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Abstract

Background: Formaldehyde (FA), a well-known environmental pollutant, has been classified as a neurotoxic molecule. Our
recent data demonstrate that hydrogen sulfide (H2S), the third gaseous transmitter, has a protective effect on the
neurotoxicity of FA. However, the exact mechanisms underlying this protection remain largely unknown. Endoplasmic
reticulum (ER) stress has been implicated in the neurotoxicity of FA. Silent mating type information regulator 2 homolog 1
(SIRT-1), a histone deacetylases, has various biological activities, including the extension of lifespan, the modulation of ER
stress, and the neuroprotective action.

Objective: We hypothesize that the protection of H2S against FA-induced neurotoxicity involves in inhibiting ER stress by
upregulation of SIRT-1. The present study attempted to investigate the protective effect of H2S on FA-induced ER stress in
PC12 cells and the contribution of SIRT-1 to the protection of H2S against FA-induced injuries, including ER stress,
cytotoxicity and apoptosis.

Principal Findings: We found that exogenous application of sodium hydrosulfide (NaHS; an H2S donor) significantly
attenuated FA-induced ER stress responses, including the upregulated levels of glucose-regulated protein 78, C/EBP
homologous protein, and cleaved caspase-12 expression. We showed that NaHS upregulates the expression of SIRT-1 in
PC12 cells. Moreover, the protective effects of H2S on FA-elicited ER stress, cytotoxicity and apoptosis were reversed by
Sirtinol, a specific inhibitor of SIRT-1.

Conclusion/Significance: These data indicate that H2S exerts its protection against the neurotoxicity of FA through
overcoming ER stress via upregulation of SIRT-1. Our findings provide novel insights into the protective mechanisms of H2S
against FA-induced neurotoxicity.
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Introduction

Formaldehyde (FA), a member of the aldehyde family and one

of the simplest organic molecules, is a well-known indoor and

outdoor pollutant [1]. The central nervous system (CNS) is one of

the most important systems affected by FA and the neurotoxic

effects of FA in the human health have attracted extensive studies.

Epidemiological data showed that behavioral and neurological

symptoms occur in histology technicians and workers exposed to

high levels of FA over a long time [2,3]. In several experimental

models, it has been demonstrated that FA exposure induces the

neurotoxicity and apoptosis in the cultured cortical neurons and

PC12 cells in vitro [4–7] causes various morphological changes in

the brain of rats [8–10], and elicits behavioral and learning and

memory disorders in rats [11–14]. These findings confirm FA-

induced neurotoxicity. Moreover, increasing evidence documents

that the elevated endogenous FA levels contribute to the pathology

of Alzheimer’s disease [15–17]. Therefore, it is of utmost

importance to develop new therapeutic approaches to prevent

the neurotoxicity of FA.

Hydrogen sulfide (H2S), the third gaseous mediator alongside

with nitric oxide and carbon monoxide [18–20], is recognized as a
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novel endogenous neuroprotectant [21–25]. Interestingly, our

recent data demonstrate the protection of H2S against the

neurotoxicity of FA [26], which for the first time implies a

promising future of H2S-based preventions and therapies for

neuronal damage induced by FA exposure. However, the exact

mechanism of H2S-attenuated FA neurotoxicity remains largely

unknown.

The endoplasmic reticulum (ER) is an important organelle

responsible for the synthesis and folding of proteins that are

required for cell survival and normal cellular functions [27].

