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4, Mark

G. StokesID
1,3*

1 Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom, 2 Department of

Experimental Psychology, University of Groningen, Groningen, the Netherlands, 3 Oxford Centre for Human

Brain Activity, University of Oxford, Oxford, United Kingdom, 4 Princeton Neuroscience Institute and

Department of Psychology, Princeton University, Princeton, New Jersey, United States of America

* mark.stokes@psy.ox.ac.uk

Abstract

Working memory (WM) is important to maintain information over short time periods to pro-

vide some stability in a constantly changing environment. However, brain activity is inher-

ently dynamic, raising a challenge for maintaining stable mental states. To investigate the

relationship between WM stability and neural dynamics, we used electroencephalography

to measure the neural response to impulse stimuli during a WM delay. Multivariate pattern

analysis revealed representations were both stable and dynamic: there was a clear differ-

ence in neural states between time-specific impulse responses, reflecting dynamic changes,

yet the coding scheme for memorised orientations was stable. This suggests that a stable

subcomponent in WM enables stable maintenance within a dynamic system. A stable cod-

ing scheme simplifies readout for WM-guided behaviour, whereas the low-dimensional

dynamic component could provide additional temporal information. Despite having a stable

subspace, WM is clearly not perfect—memory performance still degrades over time.

Indeed, we find that even within the stable coding scheme, memories drift during mainte-

nance. When averaged across trials, such drift contributes to the width of the error

distribution.

Introduction

Neural activity is highly dynamic, yet often we need to hold information in mind in a stable

state to guide ongoing behaviour. Working memory (WM) is a core cognitive function that

provides a stable platform for guiding behaviour according to time-extended goals; however, it

remains unclear how such stable cognitive states emerge from a dynamic neural system.

At one extreme, WM could effectively pause the inherent dynamics by falling into a stable

attractor (e.g., [1,2]). This solution has been well studied and provides a simple readout of

memory content irrespective of time (i.e., memory delay). However, more dynamic models

have also been suggested. For example, in a recent hybrid model, stable attractor dynamics

coexist with a low-dimensional, time-varying component ([3,4], see Fig 1A for model schemat-

ics). This permits some dynamic activity whilst also maintaining a fixed coding relationship of
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WM content over time [5]. As in the original stable attractor model, the coding scheme is sta-

ble over time, permitting easy and unambiguous WM readout by downstream systems, regard-

less of maintenance duration [6]. Finally, it is also possible to maintain stable information in a

richer dynamical system (e.g., [7]). Although the relationship between activity pattern and

memory content changes over time, the representational geometry could remain relatively

constant [5]. Such dynamics emerge naturally in a recurrent network and provide rich infor-

mation about the previous input and elapsed time [8] but necessarily entail a more complex

readout strategy (i.e., time-specific decoders or a high-dimensional classifier that finds a high-

dimensional hyperplane that separates memory condition for all time points [9]).

Although all models seek to account for stable WM representations, it is also important to

note that maintenance in WM is far from perfect. In particular, WM performance decreases

over time [10], which could be ascribed to two different mechanisms (Fig 1B). On the one

hand, the neural representation could degrade over time, either because of a decrease in WM-

specific neural activity or through a broadening of the neural representation [11]. In this

framework, the distribution of recall error reflects sampling from a broad underlying distribu-

tion. On the other hand, the neural representation of WM content might gradually drift along

the feature dimension as a result of the accumulating effect of random shifts due to noise [12].

Even if the underlying neural representation remains sharp, variance in the mean over trials

results in a relative broad distribution of errors over trials.

Computational modelling based on behavioural recall errors from WM tasks with varying

set sizes and maintenance periods predicts a drift for colours and orientations maintained in

WM [13,14]. At the neural level, evidence for drift has been found in the neural population

code in monkey prefrontal cortex (PFC) during a spatial WM task [15], in which trial-wise

shifts in the neural tuning profile predicted whether recall error was clockwise (CW) or coun-

terclockwise (CCW) relative to the correct location. Recently, a human functional MRI (fMRI)

study has found that delay activity reflected the probe stimulus more when participants erro-

neously concluded that it matched the memory item [16], which is consistent with the drift

account.

Tracking these neural dynamics of nonspatial neural representations, which are not related

to spatial attention or motor planning, is not trivial in humans. Previously, we found that the

presentation of a simple impulse stimulus (task-relevant visual input) presented during the

maintenance period of visual information in WM results in a neural response that reflects non-

spatial WM content [17,18]. Here, we extend this approach to track WM dynamics. In the cur-

rent study, we developed a paradigm to test the stability (and/or dynamics) of WM neural

states and the consequence for readout by ‘pinging’ the neural representation of orientations

at specific time points during maintenance.

We found that the coding scheme remained stable during the maintenance period, even

though maintenance time was coded in an additional low-dimensional axis. We furthermore

found that the neural representation of orientation drifts in WM. This was reflected in a shift

of the reconstructed orientation towards the end of the maintenance period that correlated

with behaviour.

