’. While
tumor cellularity is by definition negatively correlated with stromal
infiltration, and thus often low immune infiltration, like other ER+
breast cancers, ILC exhibit low tumor cellularity but also low T-cell
infiltration. Less is known about macrophages, but analysis of TCGA
and METABRIC data using M1-like (188 genes) and M2-like sig-
natures (159 genes), curated from transcriptomic data of 1822
samples across 64 cell subtypes'’, showed that tumors with higher
M1-like signature or M1/M2 ratio were likely more aggressive with
poorer survival''. However, the prognostic impact of immune infil-
tration patterns remain ambiguous, considering decreased estimation
accuracy for more complex immune cell subtype composition. Spe-
cifically, compared to NSTs, ILC exhibit fewer immune-rich neigh-
borhoods, higher proportions of TIGIT* CD8"* and PD-1" T cells, a
higher M2:M1 macrophage ratio, and different associations between
immune infiltration and disease-free survival''. However, most stu-
dies excluded ILCs, which had distinct immune infiltration compared
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to no special type (NST) tumors'>"”, thus introducing bias especially
in data-driven conclusions. Further research is thus warranted to
identify prognostic immune infiltration patterns in ILC tumors
specifically.

In this study, we performed integrative analysis of both RNA-seq and
multispectral immunohistochemistry (mIHC) data in primary ER+/
HER2- ILC. We identified two transcriptomic ILC subtypes, five immune
infiltration patterns, and linked the ILC subtypes with immune infiltration.
We then correlated gene expression with immune cell density, and defined a
tumor associated macrophage (TAM)-Low signature, which was negatively
associated with TAM infiltration. We further showed in public datasets that
TAM-Low was inversely correlated with presence of proliferating TAMs
from GSVA signature score, and predicted improved survival outcomes in
ER+ breast cancer.

21 primary ER+ treatment-naive lobular breast tumors were included
in our cohort (Supplementary Table 1). We performed RNA-seq in all
samples, and mIHC in 13 of the tumors using the same FFPE block (Fig. 1A)
(Created with BioRender.com.). We identified CDH]I truncating mutations
in 10 samples from RNA-seq (Supplementary Table 2, Supplementary
Fig. 1A). We then computed transcriptomic subtypes using the previously
reported TCGA ILC classifier, which used expression of 60 genes to derive
three ILC subtypes—immune-related, reactive-like, and proliferative’. With
this method, we identified 12 proliferative, three reactive-like, and six
immune-related tumors in our cohort. We combined the latter two groups
as the non-proliferative subtype due to transcriptomic similarities in hier-
archical clustering and relatively low sample numbers (Fig. 1B). Con-
sistently, we found higher expression of cell-cycle pathways in the
proliferative group, and higher expression of immune-related pathways in
the non-proliferative subtype, using reference pathways from the RATHER
ILC cohort (enriched pathways of hormone-related and immune-related
subtypes, respectively) (Fig. 1C). Specifically, the non-proliferative subtype
had higher stromal score and mostly consisted of luminal A and normal-like
subtypes. In contrast, the proliferative subtype had higher tumor cell purity,
lower stromal composition, and was composed of multiple PAM50
types, including luminal A, luminal B, basal, and HER2-enriched subtypes
(Fig. 1D, E). Normal-like and basal subtypes had lower median purity than
other subtypes from computation, but all were above 50% (Fig. 1F).

Next, we examined immune infiltration patterns by IHC and mIHC
(Fig. 2A). From hematoxylin and eosin staining, TIL infiltration was below
10% in general following the International TILs Working Group protocol,
consistent with low infiltration pattern in ER + /HER- primary ILC tumors
compared to other subtypes (Supplementary Table 5)'**. For mIHC, 3 to 13
ROIs were selected for each case, and each ROI consisted of one tumor
region and one stromal region, where immune cells were counted (Sup-
plementary Tables 1 and 4). In general, macrophage showed highest infil-
tration, followed by CD4 T cells and CD8 T cells, all with higher infiltration
in stromal than tumor regions (Fig. 2B). We analyzed correlations based
upon infiltration density of the different immune cells, reflecting their
associations within or between tumor and stroma, and we observed three
clusters—stromal and tumor B cells, Treg cells and macrophages, and CD4
T cells and CD8 T cells (Fig. 2C). Similar analysis in ER +, HER2 non-
negative, ILC primary tumors (n = 109) from TCGA using xCell signature
scores' also showed macrophages clustered with Tregs within the two
major clusters (Supplementary Fig. 1C). Furthermore, we identified five
immune infiltration patterns in both stromal and tumor regions from non-
negative matrix factorization (NMF) clustering (Fig. 2D). In stromal
regions, pattern 1, 3, and 5 had generally low infiltration of all immune cells,
pattern 2 had higher macrophages and Tregs, and pattern 4 had higher
infiltration of CD4 T cells and CD8 T cells (Fig. 2E, F). Similar immune
infiltrating patterns were observed in tumor regions (Supplementary
Fig. 1D, E). This suggested a potential immunosuppressive microenviron-
ment in pattern 2 while more immune active environment in pattern 4.
Specifically, within each patient, the tumors had up to 5 immune patterns,
and were often dominated by 1 (blue arrows) or 2 (orange arrows) co-
existing patterns (Supplementary Fig. 1B, F).