Excessive and prolonged stress impairs ER function and leads to

an accumulation of unfolded or misfoldedproteins, which induces

ER stress [28]. Important roles for ER stress and ER stress-

induced cell death have been reported in a broad spectrum of

pathological conditions [27,29]. Recently, Luo et al. reported that

one of mechanisms of FA-induced neurotoxicity involves ER stress

[6]. When PC12 cells are exposed to FA, the expressions of ER

stress response genes, such as GRP78 (78-kDa glucose-regulated

protein), CHOP (CEBP homology protein), and cleaved caspase

12 are up-regulated, which indicate that modulation of ER stress

could represent a promising approach for prevention or treatment

of FA neurotoxicity [6]. Considering that ER stress-induced

apoptotic cell death is a critical step in the pathogenesis of FA

neurotoxicity, and H2S can function as a survival factor for

neurons, these findings prompted us to wonder whether H2S

mediate its protective effect against FA-induced neurotoxicity by

inhibiting the ER stress pathway.

Silent mating type information regulator 2 homolog 1 (SIRT-1),

one of the nicotinamide adenine dinucleotide (NAD+)-dependent

histone deacetylases, plays a critical role of in the longevity effects

elicited by calorie restriction. Recently, accumulating evidence has

shown that SIRT-1 is a neuroprotective molecule, which protects

neurons against cellular damage and stressful perturbations in both

acute and chronic neurological diseases [30–32]. It has been

reported that SIRT-1 exerts its beneficial effects on insulin

resistance via attenuating ER stress [33,34]. Thus, we speculated

that H2S inhibits FA-induced ER stress by regulation of SIRT-1.

The present study was to test the ability of H2S in reducing FA-

induced ER stress and the mediatory role of SIRT-1 in this

protective action of H2S. We for the first time demonstrated that

H2S attenuates FA-induced ER stress in PC12 cells, which is

involved in upregulation of SIRT-1.

Materials and Methods

1. Materials
Sodium hydrosulfide (NaHS, a donor of H2S), formaldehyde,

Sirtinol (the specific inhibitor of SIRT-1), Hoechst 33258,

propidium iodide (PI), and RNase were purchased from Sigma

Chemical CO (St.Louis, MO, USA). Cell counting kit-8 (CCK-8)

was supplied by Dojindo Molecular Technologies, Inc. (Rockvile,

MD, USA). Annexin V was purchased from Nanjing KeyGEN

Biotech Co., Ltd. (Nanjing, China). Specific monoclonal anti-

SIRT-1 antibody was obtained from Abcam (Hong Kong, China).

Specific monoclonal antibodies to GRP78 and CHOP were

purchased from Epitomic Inc (Burlingame, UK). Specific mono-

clonal anti-Caspase-12 antibody was obtained from Sigma

Chemical (St Louis, MO, USA). RPMI-1640 medium, horse

serum and fetal bovine serum were supplied by Gibico, BRL

(Ground Island, NY, USA).

2. Cell culture
The PC12 cell line was derived from rat pheochromocytoma, a

tumor arising of the adrenal medulla [35] and represents a

valuable model to study cell fate such as neuronal differentiation,

cell proliferation, or cell survival [36–38]. PC12 cells were (ATCC,

CRL-1721) generously provided by Sun Yat-sen University

Experimental Animal Center (Guangzhou, China) and grown in

PMI-1640 medium supplemented with 10% heat-inactivated

horse serum and 5% fetal bovine serum (FBS) at 37uC under an

atmosphere of 5% CO2 and 95% air. The culture media was

changed three times per week.

3. Determination of cell viability
The viability of PC12 cells was determined by CCK-8 assay.

PC12 cells were cultured in 96-well plates at 37uC under an

atmosphere of 5% CO2 and 95% air. When the cells were about

70% confluent, indicated conditioned-mediums were adminis-

tered. At the end of treatments, 5 ml CCK-8 solutions were added

into each well and then the plates were incubated for further 3 h in

the incubator. Absorbance at 450 nm was measured with a

microplate reader (Molecular Devices, Sunnyvale, CA, USA).

Means of five wells optical density (OD) in the indicated groups

were used to calculate the percentage of cell viability according to

the formula below: cell viability (%) = OD treatment group/OD

control group6100%.

