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Typical body weight changes are known to occur in Parkinson’s disease (PD).Weight loss has
been reported in early stages as well as in advanced disease and malnutrition may worsen
the clinical state of the patient. On the other hand, an increasing number of patients show
weight gain under dopamine replacement therapy or after surgery. These weight changes
are multifactorial and involve changes in energy expenditure, perturbation of homeostatic
control, and eating behavior modulated by dopaminergic treatment. Comprehension of the
different mechanisms contributing to body weight is a prerequisite for the management of
body weight and nutritional state of an individual PD patient. This review summarizes the
present knowledge and highlights the necessity of evaluation of body weight and related
factors, as eating behavior, energy intake, and expenditure in PD.
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INTRODUCTION
Parkinson’s disease (PD) is a chronic neurodegenerative disease
with diffuse α-synuclein deposits in the neural system (1). The
most prevalent symptoms in early disease are mainly due to pro-
gressive degeneration of the dopaminergic nigrostriatal and meso-
corticolimbic pathways with motor (akinesia, rigidity, tremor) and
non-motor (apathy, anxiety, depression) symptoms (2). The dis-
ease is also characterized by the presence of non-motor vegetative
symptoms explained by a synucleinopathy of central and periph-
eral vegetative system (3) and in its advanced stages by dementia,
which correlates with cortical deposits of alpha-synuclein (intra-
cellular Lewy bodies and Lewy neurites) (4). On top of the
dopaminergic system, serotonergic, noradrenergic, and cholin-
ergic nuclei in the brainstem projecting to the cortex are also
impaired by the diffuse synucleinopathy which starts in the lower
brainstem. Typically, the first alpha-synuclein deposits are found
in the vagal nerve with a gastroparesis and constipation starting
before the first motor symptoms and leading the patients to con-
sult before a diagnosis of PD can be made (5). According to the
clinical stage, body weight of a given patient may considerably
change during the course of the disease raising the risk for both
disease-related under-nutrition and treatment-related overweight.

Body weight is determined by many factors including genetic,
epigenetic, metabolic, and environmental components and under
physiological conditions homeostatic behavioral adaptations pro-
tect against weight gain as well as weight loss (6).

However, regulation of body weight seems to be more effec-
tive in response to weight loss than to weight gain (7). Weight
gain is the result of a positive energy balance, which means that
energy intake exceeds expenditure, resulting in accumulation of
fat. Although this equation seems rather simple maintaining a con-
stant body weight is a complex physiological process comprising
internal and external, homeostatic and hedonic, and neurological

and metabolic factors. The fine regulation of these systems is hin-
dered by the «obesogenic» environment characterized by increased
availability of large amounts of palatable and energy-dense foods
and presence of powerful food cues, together with minimal phys-
ical activity. The result is the increasing prevalence of obesity in
western communities (8).

The situation of PD patients should be seen against this back-
ground with additional factors in relation to the severity of the
disease and dopaminergic treatment: these factors include (1) per-
turbation of hypothalamic metabolic regulation, (2) alteration
of energy expenditure (EE) (through tremor, rigidity, dyskinesia,
physical activity including hyperactivity, sleep disorders), and (3)
alteration of intake (i.e., perturbation of swallowing, gastrointestinal
disorders, alteration of eating behavior).

The aim of this review is:

• To highlight pathophysiological mechanisms implicated in
nutrition and leading to body weight fluctuations in PD.

• To summarize available data about body weight fluctuations in
PD (literature until January 2014).

• To link observed body weight fluctuations to possible mecha-
nisms in order to improve future patient care of PD patients.

PHYSIOLOGICAL MECHANISMS
HOMEOSTATIC CONTROL OF FOOD INTAKE
Homeostatic control of food intake and energy metabolism is
assured by a network of several hypothalamic nuclei (Figure 1)
[for review see Ref. (9–11)].

Central pathway of hunger
The neuronal «pathway of hunger» includes neurons in the
arcuate nucleus containing orexigenic peptides (i.e., agouti-gene-
related peptide, neuropeptide Y). These neurons project to the
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Kistner et al. Body weight in Parkinson’s disease

FIGURE 1 | Possible factors implicated in eating behavior and food
intake in PD. Eating behavior is regulated by hedonic, homeostatic, and
peripheral signals. This figure represents the main mechanisms, which are
disturbed in PD (hatched areas) and may affect eating behavior. VTA,
ventral-tegmental area; ARC, arcuate nucleus; NR, nucleus raphe; LC, locus
coeruleus; PVN, paraventricular nucleus; LHA, lateral hypothalamus; AgRP,
agouti-gene related peptide; NPY, neuropeptide Y; MCH,
melanin-concentration hormone; POMC, proopiomelanocortin; CART,
cocaine-and-amphetamine-regulated transcript; CRH,
corticotropin-releasing hormone; OT, oxytocin; GLP-1, glucagon-like peptide;
CCK, cholecystokinin; FFA, free fatty acids.

lateral hypothalamus called «hunger center» which contains neu-
ronal populations producing orexigenic peptides like melanin-
concentration hormone and orexins (also called hypocretin). The
name orexin refers to the Greek term for appetite (orexis). Orexin
increases appetite, arousal, and spontaneous physical activity and
therefore plays an important role in energy balance. Loss of orexin
leads to loss of appetite and a reduced metabolism. Orexins are
thought to provide a link between energy balance, behavioral
arousal, and reward (10, 12) and play a role in thermogenesis (13).

Both orexin and melanin-concentration hormone neurons are
selectively lost in PD which is correlated with the clinical stage and
severity of disease (14–16). Thus, deficiency of orexigenic peptides
could contribute to the weight changes in PD. However, the exact
mechanisms in PD are complex and far from being understood.

Central pathway of satiety
Another neuronal population in the arcuate nucleus is encoding
satiety. These neurons produce numerous anorexigenic peptides,
such as α-melanocyte-stimulating hormone, derived from a com-
mon precursor, called pro-opiomelanocortin (POMC). Together
with their receptor, these peptides constitute the melanocortin sys-
tem which plays an important role in energy homeostasis. Interac-
tions of this system with dopamine neurons in the nucleus accum-
bens are described (11). Another central satiety signal is cocaine-
and-amphetamine-regulated transcript (CART) which was also
shown to interact with hedonic circuits and dopamine (11). These
peptides project to the «satiety center» located in the paraventric-
ular nucleus which contains other anorexigenic peptides such as

corticotropin-releasing hormone (CRH) and stimulation of these
neurons reduces appetite. Today, a large number of central sig-
nals are identified and the list is still growing [for review see
Ref. (9–11)].