We then linked immune infiltration with the ILC transcriptomic
subtypes, defined in the previous section. Immune patterns and ILC sub-
types are not independent (Chi-squared test p <0.01). The proliferative
subtype showed higher infiltration of almost all immune cell types at both
stromal and tumor areas than the non-proliferative subtype (Fig. 2G, H).
Specifically, pattern 2 (likely immunosuppressive) predominated in the
proliferative subtype (Fig. 2I). Altogether, it suggested higher immune
infiltration, and potentially more immunosuppressive cell types in the
proliferative than non-proliferative ILCs.

Access to both mIHC as well as mRNA expression data allowed us to
analyze correlations between gene expression and immune cell infiltration.
We therefore calculated Spearman’s correlation between expression of each
individual gene (26,485 genes, log,(TPM)) and infiltration of major
immune cell type (5 types) in stromal or tumor regions (median number per
mm’ among ROIs), including all possible pairwise combinations. Filtering
by FDR < 0.05, we identified 651 significant correlations between expression
of genes and immune cell subtypes, all with Spearman’s rank correlation
coefficient of 0.86 or higher, suggesting strong correlation (Fig. 3A, Sup-
plementary Fig. 2A). The majority of correlations were negative associations
between gene expression and macrophage infiltration. Combining genes
inversely related with presence of stromal or tumor macrophages, we
generated a “TAM-Low’ signature of 483 genes (Fig. 3A, Supplementary
Fig. 2B), which was enriched in extracellular matrix pathways (Fig. 3B).

Next we compared signature expression of TAM-Low with marker
genes of multiple subtypes of tumor-associated macrophages (Supple-
mentary Table 3) from literature in ER+ primary breast cancer, using RNA-
seq of METABRIC and SCAN-B'*"". In both datasets, the TAM-Low sig-
nature was negatively correlated with proliferating TAMs (Prolif-T AMs)
(Fig. 3C), a pro-inflammatory subtype characterized by high expression of
HMGBI and cell cycle-related genes (CCNA2, CDC45, CDK1, MKI67,
RRM2, STMN]1, TOP2A, and TYMS). In summary, we identified a negative
association between the TAM-low signature and tumor associated macro-
phages, and specifically our data suggested that TAM-low genes such as
those from the extracellular matrix (ECM) pathway might hinder the
infiltration of proliferating, pro-inflammatory tumor associated
macrophages.

And finally, we investigated association of TAM-Low with both sur-
vival and therapy response. In ER+ breast cancer, the TAM-Low signature
predicted improved relapse free survival as well as overall survival in
METABRIC ER+ tumors, adjusting for multiple demographic and clinical
variables in multivariate Cox regression (Fig. 3D, E). Resultin SCAN-B ER+
tumors was similar but lacked significance (Supplementary Fig. 2D).
Kaplan-Meier curves showed TAM-Low as protective factor for survival in
both datasets (Supplementary Fig. 2E-G). For therapy response, we ana-
lyzed the TAM-Low signature levels in ER + /HER2- primary breast tumors
from patients treated with neoadjuvant aromatase inhibitor (AI) in the
POETIC trial”’. Tumors from Al responders and non-responders did not
have significant difference in TAM-Low signature expression (Fig. 3F-H).
However, we observed significantly lower proliferating TAMs (Prolif-TAM)
after Al treatment in the responders, as in line with our prior observation of
anegative association between the TAM-Low signature and marker genes of
proliferating TAMs (Prolif-TAMs). Using expression of marker genes of
other TAM subtypes', we failed to identify another set of TAMs sig-
nificantly different between non-responders and responders, except for
lower interferon-primed TAMs (IFN-TAM) at baseline in responders
(Fig. 3F). In summary, this data suggests that the TAM-low signature is
associated with improved endocrine therapy response and outcome ER+
breast cancer.