4. Nuclear staining for assessment of apoptosis
Chromosomal condensation and morphological changes in the

nucleus of PC12 cells were observed using the chromatin dye

Hoechst 33258. The PC12 cells were fixed with 4% paraformal-

dehyde in 0.1 M phosphate buffered saline (PBS) for 10 min. After

three rinses with PBS, the cells were stained with 5 mg/L Hoechst

33258 for 10 min. Slides were rinsed briefly with PBS, air dried,

and then mounted in an anti-fluorescein fading medium (Perma

Fluor, Immunon, PA, USA). Slides were visualized under a

fluorescent microscope (BX50-FLA, Olympus, Tokyo, Japan).

Viable cells displayed normal nuclear size and uniform fluores-

cence, whereas apoptotic cells showed condensed nuclei or nuclear

condensations.

5. Flow cytometry analysis of apoptosis with PI and
Annexin V double staining

Treated PC12 cells were digested with trypsin (2.5 g/L) and

collected in an Eppendorf tube. Cells were washed twice with PBS

by centrifugation and then the supernatants were discarded. To

detect apoptosis, 500 ml PBS, 5 ml Annexin V-FITC and 5 ml PI

were added to each tube, and the contents of the tube were mixed

in the dark at room temperature for 15 min, followed by FCM

flow cytometric (FCM, Beckman-Coulter, Miami, FL, USA)

testing. Cell Quest software (Becton-Dickinson) was used to

acquire and analyze the data and the data are expressed as cell

percentages.

6. Western blot analysis
PC12 cells were lysed in an ice-cold lysis buffer [20 mM Tris–

HCl, pH 7.5, 150 mM NaCl, 1% Triton X-100, 1 mM

phenylmethylsulphonylfluoride (PMSF), 1 mM Na3VO4, leupep-

tin, and EDTA]. And then the samples were centrifuged at 14 000

r.p.m. for 30 min at 4uC and the supernatant were obtained.

Protein concentration was assessed using a BCA Protein Assay Kit

(Beyotime, Shanghai, China). Equivalent amounts of protein for

each sample were run on sodium dodecyl sulfate-polyacrylamide

gel electrophoresis (SDS-PAGE). The proteins were then trans-

ferred to a PVDF membrane, and blocked in TBS-T buffer

(50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.05% Tween-20)

containing 5% bovine serum albumin for 2 h. The membranes
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were incubated with blocking solution containing primary

antibody (anti-CHOP, 1:500; anti-GRP78, 1:2000; anti-Cas-

pase12, 1:2000; anti-SIRT-1, 1:2000) overnight at 4uC. After

washing 3 times, the membrane was incubated in anti-rabbit

secondary antibody conjugated to horseradish peroxidase (1:5000)

in blocking solution for 2 h. Next, the membrane was washed in

TBS-T buffer and the electrogenerated chemiluminescence

reaction solutions were added for 2 min. The signal of the

immunoblots was visualized using an image analysis system

equipped with a software BIO-ID (Vilber Lourmat, France).

7. Statistical analysis
Data are expressed as mean 6 S.E.M. The significance of inter-

group differences was evaluated by one-way analyses of variance

(ANOVA: Least-significant difference test). Differences were

considered significant at two tailed P,0.05.

Results

1. FA triggers ER stress in PC12 cells
To explore whether the mechanism of the protective action of

H2S against the neurotoxicity of FA involves regulation of ER stress,

we first sought to investigate whether FA induces ER stress by

measuring the expression levels of GRP78, CHOP, and cleaved

caspase-12 in FA-treated PC12 cells using Western blot analysis. As

illustrated in Fig. 1, after 24 h exposure of FA (60, 120, or

240 mmol), the amounts of GRP78, CHOP, and cleaved caspase-12

Figure 1. Effect of formaldehyde on the expressions of GRP78, CHOP and cleaved caspase-12 in PC12 cells. PC12 cells were exposed to
different concentrations of formaldehyde (FA, 60, 120 and 240 mmol/L) for 24 h. The levels of GRP78 (A), CHOP (B), and cleaved caspase-12 (C)
expression in PC12 cells were detected by Western blot using anti-GRP78, -CHOP, and -cleaved caspase-12 antibody, respectively. In all blots, staining
for b-actin was used as a loading control. Values are the mean 6 S.E.M. of three independent experiments. *P,0.05; **P,0.01; ***P,0.001, vs control
group.
doi:10.1371/journal.pone.0089856.g001
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in PC12 cells were significantly increased. These data indicated that

ER stress participates in FA-induced neurotoxicity.