Peripheral signals
This network assures a bidirectional homeostasis in response to
peripheral signals reflecting the actual nutritional stage. The «sati-
ety pathway» is activated by several factors, i.e., gastric dilatation,
intestinal peptides liberated in postprandial state (cholecystokinin,
glucagon-like peptide, peptide YY), metabolites as fatty acids and
glucose and hormones as insulin and leptin. The latter is a hor-
mone synthesized and liberated by adipose tissue. Serum levels of
leptin reflect the degree of adipose tissue and high levels reduce
food intake. Accordingly, in PD patients who lost body weight
leptin tends to be low (16–18) and increases when body weight
increases, e.g., after DBS surgery (19). In mice lacking D2 recep-
tors, an enhanced hypothalamic leptin signaling has been shown
(20) arguing for an alteration of this mechanism in PD which
could explain weight loss in spite of low leptin levels.

Hunger and appetite may be induced by ghrelin, which is
the only peripheral hunger signal thus far identified. Ghrelin is
a peptide synthesized and liberated from the gastric mucosa in
fasting state (10). In addition to actions in the hypothalamus,
ghrelin stimulates appetite via receptors located in mesolimbic
circuits (9). In PD, plasma ghrelin levels are low and paradoxi-
cally correlated with BMI (17). A reduced postprandial ghrelin
response was shown in early stages of PD (21) which is not mod-
ified by dopamine treatment or acute STN-stimulation (22, 23).
Thus, low levels of ghrelin may contribute to weight loss in PD
(24). Six months after STN-stimulation, ghrelin was shown to
increase (25) which is coherent with the concomitant weight gain
(see later).

DOPAMINERGIC CONTROL OF EATING BEHAVIOR
The hypothalamic control of food intake is modulated by the
dopaminergic system and both systems are modulated by home-
ostatic orexigenic and anorexigenic signals such as ghrelin and
leptin (26, 27). Dopamine and the dopamine D2 receptor play
a central role in motivated behavior including feeding behavior
(28, 29). However, the role of the dopaminergic system in feeding
behavior is very complex and not completely understood. It seems
to exert different actions in separate circuits and in the pattern of
release (phasic versus chronic release) (26, 30).

Exposure to food and food-related cues results in an activation
of the mesolimbic dopamine system and especially the projec-
tion from the ventral tegmental area to the nucleus accumbens
[for review see Ref. (10, 30)]. This led to the hypothesis that the
mesolimbic dopamine system mediated pleasure associated with
eating [for review see Ref. (26, 27, 30)]. This idea is strongly chal-
lenged since it was shown that dopaminergic depletion of nucleus
accumbens does not blunt the hedonic response to pleasant food
and dopamine is not required for “liking” of food (28, 31). In
line with these results, dopamine-deficient mice still demonstrate
a marked preference for sucrose over water (31).

Instead, dopamine is necessary for motivational processes,
referred to as “incentive salience” or “wanting” [for review see
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Ref. (28)]. Accordingly, increasing the synaptic dopamine by inhi-
bition of the DA transporter or administration of amphetamine
increase the motivation for high effort activities [for review see
Ref. (30)]. This motivation can be measured in laboratory ani-
mals with running activity or lever pressing in order to acquire
foodstuff. Lack of mesolimbic dopamine reduces the activity of
rodents to acquire foodstuff, for example running activity or work-
ing to get access to food (26, 28, 32). On the other hand, when
palatable food is abundant and may be acquired without effort,
food intake of dopamine-deficient rodents remains stable or even
increases (32).

Other dopaminergic pathways are implicated in eating-related
behaviors: in dopamine-deficient mice, restoration of dopamine
in dorsal striatum rescues feeding in these animals that otherwise
would die of starvation (26). It seems that a regulated dopamine
release in dorsal striatum is essential for normal feeding in mice
(33) and humans (34). The dopamine release in the dorsal stria-
tum following feeding correlated with the experienced pleasure in
healthy humans (35). Obese people have low striatal dopamine
D2 receptor availability (36), and low dorsal striatal presynap-
tic dopamine synthesis capacity was correlated with overeating
behavior in a PET study with healthy volunteers (37).

These observations led to the “reward deficiency hypothesis for
overeating.” According to this hypothesis, overeating may be con-
sidered as a “therapy” of low dopaminergic state leading to weight
gain and obesity [for review see Ref. (29)]. However, as stated by
Berridge et al. (28), the decrease of D2 receptors in obesity could
also be a downregulation following overeating.

On the other hand, too much dopamine signaling was shown
to inhibit feeding in mice, demonstrated with non-specific
dopamine receptor agonists, DAT inhibitors, or amphetamines
which increase the synaptic dopamine via an inhibition of presy-
naptic dopamine reuptake (26). In healthy adults, the amphet-
amine and DAT inhibitor methylphenidate reduces eating and
food intake by one-third (38, 39) and weight loss was shown in
PD patients treated with methylphenidate (40). In hypothalamic
pathways, dopamine inhibits feeding (28), and a tonic inhibi-
tion of orexin-producing neurons in the lateral hypothalamus
by dopaminergic hotspots in the nucleus accumbens has been
described [for review see Ref. (29)]. However, in PD treatment with
dopamine agonists may induce in some cases compulsive eating
behavior leading to weight gain (41). This eating behavior is often
referred to as “binge-eating disorder (BED)” and is considered to
be an impulse control disorder (ICD). The underlying mecha-
nism is thought to be an activation of mesolimbic dopaminergic
pathways, especially in ventral striatum and nucleus accumbens,
mediated by D3 receptors (42).

Taken together the present knowledge, we may conclude:

(1) Dopamine is necessary for motivational salience and efforts
linked to alimentation, like shopping and preparing meals.