Finding biomarkers is essential to guide precision immune therapy in
breast cancer. In TNBC, higher tumor-infiltrating lymphocytes and muta-
tion burden predicted higher ICI response rate®. In early HR + /HER2-
cancer, which had relatively lower mutation incidence and immune infil-
tration, positive lymph node, ER% < 10%, and combined positive score >1
were associated with higher pCR rate with neoadjuvant pembrolizumab
treatment’, and elevated PD-L1 scores, ER% < 50%, PR% < 10%, and
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Fig. 3 | Derivation and clinical associations of TAM-Low signature. A Number of
gene-cell pairs with significant (FDR < 0.05) positive or negative Spearman’s cor-
relation between gene expression (TPM) and immune cell infiltration (median value
among ROIs in number/mm?). B Pathway enrichment of TAM-Low signature genes
(483 genes). C Spearman correlation (FDR < 0.05) between TAM-Low and other
TAM subtype signatures in METABRIC ER+- tumors (N = 1,505). D, E Hazard ratio
of relapse free survival (D) and overall survival (E) of TMA-Neg signature
(deconvolution score) and demographic-clinical variables in METABRIC ER+

tumors (N = 1,096, excluding entries with missing data in any of the regression
covariates) from multivariant Cox regression. F-H. Deconvolution score of TAM-
Low signature and TAM subtype signatures in baseline (F), post-aromatase-
inhibitor (AI) treatment tumors (G), and change after treatment (A(Post-AI -
baseline)) (H) from POETIC trial cohort of 131 patients. IEN-TAMs, interferon-
primed TAMs; Reg-T AMs, immune regulatory TAMs, Inflam-TAMs, inflammatory
cytokine-enriched TAMs; Angio-TAMs, proangiogenic TAMs; LA-TAMs, lipid-
associated TAMs; Prolif-TAMs, proliferating TAMs.
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stromal TILs >1% indicated pCR and no residual cancer burden with
neoadjuvant nivolumab therapy*. However, clinical associations of other
immune cell types or genes were understudied, and whether pCR translates
to long-term survival benefit remained unclear. Moreover, clinical trials did
not focus on lobular breast cancer, which had a somewhat distinct immune
landscape than NSTs'>'**,

Our study focused on primary ER + /HER2- early-stage ILC, and
found ILC transcriptomic subtypes were closely related with immune
infiltration phenotypes. Specifically, in the proliferative ILC subtype greater
infiltration of multiple immune cell types, higher occurrence of immuno-
suppressive patterns was also observed. This was consistent with clinical
observations that high TIL level in ILC was associated with young age,
proliferative tumors, and lymph node invasion'. From our previous study,
higher macrophage infiltration was related to lower recurrence rate in NST,
but this was not observed in ILC"”. In general, large-scale data is lacking for
clinical outcome associations with TIL subtypes or other immune cell types.
This hence warrants future effort to incorporate mIHC quantification in
prospective cohorts, and to include ILC cases in clinical trials*'.