2. H2S prevents FA-induced ER stress in PC12 cells
Next, we investigated the effect of H2S on FA-induced ER stress

in PC12 cells. As illustrated in Fig. 2, pretreatment with NaHS

(100 or 200 mM) for 30 min significantly attenuated the increases

in the expression levels of GRP78, CHOP, and cleaved caspase-12

in PC12 cells induced by treatment with 120 mM of FA for 24 h.

These data indicated that H2S produces a protective effect against

FA-induced ER stress.

3. H2S upregulates SIRT-1 expression in PC12 cells
To explore whether SIRT-1 mediates the mechanism under-

lying the protective effect of H2S against FA-elicited ER stress, we

first determined whether H2S regulates the expressions of SIRT-1

in PC12 cells. After treatment with different concentrations of

NaHS (100, 200, and 400 mM) for 24 h, the expression of SIRT-1

in PC12 cells was markedly increased in a dose dependent manner

(Fig. 3A). Furthermore, the inhibited SIRT-1 expression by

exposure of FA (120 mM, 24 h) was significantly reversed by

treatment with 200 mM of NaHS (Fig. 3B). These data indicate the

up-regulatory role of H2S in SIRT-1 expression.

4. Inhibition of SIRT-1 reverses the protective effect of
H2S against FA-induced ER stress in PC12 cells

To determine whether SIRT-1 mediate the protective effect of

H2S on FA-induced ER stress in PC12 cells, we further explored

whether Sirtinol, a specific inhibitor of SIRT-1, prevents this

protection of H2S against ER stress. We pretreated PC12 cells

Figure 2. Effect of H2S on formaldehyde-induced ER stress in PC12 cells. After pretreated with NaHS at concentrations of 100 and 200 mmol/
L for 30 min, PC12 cells were exposed to formaldehyde (FA, 120 mmol/L) for 24 h. The levels of GRP78 (A), CHOP (B), and cleaved caspase-12 (C)
expression in PC12 cells were detected by Western blot using anti-GRP78, -CHOP, and -cleaved caspase-12 antibody, respectively. In all blots, staining
for b-actin was used as a loading control. Values are the mean 6 S.E.M. of three independent experiments. **P,0.01; ***P,0.001, vs control group;
#P,0.05, ##P,0.01, ###P,0.001, vs FA-treated alone group.
doi:10.1371/journal.pone.0089856.g002
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with Sirtinol (15 mM) 30 min before the administration of NaHS

(200 mM). As showed in Fig. 4, Sirtinol, the inhibitor of SIRT-1,

significantly reversed the expression levels of GRP78, CHOP, and

cleaved caspase-12 suppressed by NaHS, indicating that inhibition

of SIRT-1 reverses the protective role of H2S against FA-induced

ER stress. Sirtinol (15 mM) alone did not affect the expressions of

GRP78, CHOP, and cleaved caspase-12 in PC12 cells. Taken

together, these data suggest that SIRT-1 mediates the protective

action of H2S against FA-induced ER stress.