(2) In physiological conditions, dopamine over-signaling inhibits
feeding.

(3) In some cases,a dopamine overstimulation may increase moti-
vation for food leading to a drive to eat, foraging behavior, and
overeating (craving or binge-eating), known to occur in PD
patients under treatment with dopamine agonists (see later).

(4) In hypo-dopaminergic state, taste perception and apprecia-
tion of the foodstuff (liking) is maintained. Thus, as feed-
ing does not require any effort and highly palatable food
is easily available, snacking can be maintained even in apa-
thetic patients who lost motivation for any other physical
activity.

(5) Thus, both hypo- and hyperdopaminergic traits may lead to
overeating with subsequent weight gain. Eating behavior in
both cases may be different.

SEROTONERGIC AND NORADRENERGIC MODULATION OF ENERGY
METABOLISM AND APPETITE
Other aminergic systems such as serotonergic or noradrener-
gic systems are mutually connected with the hypothalamus and
may influence homeostatic metabolic regulation. Both systems
are affected by alpha-synucleinopathy (43). The noradrenergic
locus coeruleus (LC) as well as serotonergic neurons express high
amounts of orexin receptor and dense orexin fiber projections
(44). Loss of LC neurons had been described in PD (45). In the
6-OHDA rat model, degeneration of LC produces a transient drop
in body weight which could be reversed by DBS-STN (46). This
had led to the hypothesis that weight variations in PD could be
modulated by noradrenergic interaction between LC, STN, and
hypothalamus (47).

Serotonin plays a role in eating behavior and high cerebral levels
may improve mood, depression, and sleep (48). Cerebral sero-
tonin biosynthesis is favored by its precursor, the essential amino
acid tryptophan in the presence of dietary carbohydrates. This
mechanism is triggered via the insulin response which enhances
cerebral uptake of tryptophan (49). Tryptophan is a constituent
of many protein-containing foods. The positive effect of carbohy-
drates, especially those with high glycemic index such as sucrose,
on mood could be the reason why efforts to lose weight are doomed
to failure in obesity (49) which is often associated with depression
(50). Neurodegeneration of the serotonergic system with low levels
of serotonin in PD (48) may explain the pronounced preference
for all kind of sweets and increased intake of chocolate in PD
patients (51).

ENTERIC NERVOUS SYSTEM AND GASTROINTESTINAL DISORDERS
Gastrointestinal functions are regulated by the enteric nervous sys-
tem, a neuronal network organized in two plexuses, myenteric and
submucosal, which control gut motility and secretion (5).

In PD, the enteral nervous system is affected by alpha-
synucleinopathy which may explain the high incidence of gastroin-
testinal disorders, beginning in pre-motor stages of the disease.
The most frequent symptom is chronic constipation affecting up
to 89% of PD patients [for review see Ref. (52)]. The primary cause
for constipation is impaired peristalsis with slow colonic transit
due to neurodegeneration of myenteric neurons, which may be
modulated by dopamine (52). In some patients, constipation is
secondary to abnormal coordination of the rectoanal reflex with
paradoxical contraction of the puborectalis muscle, which leads
to defecatory dysfunction (5, 52). Loss of serotonergic neurons in
raphe nucleus is thought to be involved in this clinical feature (52).
Gastroparesis is characterized by slowed emptying of food into the
small bowel leading to postprandial fullness, early satiety, nausea,
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Table 1 | Body weight modification in pre-motor PD.

Reference Study type Population n Origin PD cases Result

Chen et al. (54) Prospective cohort NHSa, HPFSa 160,000 USA 468 Weight loss

Logroscino et al. (56) Prospective cohort Harvard Alumni Health

Study

10,812 USA 106 Weight loss

Cheshire and

Wszolek (55)

Case–control study 100 + 100 USA 100 Weight loss

Ma et al. (57) Prospective cohort Rural population Lixian 16,488 China 464 (85 analyzed) Weight loss

Hu et al. (58) Prospective cohort Cross-sectional

population surveys

47,156 Finland 526 Weight gain

Ikeda et al. (59) Prospective cohort Check up in health care

center

20,000 Japan 24 Weight gain

Abbott et al. (60) Prospective cohort Honolulu Heart Program 7990 USA/Japanese origin 137 Weight gain

Kyrozis et al. (61) Prospective cohort EPICa Study 26,173 Greece 120 No association

Becker et al. (62) Retrospective database

analysis

Database 5,000,000 UK No association

Ragonese et al. (63) Case–control study 318 + 318 Italy 318 No association

Scigliano et al. (64) Case–control study Clinical records of

newly diagnosed PD

178 + 533 Italy 178 No association

aNHS, National Health Study; HPFS, Health Professional Follow-up Study; EPIC, European Prospective Investigation into Cancer and Nutrition.

vomiting, and bloating (53). Gastrointestinal disorders affect the
quality of life and may limit food intake thus contributing to mal-
and under-nutrition in PD (24).

PARKINSON’S DISEASE
WEIGHT CHANGES IN PRE-MOTOR PD
In prospective American cohort or case–control and Chinese epi-
demiological studies, a decrease of body weight was reported
several years prior to diagnosis (5 pounds in the 4 year preceding
diagnosis) (54–57) (Table 1). On the other hand, large Finnish and
Japanese cohort studies reported a weight gain in pre-diagnostic
PD (58, 59). The same result was found in the Honolulu Heart
Program which included Americans of Japanese origin (60). No
association between PD and BMI before or at disease onset was
reported for the Greece EPIC population (61), the UK-based gen-
eral Practice Research Database (62), and in Italian case–control
studies (63, 64). As degeneration of the dopaminergic system
begins years before diagnosis (65), BMI variation may reflect a
dysregulation of dopaminergic control of eating behavior rather
than modification of energy metabolism in pre-motor stages of the
disease. Apathy, depression, and anxiety are frequent in de novo PD
(66, Bichon et al., personal communication) and eating disorders
may also appear in response to these negative emotional state. In
the general population, a strong association between depression
and overweight has been described (50, 67) which may be due
to sub-threshold eating disorders described as “emotional eating”
(68), increased“snacking”(69), or increased sweet preference (70).
Alterations of eating behavior have been described in de novo PD,
prior to treatment (Bichon et al., personal communication).