Most current immunotherapies focus on lymphocytes. However,
macrophages, rather than T cells, were dominant in ILCs". In our study, we
also found macrophage infiltration as the ‘hub’ in association with tumor
gene expression. Our TAM-Low signature which was directly derived from
correlation analysis between gene expression and immune infiltration based
on mIHC has potential as a promising biomarker, predicting low infiltration
of proinflammatory Prolif-TAMs, and improved survival in patients with
ER+ breast cancer. For genes in the TAM-Low signature, extracellular
matrix pathways were robustly identified from different databases. For
example, LAMA4, LAMBI, LAMA2, and TNXB overlap among the top-
FDR ranked pathways from Gene Oncology Cellular Component (Col-
lagen-Containing Extracellular Matrix), KEGG (Focal adhesion), and
Reactome (Extracellular Matrix Organization). Specifically, LAMA4,
LAMBI, and LAMAZ2 encode laminin, constituting key structures of base-
ment membrane; and TNXB encodes Tenascin-X, which promotes matrix
maturation”. Overexpression of these genes thus likely lead to biomecha-
nical rigidity of ECM, which inhibits macrophage infiltration. Interestingly,
laminin-targeting therapies improved immune infiltration and drug deliv-
ery, and inhibit tumor growth in xenograft mouse models™. On the other
hand, higher Prolif-TAMs likely marks intrinsic aromatase inhibitor resis-
tance in ER + /HER2- primary breast tumors. As resident tumor macro-
phages expressing MKI67, CDK1, and CDC45, HMGB], and others, Prolif-
TAMs were likely pro-inflammatory, profibrotic, and promoting tumor
progression'®. In pancreatic ductal adenocarcinoma, targeting Prolif-TAM
promoted anti-tumor response via cytotoxic CD8 + T cell redistribution™.
Interestingly, from our original NST and ILC cohort, we had reported a
subgroup of cycling monocytes/macrophages expressing MKI67 and SPP1
genes, which likely corresponded to Prolif-TAMs'"”. Of note, each TAM
subtype affects breast cancer differently. For example, the FOLR2+ tumor-
stroma-resident macrophages correlated to higher T cell infiltration and
better prognosis™. Conversely, TREM2-+ macrophages likely determined
an immunosuppressive metastatic niche, with TREM2 predicting poorer
overall survival and relapse-free survival in triple-negative breast cancer’*”".
Therefore, we encourage quantification of individual TAM subtypes in
breast cancer and specifically in ILC as a more accurate immune pheno-
typing in clinical response prediction.

Limitations of this study include small cohort size, variations in ROI
selection, and absence of immunophenotyping panel of a broader range of
immune subtypes, including the macrophage population. There are also
limitations to combining different methodologies for analysis of immune
cell infiltration and activities, as reflected by some discrepancy between
mIHC and RNA-seq deconvolution algorithms—e.g., proliferative ILCs had
higher stromal or immune scores and showed lower expression of immune
signaling than non-proliferative ones, including the JAK-STAT pathway
and local acute inflammatory response (LAIR pathway). A possible expla-
nation is that immune signals were expressed by tumor cells, thus leading to
spillover effect and elevated immune scores in non-proliferative tumor.

For survival analysis, it should be noted that both public datasets
(METABRIC and SCAN-B) consisted of mostly NSTs. Histology was
included in multivariant Cox regression which showed no significance,
however, subgroup analysis in NST and ILCs showed change in significance
potentially affected by different treatment paradigms of the two datasets
(Supplementary Fig. 3). Thus more evidence is needed for applicability of
TAM-Low signature as prognostic indicator in ILCs and NSTs respectively.

In conclusion, through integrated RNA-seq and mIHC analysis of
ER + /HER2- primary ILC tumors, we found that the proliferative ILC
transcriptomic subtype exhibited higher immune infiltration. We would like
to propose the TAM-Low signature as a potential novel biomarker for
predicting reduced infiltration of pro-inflammatory and pro-tumorigenic
macrophages and improved survival in ER+ breast cancer, and encourage
its further analysis in additional studies. Future studies are warranted to
quantify TAM subtypes in ILC, as indicators of endocrine treatment
response and survival, as well as to improve potential use of
immunotherapy.

Methods

Ethical regulations

Patient recruitment was described previously'. Ethical regulations of this
study were approved by the Institutional Review Board at the University of
Pittsburgh under the protocol of PRO17100602 and PRO16060685. All
participants had submitted written informed consent prior to sample
acquisition.

Study design, sample acquisition, and sample processing

For the 21 cases, formalin-fixed paraffin-embedded (FFPE) blocks of pri-
mary ER + /HER2- ILC tumors were acquired from University of Pitts-
burgh Biospecimen Core, and clinical information was queried from the
UPMC Cancer Registry. For each block, three sections (at the top, bottom
and middle of the block) were stained with hematoxylin and eosin (H&E)
and inspected by pathologist to circle out regions with tumor epithelial cell
proportion 240%. 5 sections (of 10uM thickness each) were used for RNA
extraction and sequencing at these circled regions. And another 3 sections
(of 4uM thickness each) were used for multispectral immunophenotyping
by mIHC.