5. Inhibition of SIRT-1 attenuates the protective effect of
H2S against FA-induced cytotoxicity and apoptosis in
PC12 cells

We further explored whether inhibition of SIRT-1 by Sirtinol

reverses the protection of H2S against FA-induced cytotoxicity and

apoptosis in PC12 cells. As shown in Fig. 5, pretreatment with

Sirtinol (15 mM) significantly reversed NaHS (200 mM)-suppressed

the loss of cell viability and the increase in apoptosis induced by

FA (120 mM, 24 h), indicating that inhibition of SIRT-1 reverses

the protective role of H2S against FA-induced ER stress-mediated

neurotoxicity. Neither NaHS (200 mM) nor Sirtinol (15 mM) alone

affected the cell viability and apoptosis of PC12 cells.

Discussion

We have previously demonstrated the protective effect of H2S

against the neurotoxicity of FA [26]. Abnormal ER stress

contributes substantially to FA-induced neurotoxicity. Thus,

modulation of ER stress becomes crucial in understanding the

mechanisms of H2S-exerted protection against the neurotoxicity of

FA. The present study was designed to investigate the role of H2S in

regulating FA-induced neuronal ER stress and the underlying

mechanisms. The main findings of the present work were the

following: (1) H2S significantly overcomes FA-induced ER stress

responses; (2) H2S upregulates the expression of SIRT-1 in PC12

cells; (3) Inhibition of SIRT-1 by Sirtinol reverses H2S-provided

neuroprotective effects on FA-induced cytotoxicity, apoptosis, and

ER stress. These results implicate the contribution of inhibiting ER

stress to the protection of H2S against FA-induced neurotoxicity and

suggest that the protection of H2S is involved in upregulation of

SIRT-1.

Increasing evidence demonstrates the toxic effects of FA on

central nervous system [3,5–7,12,14]. It is crucial to develop

effective therapeutic drugs and strategies that can reverse or

alleviate the neurotoxicity. In our previous study, the neurotoxicity

of FA has shown to be suppressed by H2S [26]. However, the

exact mechanism underlying this protective role of H2S needs to

be further studied. It has been shown that the neurotoxicity of FA

is contributed to excessive ER stress. Therefore, regulation of ER

stress becomes critical in understanding the contribution of H2S to

the protection against FA neurotoxicity. In the present work, we

examined the influence of H2S in the upregulatory effect of FA on

the expression of protein markers of ER stress, such as GRP78,

CHOP, and cleaved caspase-12, in PC12 cells. We demonstrated

that administration of NaHS (the donor of H2S) alleviates the

upregulated expressions of GRP78, CHOP, and cleaved caspase-

12 in PC 12 cells exposed to FA. These results indicate that H2S is

able to downregulate the elevated ER stress by FA. GRP78, an

ER-chaperon protein, plays a crucial role in regulation of the ER

dynamic homeostasis, and is a marker for ER stress [39–41].