Furthermore, disturbance of smell and taste may alter pref-
erence for foodstuff. In fact, nutritional factors have been cor-
related with “PD-risk”: in a Chinese study, meat consumption
was inversely associated with PD (57) and in a Japanese study,
dietary glycemic index was inversely correlated with PD-risk (71).
An association of dietary milk protein with PD-risk is established
for large prospective US cohorts (72), but a case–control study in
Japan could not confirm this association (73). As dietary patterns
are very different between Asian and western populations, these
findings might reflect cultural variations of eating behavior in
pre-motor PD. A recent meta-analysis found significant negative
associations with PD for smoking, coffee drinking, and alcohol
consumption which may represent a modification of preferences
in early PD (74).

PREVALENCE OF MALNUTRITION IN PD
Weight loss in PD has been reported since the first publication
of James Parkinson in 1817. A recent meta-analysis on BMI in
PD reported a lower BMI of PD patients than controls (pooled
difference:−1.73 kg/m2), which is related to disease severity (75).
Average weight loss is about 3.6 kg 8 years after diagnosis (54)
or 6 kg in one decade (76). Both fat mass and lean body mass
were reported to be reduced in PD patients who lost weight
(18, 77). It should be outlined that a lower average BMI does
not mean that many PD patients are at risk for malnutrition.
In spite of a decline of body weight, during disease progression
patients may be overweight (see later). Prevalence of underweight
depends on the used assessment tool and ranges from 0 to 24%
(4–5% in the control group), while 3–60% of PD patients were
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Kistner et al. Body weight in Parkinson’s disease

FIGURE 2 | Mechanisms of body weight loss in PD. Mechanisms of body
weight loss in Parkinson’s disease according to the stage of the disease.
Factors with important contribution to weight loss are dark grey.

reported to be at risk of malnutrition (77). However, the use of
the mini nutritional assessment, a valid nutrition assessment tool,
resulted in malnutrition rates of only 0–2% while 20–34% were at
risk of malnutrition (77). Malnutrition is associated with disease
severity (78).

PREDICTORS OF WEIGHT LOSS IN PD
Increased energy expenditure
Despite eventual weight loss, PD patients increase their energy
intake by about 350 kcal/day, mainly due to increased carbohydrate
intake (54, 79) (Figure 2). This suggests that weight loss is induced
by increased energy expenditure (EE). Indeed, metabolic studies
had shown that resting EE is increased in PD (about 20–51% of
control subjects) in ON and OFF-medication state. The main fac-
tors for this increase seem to be dyskinesia and rigidity (80–87).
Consequently, when patients with severe dyskinesia were excluded,
resting EE was not increased (87–89). Dyskinesia and rigidity
as well as tremor may be considered as spontaneous physical
activity, like standing or fidgeting. In healthy volunteers, it was
shown that spontaneous physical activity may account for EE up
to 700 kcal/day (90). If this is not compensated by energy intake,
weight loss is inevitable.

Impaired homeostatic regulation of energy metabolism
Taken into account that weight loss may take place before the
onset of motor symptoms, other disease-related factors should
be considered. As described above, several disorders of the hypo-
thalamic regulation are known in PD, namely a massive loss of
hypothalamic orexin-producing neurons, occurring prior to the
onset of drug treatment (15, 16, 91). As orexin is involved both
in appetite and spontaneous physical activity (92), its decrease
may contribute to a decrease in food intake and physical activ-
ity. Weight loss could be promoted by impaired bioenergetics
due to mitochondrial dysfunction, as shown in a mouse model
of PD. In this model, which has a loss-of-function mutation

of the mitochondrial protein kinase (PINK1) causing a genetic
form of PD, significant weight reduction occurred in pre-motor
stage (93).

Ghrelin, the gastric «hunger hormone» is reduced in PD and
has even been considered as a potential biomarker of the disease
(21). This could be due to impaired gastric mobility and con-
tribute to weight loss in all stages of the disease [for review see Ref.
(24)]. Furthermore, evidence from studies with rodents indicate
that hypothalamic leptin signaling (which acts as a satiety signal)
might be enhanced in PD (20).

Impact of dopaminergic treatment
As described above, dopamine has anorectic effects in the hypo-
thalamic arcuate nucleus leading to a suppression of appetite and
food intake (28). Likewise, substances which increase the synaptic
dopamine by inhibition of the presynaptic dopamine transporter
like amphetamine have anorectic effects (38).

In addition, dopaminergic treatment, especially apomorphine,
may induce nausea and vomiting thus limiting energy intake,
mainly on introduction of treatment (94). However, in the long-
term, the treatment is mostly tolerated and may induce dyskinesia
and behavioral side effects including physical hyperactivity both
leading to increased EE.

Other factors
Other factors include impairment of gastrointestinal func-
tion (dysphagia, delayed gastric emptying, constipation, mal-
absorption), disturbed hand–mouth-coordination, and other
motor symptoms limiting activities of daily living or a decline
in cognitive functions (95–99). Medical conditions such as infec-
tion, bone fractures, and malignant diseases may be other factors
(99). Levodopa is an amino acid and its intestinal absorption and
cerebral uptake competes with dietary amino acids thus may be
impaired by dietary protein. A low-protein diet may increase its
bioavailability. Patients with severe postprandial OFF-periods are
often advised for a “protein-redistribution diet” which is based
on the protein restriction throughout the day whereas the daily
protein ration is consumed at dinner. These diets may further
worsen the nutritional state of the patient (100). Some authors
reported a link of PD with impaired glucose homeostasis (101,
102) but presently there is no clear evidence in this context [for
review see Ref. (103)] and a recent meta-analysis confirmed a lack
of relationship between PD and diabetes (104).