RNA sequencing and bioinformatics analysis

Sample RNA was extracted with Qiagen tissue DNA/RNA kit from FFPE
sections, assessed with High Sensitivity RN A TapeStation for quality and
concentration. Library was prepared with illumina TruSeq RNA Library
Preparation Kit, and sequenced with Illumina Nextseq 500 75 bp pair-end
in 150 cycles at University of Pittsburgh Health Sciences Sequencing Core.
For RNA-seq data, we used FastQC for FASTQ data quality control,
trimmomatic for adapter trimming, Hisat2 for alignment to human
genome 38 (hg38), and HT Seq for quantification, to generate normalized
expression in transcripts per million (TPM). To call CDH1 mutations
from RNA-seq data, we used GATK v4 MuTect2 pipeline (broad-
institute.org) to call all somatic SN'Vs and indels from bam files calculated
with STAR (v2.7.5a), and selected CDH1 mutations from annotation
from ANNOVAR”. For ILC subtyping, we first trained a Nearest Cen-
troid classifier in original TCGA ILC samples with RNA expression of the
60-gene signature, using original annotation of the proliferative, reactive-
like, and immune-related subtypes’. We then applied the trained classifier
to RNA-seq data of this study, which generated one subtype for each
sample. Both training and testing sets were normalized in log, TPM and
transformed into gene-wise z-score. Finally, we combined the reactive-like
and immune-related subgroups as the ‘non-proliferative’ subtype, due to
limited sample numbers of both classes. We used GSVA (v1.48.2,ssGSEA)
to calculate signature scores of immune-related and cell-cycle related
pathways from TPM of our samples. We calculated PAM50 subtype
probability with Genefu (v2.26.0), and estimated tumor purity, stromal
score, and immune scores using deconvolute_estimate (immunede-
conv v2.1.0).

npj Precision Oncology | (2024)8:257


www.nature.com/npjprecisiononcology

https://doi.org/10.1038/s41698-024-00746-z

Brief communication

mlHC staining, quantification, and statistical analysis

Workflow of mIHC was described with processed data (median infiltration
of each immune cell type at patient level) previously'. In brief, FFPE sec-
tions of 4 uM thickness were stained with an immunophenotyping panel
(CD20,CD4, CD8,FOXP3, CD68, Pan-CK), from which immune cells were
counted using InForm software from randomly selected regions of interests
(ROI) (3-13/section) at representative immune infiltration areas, from
Vectra Polaris (PerkinElmer) scans at x10. Specifically, infiltration of each
immune cell type was calculated in tumor and stromal regions respectively
(number/mm?). We computed Spearman’s correlation for abundance of
each pair ofimmune cell types (number/mm?®) and used FDR < 0.05 to select
statistically significant correlations. Non-negative matrix factorization was
used to cluster ROIs based on Spearman’s correlation matrix of log, nor-
malized counts (BigNmf, v1.0.0). from which 5 clusters were selected based
on elbow point of cophenetic correlation coefficient. The corresponding
consensus matrix was plotted in Euclidean distance in Ward’s linkage.

TAM-Low signature generation and pathway analysis

We calculated Spearman’s correlation between expression of each gene
(TPM) and abundance of each immune cell type (number/mm?) at tumor
and stromal region (median values among ROIs). A gene-immune cell pair
correlation is significant if with FDR < 0.05. Genes which were significantly
negatively correlated with stromal or tumor macrophage infiltration were
included into ‘TAM-Low’ signature (483 genes, Fig. 3, Supplementary
Fig. 2). Pathway analysis was performed with EnrichR, using Gene Ontol-
ogy, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome
datasets™.

Public datasets and analysis

Signatures of TAM subtypes were downloaded'’. We used consensus TME
algorithm (immunedeconv v2.1.0, deconvolute_consensus_tme_custom)”*”"
to calculate deconvolution score for TAM-Low and TAM subtype signatures
from normalized expression of samples in METABRIC (normalized
expression, downloaded from cBioportal)”’, SCAN-B (log, counts per
million)", and POETIC trial”. Spearman’s correlation was calculated
between signature scores of every pair of TAM subtypes among samples with
FDR correction. In survival analysis, we classified samples by “TAM-Low’
signature expression (high vs low) using optimal cut point (survminer v0.4.9),
and calculated hazard ratio from multivariate Cox regression, adjusting for
histology, HER2, PR, age at diagnosis, tumor size, and tumor stage
(METABRIC” and SCAN-B'). For POETIC trial data, RNA-seq and
responder information were downloaded from GSE105777 and
GSE126870".

Data availability

RNA-seq data was submitted to SRA database under BioPro-
ject:PRINA1105553, and Gene Expression Omnibus under GSE278301.
mIHC ROI quantification data is in Supplementary Table 4.

Code availability
Codes for data analysis and plotting of this manuscriptare available on
https://github.com/leeoesterreich/ILC-Immune-Infiltration.
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