CHOP, ubiquitously expressed at very low levels in normal cells, is

upregulated in the presence of excessive ER stress. The increase of

CHOP is a good biomarker of the presence of ER stress [42]. Pro-

caspase-12 is localized on the cytoplasmic side of ER and

proteolytically activated during excess ER stress. It has been

reported that ER stress-induced apoptosis is mediated by the

activation of CHOP and caspase-12 [43–45]. Our previous

confirmed that H2S has the protective role against FA-induced

cytotoxicity and apoptosis [26]. Thus, our results indicate that

H2S-attenuated ER stress plays an important role in its protective

effects against FA-induced cytotoxicity and apoptosis. Recent

studies have demonstrated that H2S-suppressed ER stress

contributes to its protective effect on atherosclerotic lesions [46],

cardiotoxicity of doxorubicin [47], homocysteine-induced cardio-

myocytic injury [48], and 6-hydroxydopamine-induced neurotox-

icity [49]. These previous findings provide a reasonable explana-

tion for our results. It revealed that H2S confers protection against

FA-induced neurotoxicity through inhibition of ER stress. Since

Figure 3. Effect of H2S on the expression of SIRT-1 in PC12 cells. A, PC12 cells were treated with different concentrations of NaHS (100, 200
and 400 mmol/L) for 24 h. B, PC12 cells pretreated with NaHS at a concentration of 200 mM for 30 min prior to 24-h exposure of formaldehyde (FA,
120 mM). The levels of SIRT-1 expression in PC12 cells were detected by Western blot using anti-SIRT-1 antibody. In all blots, staining for b-actin was
used as a loading control. Values are the mean 6 S.E.M. of three independent experiments. *P,0.05; **P,0.01; ***P,0.001, vs control group;
#P,0.05, vs FA-treated alone group.
doi:10.1371/journal.pone.0089856.g003
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exposure of FA cause neurotoxicity [3,5–7,12,14] and elevated

endogenous FA levels contribute to the pathology of Alzheimer’s

disease [15–17], our study suggests a promising future of H2S-

based preventions and therapies for FA-exerted neuronal damage.

We further investigated the possible mechanisms for the

protective effect of H2S against FA-induced ER stress. SIRT-1,

the best-characterized SIRT family member, regulates longevity in

several model organisms and is involved in cell survival,

differentiation, and metabolism [50]. Recent studies indicate that

SIRT-1 functions as a neuroprotective agent and rescues neurons

in both acute and chronic neurological diseases [30–32].

Furthermore, Sirt-1 has been identified as a defender of ER stress

[33,34]. Therefore, we focused on whether SIRT-1 mediates the

protective role of H2S against FA-induced ER stress and

neurotoxicity. We found that NaHS not only upregulated the

expression of SIRT-1 in PC12 cells, but also reversed FA-induced

downregulation of SIRT-1 in PC12 cells. Furthermore, our

present data demonstrated that the inhibitor of SIRT-1 reversed

the inhibitory effect of H2S on the expression of GRP78, CHOP,

and cleaved caspase-12 in PC12 cells treated with FA. Our results

suggest that H2S-exerted protection against FA-induced ER stress

is involved in upregulation of SIRT-1. In addition, we showed that

the inhibitor of SIRT-1 also reversed the protective action of H2S

against FA-induced cytotoxicity and apoptosis. Taken together,

our data imply that SIRT-1 mediates the protective role of H2S

against FA-induced ER stress and neurotoxicity. However, further

Figure 4. Effect of Sirtinol, a specific SIRT-1 inhibitor, on H2S-exerted protection against ER stress induced by formaldehyde. PC12
cells preincubated with Sirtinol (15 mM) 30 min before pretreatment with NaHS (200 mM) for 30 min prior to 24-h exposure of formaldehyde (FA,
120 mM). The levels of GRP78 (A), CHOP (B), and cleaved caspase-12 (C) expression in PC12 cells were detected by Western blot using anti-GRP78, -
CHOP, and -cleaved caspase-12 antibody, respectively. In all blots, staining for b-actin was used as a loading control. Values are the mean 6 S.E.M. of
three independent experiments. ***P,0.001, vs control group; ###P,0.001, vs FA-treated alone group; $$P,0.01, vs cotreated with NaHS and FA
group.
doi:10.1371/journal.pone.0089856.g004
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studies are needed to uncover the mechanisms of the upregulation

of SIRT-1 by H2S. It has been reported that sulfhydration

mediates various physiologic action of H2S [51–54]. In the future,

we will focus on elucidating whether H2S modulates SIRT-1 by

sulfhydration.

In conclusion, our present study demonstrates that H2S can

overcome FA-induced ER stress and neurotoxicity in PC12 cells.

H2S up-regulates SIRT-1 expression in PC12 cells. Moreover,

inhibition of SIRT-1 reversed H2S-elicited protection against the

ER stress and neurotoxicity induced by FA. These findings suggest

that the protection of H2S against FA-induced neurotoxicity is

involved in its inhibitory role in ER stress, which is mediated by

SIRT-1. Our results provide important insights into the molecular

mechanism underlying H2S-mediated protective role in the

neurotoxicity of FA.
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