WEIGHT GAIN AND OVERWEIGHT IN PD
In the pre-levodopa era, PD was a disease of malnutrition and
even 20 years ago, it was rare to encounter obese PD patients (98)
(Figure 3). Today, in spite of a decreased average BMI, individual
PD patients may be overweight (75). In fact, prevalence of over-
weight in PD was reported to be about 60% in Italy (105) and
50% in Germany (80). In France and USA, more than 50% of the
patients selected for DBS, i.e., patients with advanced disease suf-
fering from motor complications presented an overweight with a
BMI >25 kg/m2 (106–108). These data are close to the prevalence
of overweight and obesity in the general population in western
countries which is between 50 and 70% (109). We can state that
modern pharmacotherapy together with overall increase in over-
weight in modern society seems to have changed the phenotype
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FIGURE 3 | Mechanisms of body weight gain in PD. Body weight gain
may occur with treatment by agonist or DBS. Both agonist and DBS
treatment may lead to modifications of eating behavior leading to increased
food intake. In addition, with successful DBS treatment, energy
expenditure decreases by improvement of symptoms leading to body
weight gain even in the absence of eating disorders.

of the PD patients. Modern treatment for PD as agonists and DBS
may have an additional impact.

Weight gain with dopamine replacement therapy
As stated above, levodopa may be considered as an anorexi-
genic agent. In contrast, dopamine replacement therapy (DRT)
and in particular D2/D3-selective dopamine agonists may lead
to behavioral changes, ICDs, and among them changes in eating
behavior, referred to as BED (110) and explained by an activa-
tion of the “reward system” mediated by D3 receptors (42). Eating
disorders were described in up to 15% of patients treated with
dopamine agonist leading to weight gain and sometimes to obe-
sity (110–120). Nocturnal eating is frequent and related to sleep
disorders in patients treated with agonists (121). Other alter-
ations of eating behavior are described as “insatiable craving,”
“compulsive overeating,” “binge-eating” with uncontrollable and
compulsive traits as common feature (41, 122–126). In patients
with mood fluctuations, eating of snacks occurred more likely
in “ON” state while they experienced euphoria (127). Lower-
ing or discontinuation of dopamine agonist may reverse the
symptoms (41).

Weight gain after surgery for PD
Weight gain after pallidotomy for PD was first published in 1953
(128–130) (Table 2). Since then many authors reported increased
body weight after surgery for PD, mostly STN-DBS (131, 132),
but also stimulation of GPi (107, 133–135). In case of STN-DBS,
weight gain is present in the majority of patients, is rapid, that
is occurs mainly within the first 3 months (131, 136, 137). In
the long-term, body weight tends to stabilize in many patients
(138, 139) and some patients may lose weight again, but mean
weight remains higher than before surgery (136, 140). In individ-
ual patients, excessive weight gain leading to obesity was described

(106). Weight gain seems to be independent of target (GPi or
STN) and procedure (lesion, stimulation, uni-or bilateral) (107,
134, 141). However, in a recent study, STN was more associated
with weight gain as GPi (142). In any case, weight gain is achieved
by a positive energy balance for which several mechanisms may
play a role.

Normalization of body weight after previous weight loss. A
compensation of previous weight loss in underweight patients is
normal and desirable. In humans as in animals, a period of starva-
tion results in hyperphagia related to the extent to which body fat
was previously depleted. Therefore, a drive to overeat seems to be
part of a regulatory system to restore fat mass (6). The phenom-
enon of “rebound adiposity” in PD after STN-DBS was described
by Dulloo and Montani (143). Accordingly, weight gain after DBS
in PD may be correlated with the pre-operative weight, and ini-
tially underweight patients take more weight (106, 133). However,
weight gain often exceeds previous weight loss by far (144). Thus,
additional mechanisms have to be considered.

Reduction of energy expenditure with unchanged intake. After
STN-DBS, a significant decrease (7–13%) of daily EE was reported
(86, 145). A decrease of EE of 13% without adaptation of intake
would lead to a weight gain of 20 kg after 1 year (145). This decrease
of EE after successful STN-DBS may be explained by:

• a reduced resting EE (87) following improvement of rigidity and
tremor,

• a reduction of levodopa-induced dyskinesia (146),
• reduction of OFF-period dystonia (147),
• a reduction of levodopa-induced behavioral hyperactivity (121),
• an improvement of sleep pattern and nocturnal hyperactivity

(121, 148).

Accordingly, correlations of weight gain with reduction of
motor symptoms, reduction and severity of OFF-periods, LEDD
reduction, and reduction of levodopa-induced dyskinesia (133,
136, 149, 150) had been described. Despite improved motor
response and decreased EE after DBS, 80% of the patients do not
increase their physical activity nor change their eating habits (136).
This imbalance between intake and expenditure leads inevitably
to weight gain, mostly due to an increase in fat mass (86, 106, 150).

Direct impact of STN-stimulation on adjacent brain regions. A
direct effect of STN-stimulation on the hypothalamus by current
diffusion has been hypothesized as indeed the lateral hypothala-
mus is very close to the medial limbic tip of the STN (151). In a
recent study, weight gain after chronic DBS of STN was inversely
related to the distance of the contacts from the wall of the third
ventricle (152). However, this observation could not distinguish
between current diffusion to the hypothalamus or to the mesolim-
bic part of the STN. In the rat, a lesion of the STN without
lesioning the hypothalamus leads to impulsive feeding behavior
(153), strongly arguing for a lesioning effect of the mesolimbic
STN. The most impressive clinical behavioral changes may be
observed immediately after stimulation has been switched on,
while patients are still in the hospital. Patients in the immedi-
ate post-operative state may experience a euphoric state induced
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Table 2 | Weight gain in PD after surgical treatment: possible mechanisms and predictive factors.

Reference N

enrolled

FU

(m)

n Patients

with WGa

Mean increase

of BMI (kg/m2)/

body weight (kg)

Target and

surgical

procedure

Findings and predictive factors

Guiot and Brion (128) 47 12 20 5–16 kg Pallidotomy WG in the first months after surgery

Lang et al. (129) 40 12 14 13.6 kg Pallidotomy Greater ease of feeding, altered eating behaviour,

reduced dyskinesia

Moro et al. (132) 7 9 7 8 kg STN-DBS Increased appetite

Ondo et al. (130) 60 12 49 4 kg Pallidotomy

unilateral

WG predicted by improvement of motor score, most

pronounced during first months

Gironell et al. (133) 27 12 26 4.7 kg STN-DBS,

GPi-DBS,

pallidotomy

WG predicted by improvement of dyskinesia, motor

score, pre-op weight

Krack et al. (131) 42 60 39 4 kg STN-DBS WG occurs in the first months after surgery and

remains stable after 1 year

Barichella et al. (136) 30 12 29 3.1 kg/m2, 9.3 kg STN-DBS Improvement of dyskinesia score

Macia et al. (150) 19 13±8 18 4.7 kg/m2/9.7 kg STN-DBS Decreased REE with unchanged DEI, increase of fat

mass

Tuite et al. (144) 27 6 22 1.2 kg/m2/4.5 kg STN-DBS No significant weight gain in the immediate

post-operative period, weight gain occurred after

stimulator was activated

Novakova et al. (138) 23 45 23 3.3 kg/m2/9.4 kg STN-DBS Body weight tended to stabilize in long-term

Montaurier et al. (86) 24 3 Data not

given

1.1 kg/m2/3.4 kg (men),

1.0 kg/m2/2.6 kg

(women)

STN-DBS Low improvement of UPDRS motor score, EE

decreased but did not correlate with weight gain

Bannier et al. (106) 22 16 20 2.2 kg/m2/5.5 kg STN-DBS Low pre-operative body weight, low improvement of

UPDRS motor score

Guimarães et al. (176) 57 3 41 3 kg/m2 STN-DBS Nutritional intervention prevents weight gain

Walker et al. (108) 39 12 33 0.4 kg/m2/4.3 kg STN-DBS

unilateral

No correlation with UPDRS or LED, no association

with the side of unilateral DBS

Sauleau et al. (135) 46 6 37 5.7 kg (STN), 1.7 (GPi) STN-DBS

vs.

GPi-DBS

WG in STN-DBS > GPi-DBS, association of WG with

dyskinesia in GPi-DBS, no change of food intake

Moghaddasi and

Boshtam (137)

15 3 Data not

given

6 kg STN-DBS Rapid weight gain after DBS

Strowd et al. (107) 99 24 Data not

given

2.3 kg STN-DBS,

VIM-DBS

WG greater in VIM-DBS

Escamilla-Sevilla et al.

(19)

14 6 12 1.2 kg/m2/5.5 kg STN-DBS Increase of leptin without expected decrease of NPY,

correlation with higher stimulation voltages

Locke et al. (134) 44 6 31 2.3 kg STN-DBS

unilat. vs.

GPi-DBS

unilat.

No difference in WG between STN and GPi, no

correlation with clinical parameters

(Continued)
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Table 2 | Continued

Reference N

enrolled

FU

(m)

n Patients

with WGa

Mean increase

of BMI (kg/m2)/

body weight (kg)

Target and

surgical

procedure

Findings and predictive factors

Lee et al. (141) 43 24 Data not

given

5 kg (male), 4 kg

(female)

STN-DBS

uni + staged

STN-DBS

bilateral

No statistical difference in WG

Serranová et al. (160) 20 34 18 8 kg STN-DBS WG correlates with arousal ratings of appetitive stimuli

Novakova et al. (172) 27 12 24 5.2 kg STN-DBS Decrease of cortisol levels, no other changes

Foubert-Samier et al.

(149)

47 12 37 2.7 kg/m2/7.2 kg STN-DBS High pre-operative motor score

Markaki et al. (25) 23 6 17 6 kg STN-DBS WG associated with changes of ghrelin, leptin, and

NPY. Decrease of cortisol

Ružicka et al. (152) 20 18 19 6.9 kg STN-DBS WG correlated with electrode position distance to

three ventricles

Jorgensen et al. (145) 7 12 Data not

given

4.7 kg STN-DBS Decreased DEE with unchanged DEI, weight gain = fat

mass

Mills et al. (142) 31 + 30 >12 Data not

given

+0.53 kg/m2 STN,

−0.14 kg/m2 GPi

STN-DBS,

GPi-DBS

WG target-specific (STN > GPi)

aWG, weight gain; IAPS, international affective picture system; REE, resting energy expenditure; DEI, daily energy intake; NPY, neuropeptide Y; DEE, daily energy

expenditure; LED, levodopa-equivalent dose; STN-DBS, subthalamic nucleus deep brain stimulation, if not otherwise stated bilateral.

by STN-DBS, characterized by disinhibition, hyperactivity, and
increased appetite. This condition spontaneously recovers within
few weeks or months and is thought to be linked to both the
lesional effect of surgery with an edema of the STN and to the
long-term response of mesolimbic effects of dopaminergic med-
ication (154). The most important gain weight occurs in the first
weeks and months until stabilizing. The inverse is the case for
stimulation settings, which start very low, and then gradually are
increased over time in order to avoid behavioral changes (154). The
volume of current diffusion in neural tissue does not increase in a
linear way with increase of current setting. On the contrary, there
is sharp exponential decrease of efficiency with the distance to the
electrode (155). If weight gain were to be explained by current
diffusion to the hypothalamus, the weight gain should increase
over time with increasing stimulation parameters. Furthermore,
high-frequency stimulation or lesion of the lateral hypothalamus
has anorectic effects, as shown in rats (156) and obese humans,
respectively (157). Altogether, these are strong argument against
current diffusion to the hypothalamus as the explanation of weight
increase after surgery for STN-DBS.

Weight gain in PD patients treated with STN-DBS is accompa-
nied by increasing levels of leptin reflecting the increasing degree
of adipose tissue (19, 25). In normal conditions, high leptin levels
have an anorectic function on the hypothalamus by downregu-
lating the expression of orexigenic neuropeptide Y in the arcuate
nucleus, a mechanism which ensures body weight stability (158).
It was shown that in PD patients treated with STN-DBS, neu-
ropeptide Y levels increase despite high leptin levels and it was

argued that DBS interferes with the inhibitory action of leptin
in the hypothalamus (19, 25). However, 3 or 6 months after STN
surgery, basal levels of hormones of the hypothalamic–adrenal,
–gonadal, and –somatotropic axis were normal and hypothala-
mic function in STN-DBS was considered to be normal (159).
These observations argue for a direct effect of STN-stimulation
to the mesolimbic STN which has an influence on motivation for
food intake in rats (153). Accordingly in PD patients with STN-
DBS, an increased sensitivity to food reward cues was reported
which correlated with post-operative weight gain (160). However,
as is the case for other behavioral effects of STN-DBS, some toler-
ance effect developing over the first months after surgery is likely
(154). It is possible that STN-DBS interferes with homeostatic
hypothalamic regulation, but not related to current diffusion
toward the hypothalamus.

Eating disorders. As described above, treatment with D2/D3-
specific dopamine agonists may lead to compulsive eating
behavior, which disappears after discontinuation of treatment
(Table 3). Alteration of eating behavior has also been described in
PD patients treated with STN-DBS (113, 121, 161). Due to missing
classification and nomenclature, hyperphagia is often classified as
BED, the only eating behavior disorder (beside bulimia and anemia
nervosa) which is described in DSM-IV. BED includes recurrent
and frequent bulimic episodes with lack of control and marked
distress. There is no compensatory behavior as vomiting. BED is
considered as an ICD (110) and as such is part of scales assess-
ing ICD such as the Questionnaire for Impulsive–Compulsive
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Table 3 | Eating disorders in PD.

Reference Study N total N cases Prevalence % Approach Eating disorder Disorder related to

Nirenberg and

Waters (41)

Case report – 7 – Definition of CE and

BED, not validated

Compulsive eating BED Dopamine agonist

McKeon et al. (125) Case report – 2 – Patient self-report Compulsive

eating/night-eating

Dopamine agonist

Giladi et al. (116) Case–control 193 7 3.6 Structured interview New onset excessive

drive to eat

Dopamine agonist

Miwa and Kondo

(127)

Prospective 60 5 8.3 Structured interview

with patient/caregiver

Alteration of

preferences

Dopamine agonist

Fan et al. (114) Retrospective 312 1 0.32 DSM-IV and

self-reported and

telephone interview

BED Dopamine agonist

Weintraub et al. (110) Cross-sectional

study

3090 132 4.3 DSM-IV, structured

interview

BED Dopamine agonist

Lee et al. (164) Cross-sectional

study

1167 40 3.4 MIDI modifieda Compulsive eating L-DOPA

Khan and Rana (124) Case report – 1 – Patient self-report Craving and night-eating Dopamine agonist

Kenangil et al. (117) Retrospective 554 9 1.6 Semi structured

interview

Compulsive eating Dopamine agonist

Solla et al. (119) Prospective 349 10 2.9 Definition according to

Nirenberg and Waters

BED Dopamine agonist

Hassan et al. (122) Retrospective 321 12 3.7 Research of keywords

in database

BED Dopamine agonist

Ávila et al. (111) Prospective 216 2 1 Questionnaire Compulsive eating Dopamine agonist

Vitale et al. (126) Retrospective – 12 – Definition according to

Nirenberg and Waters

Compulsive eating L-DOPA and dopamine

agonist

Hinnell et al. (123) Case report – 1 – Patient self-report Compulsive eating Dopamine agonist

Lim et al. (118) Retrospective 200 27 13.5 QUIP (patient or

caregiver)

“Eating” L-DOPA and dopamine

agonist

Zahodne et al. (161) Prospective 96 9 9.3 EDE-Qa, EEDDSa BED and sub-threshold

BED

Dopamine agonist,

STN-DBS

Farnikova et al. (115) Case–control 46 4 8.7 DSM-IV criteria BED Levodopa

Eusebio et al. (113) Prospective 110 17 15.5 DSM-IV criteria BED Dopamine agonist,

STN-DBS

Callesen et al. (112) Retrospective 490 42 8.6 QUIP “Eating” Dopamine agonist

Tanaka et al. (120) Retrospective 93 10, 3 10.8, 3.2 QUIP interview “Eating,” compulsive

eating

Dopamine

agonist/levodopa

aMIDI, Minnesota Impulsive Disorders Interview; EDE-Q, Eating Disorder Examination Questionnaire; EDDS, Eating Disorder Diagnostic Scale; QUIP, Questionnaire

for Impulsive–Compulsive Disorders in Parkinson’s Disease.

Disorders in PD (162). However, these scales do not inquire about
the frequency and amount eaten and therefore do not allow a
BED diagnosis. Consequently, they report high false-positive rates
(120). In general, assessment of eating behavior in PD in the lit-
erature is not systematic and may range from simple telephone

interviews, patients self-reports, retrospective database research of
key words to different psychological scales.

When employing scales which assess DSM-IV criteria for BED
such as the Eating Disorder Examination Questionnaire (EDE-Q),
BED is reported to be rather rare in PD: prevalence was about 1%
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in a small sample of patients (161), comparable with its occurrence
in the general population of 1.4% (163). In contrast, prevalence
of sub-threshold pathologic eating behavior (“compulsive eat-
ing”) was reported to be between 3.4 and 4.5% in PD (110, 164)
and seems to increase after STN-DBS (161). We argue that alter-
ations of eating behavior disorders in PD are mostly not BED but
comprise a large spectrum of sub threshold pathologic variants of
normal eating behavior, described as «snacking», «night-eating»,
«sweet preferences», «craving», «compulsive eating» which may
not all be impulsive. This may explain why in STN-DBS-treated
patients, a marked decrease of ICD was described whereas the
prevalence of eating disorders decreases less (121) or even increases
significantly (113). In fact, DBS-STN was an independent pre-
dictor of sub-threshold eating disorders in a small sample of
patients (161).

Impulse control disorders are psychiatric conditions character-
ized by motivation-based behaviors that involve repetitive reward-
based activities and loss of control (165). In PD, ICDs are linked
to dopamine dysregulation (165) and hyperdopaminergic con-
ditions (121). Successful surgery allows for a marked decrease of
dopaminergic treatment (166), leading to disappearance of hyper-
dopaminergic behavior (gambling, hypersexuality, buying) with
exception of eating disorders (113, 121). This condition is often
associated with apathy and hypoactivity (121). In these patients,
eating may be the only pleasure-generating activity which does
not require any effort and is therefore compatible with apathy,
which is defined as a decrease in motivation (167) in opposition
with ICD which reflects excess motivation oriented toward plea-
surable activities (165). In the absence of dopamine, the hedonic
response (“liking”) and the perception of taste is conserved (28).
Moreover, feeding of palatable food increases dopamine levels
in dorsal (35) and ventral striatum including nucleus accum-
bens (168). Hyperphagia leading to obesity in hypo-dopaminergic
conditions such as ADHD had been interpreted as unconscious
“self-therapy” in order to normalize mesolimbic dopamine con-
centrations (169). Thus, hyperphagia could be related to a relative
hypo-dopaminergic state which is the case for many PD patients in
the post-operative period on chronic DBS when successful stimu-
lation allows for marked decrease in dopaminergic treatment (121,
166). This hypothesis is compatible with a laboratory study which
could show that rats previously treated for 5 days with l-DOPA
gain 15% more weight than control rats during 12 weeks ad libitum
feeding. The authors argue that overeating after dopamine with-
drawal might be a side effect of dopaminergic stimulation, (170)
and this side effect can easily be explained by a downregulation
of the dopaminergic system during dopaminergic treatment fol-
lowed by a withdrawal syndrome. Of note, a withdrawal state in
addiction to cocaine, a direct dopamine increasing drug via inhibi-
tion of the dopamine transporter, is characterized by progressive
apathy over a period of several weeks and its severity correlates
with a progressive striatal dopamine depletion (171).

Given the frequency of apathy after STN-DBS, we propose that
the vast majority of eating disorders that appear following DBS in
PD should therefore not be considered as ICD but interpreted as
sub-threshold pathologic behavior in order to compensate for low
dopaminergic signaling. In order to differentiate this particular
eating behavior from the compulsive eating observed in patients

treated with high dose D2/D3 dopamine agonists, we propose to
call this behavior “hypo-dopaminergic snacking.”

Hypo-dopaminergic states more rarely occur after GPi-DBS
which does not allow for reduction of levodopa. This may explain
why weight gain after GPi-DBS on average is less important than
after STN-DBS, and mostly due to the reduction of dyskinesia
directly related to GPi-DBS (135).

Other factors.
Improvement of gastric function by STN-DBS and the role of ghre-
lin. STN-DBS can improve the gastric function in PD and thus
improve upper gastrointestinal symptoms such as heavy feeling
in the stomach, bloating, nausea or feeling sick, and belching
(22). This finding may explain the increased levels of the gas-
tric orexigenic peptide ghrelin in PD patients treated by STN-DBS
(25) leading to increased hunger. However, the role of ghrelin in
STN-DBS remains unproven since three other authors could not
confirm increased levels (22, 23, 172).

Alteration of the serotonergic system. STN-DBS reduces the firing
rate of serotonergic neurons in raphe nucleus (173). As serotonin
is involved in control of appetite, this may have an impact on eat-
ing behavior and increased snacking of sweet foods may be due to
a lack of serotonin.

Altered thermogenesis. Centrally-regulated thermogenesis is an
important factor in maintaining stable body weight and obesity
resistance. Adaptive thermogenesis takes place in brown adipose
tissue and the neuropeptide orexin is a key driver (13, 92, 174).
Low levels of orexin are common in PD (see above). Although this
peptide is investigated in PD mainly with regard to sleep–wake
rhythm, orexin deficiency may have an impact on EE and obesity
resistance. In fact, PD patients are intolerant to high temperature
and drenching sweats is a non-motor symptom which disappears
after surgery (175).

STRATEGIES FOR MAINTAINING A STABLE BODY WEIGHT IN PD
As weight gain may be desirable or deleterious, the patient’s
individual situation should be thoroughly evaluated. Before
intervention the following factors should be assessed:

• Actual BMI and previous weight loss, normal weight, previous
fluctuations of body weight, and eating disorders.

• Estimation of pre- and post-surgery EE: motor symptoms,
dyskinesia, physical activity.

• Actual alimentation, eating habits, and eating disorders.
• Psychological assessment: apathy, depression, hyperactivity.
• Quality of sleep (night-eating disorder).

In DBS patients, nutritional intervention has been shown to
be effective (176) and should be performed routinely (95). As
weight gain occurs essentially in the first months after surgery,
information and dietetic guidance of the patient should start
before surgery. As energy requirement is often diminished after
successful surgery, an energy-reduced diet should take place and
be maintained lifelong. Patients should be encouraged to con-
trol their body weight regularly, to supervise their alimenta-
tion, and to practice regular physical exercise. These measures
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should be considered as an adaptation of lifestyle rather than
short-time diet.

Recent changes of eating behavior should be taken seriously.
Severe hyperphagia with compulsive (craving, binge-eating) or
night-eating may improve by discontinuation of agonist treat-
ment. On the other hand, disorders including emotional eating
may occur in depressive or hypo-dopaminergic patients treated
with STN-DBS. In these patients, a deficit of motivation ren-
ders dietary approaches difficult and intervention should first
be focused on pharmacological treatment of apathy. Indeed,
in selected obese subjects with apathy, it has been shown that
treatment with methylphenidate in combination with a weight-
loss program was more effective than the weight loss program
alone (177). In healthy and obese adults, methylphenidate reduces
dietary energy intake by about 20% (38, 39). Thus, alterations
of dopaminergic signaling may be an important factor in obesity
management of PD.

CONCLUDING REMARKS
In general, body weight gain results from dysregulation of the bal-
ance between energy requirement and energy input, the latter is
reflected in eating behavior. In PD, dysregulation may be due to
alterations of (i) hypothalamic regulation, (ii) energy expenditure,
or (iii) dopaminergic signaling. Consequently, different pathome-
chanisms may account for alteration of eating behavior in PD. Dis-
ruption of homeostatic control results in increased appetite and
hunger and may be accompanied by compulsive eating behavior.
Weight gain despite unaltered eating may argue for reduced energy
expenditure. Hyperdopaminergic eating behavior is merely char-
acterized by compulsive and nocturnal eating whereas hyperpha-
gia in hypo-dopaminergic state is part of the hypo-dopaminergic
behavior accompanied by apathy and characterized by random
snacking and emotional eating.

Understanding the eating behavior may therefore be a window
on the underlying factors for weight gain. Any intervention, if
pharmacological, behavioral, or nutritional should focus on analy-
sis of the patient’s energy expenditure and a detailed analysis of
eating behavior.
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