Results

In the present study, human participants completed a free-recall WM task while electroen-

cephalography (EEG) was recorded (Fig 2). Visual impulses were presented at specific time

points during WM maintenance, allowing us to track the neural dynamics of WM representa-

tions throughout the delay.
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Item and WM content-specific evoked responses during encoding and

maintenance

The neural response elicited by the memory array contained information about the presented

orientations (p< 0.001, one-sided; Fig 3, left). The first impulse response contained statisti-

cally significant information about the cued item (p = 0.011, one-sided) but not the uncued

item, which failed to reach the statistical significance threshold (p = 0.051, one-sided). The dif-

ference between cued and uncued item decoding was not significant (p = 0.694, two-sided; Fig

3, middle). The decodability of the cued item was also significant at the second impulse

response (p< 0.001, one-sided), whereas it was not of the uncued item (p = 0.921, one-sided).

The decodability of the cued item was significantly higher than that of the uncued item

(p = 0.002, two-sided; Fig 3, right).

Overall, these results reflect previous findings [18] in that the impulse response reflects rele-

vant information in WM. However, the marginally significant decoding of the uncued item at

impulse 1 suggests that the item might not have been completely dropped from memory

approximately 0.9 seconds after cue and 1.6 seconds before probe presentation. Nevertheless,

Fig 1. Model predictions. (A) The relationship between the neural coding scheme of orientations (colours) in WM over time, illustrated in neural

state space (reduced to three dimensions, for visualisation). Left: A stable coding scheme within a stable neural population (defined by dimensions 1

and 2; dimension 3 has no meaningful variance). Middle: A stable coding scheme (dimensions 1 and 2) within a dynamic neural population

(dimension 3). Right: A dynamically changing coding scheme (coding for orientation and time is mixed across dimensions). (B) The fidelity of the

population code in WM over time. Top: The code decays and becomes less specific over time, leading to random errors during readout. Bottom: The

code drifts along the feature dimension, leading to a still sharp, but shifted code during readout. WM, working memory.

https://doi.org/10.1371/journal.pbio.3000625.g001

Fig 2. Trial schematic and behavioural results. (A) Two randomly orientated grating stimuli were presented laterally. A retro-cue then

indicated which of those two would be tested at the end of the trial. Two impulses (white circles) were serially presented in the subsequent delay

period. At the end of the trial, a randomly oriented probe grating was presented in the centre of the screen, and participants were instructed to

rotate this probe until it reflected the cued orientation. (B) Report errors of all trials across all participants. Data available at osf.io/cn8zf.

https://doi.org/10.1371/journal.pbio.3000625.g002
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at impulse 2 (about 1.7 seconds after cue), no detectible trace of the uncued item remained,

confirming that participants likely removed it from memory for optimal processing of the

probe stimulus.

The decoding topographies highlight that most of the decodable signal came from posterior

electrodes during both encoding and maintenance and is therefore likely generated by the

visual cortex (Fig 3, bottom row). The decoding difference between contralateral and ipsilat-

eral posterior electrodes (P7/8, P5/6, P3/4, P1/2, PO7/8, PO3/4, O1/2) was significantly differ-

ent during item encoding, with higher item decoding at contralateral compared to ipsilateral

electrodes (p< 0.001, two-sided). Interestingly, no evidence for such lateralisation was found

at either impulse 1 (cued item: p = 0.854; uncued item: p = 0.526, two-sided) or impulse 2

(cued item: p = 0.716; uncued item: p = 0.398, two-sided).

Stable WM coding scheme in time

The relationship between orientations and impulses/time is visualised in state space through

multidimensional scaling (MDS; Fig 4A). Whereas the first dimension clearly differentiates

between impulses, the second and third dimensions code the circular geometry of orientations

in both impulses, suggesting that whereas the impulse responses are different between

impulses, the orientation coding schemes revealed by the impulses are the same. This is cor-

roborated by significant decoding accuracy of the impulses (p< 0.001, one-sided; Fig 4B) on

the one hand but also significant cross-generalisation of the orientation code between impulses

(p< 0.001, two-sided), which was not significantly different from same-impulse orientation

decoding (p = 0.608, two-sided; Fig 4C).

For completeness, we also report the full cross-temporal generalisation matrix between

impulses using a continuous decoding analysis (S1 Fig), in which a time-resolved classifier was

trained and tested on all possible time point–by–time point combinations [19].

Fig 3. Decoding results. Top row: Normalised average pattern similarity (mean-centred, sign-reversed Mahalanobis distance) of the evoked

neural responses (100 to 400 ms relative to stimulus onset) as a function of orientation similarity, and decoding accuracy (cosine vector means of

pattern similarities). Error shadings and error bars are 95% CI of the mean. Asterisks indicate significant decoding accuracies (p< 0.05, one-

sided) or differences (p< 0.05, two-sided). Bottom row: Decoding topographies of the searchlight analysis. Posterior channels used in all other

decoding analyses are highlighted. Ipsilateral (‘ipsi.’) and contralateral (‘contr.’) channels used to test for item lateralisation are highlighted in

turquoise and pink, respectively. Data available at osf.io/cn8zf. norm. volt., normalised voltage; n.s., not significant.

https://doi.org/10.1371/journal.pbio.3000625.g003
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To rule out that the difference in impulse response reported above (Fig 4B) is not only due

to differences in stimulation history and changing WM operations but also due to temporal

coding, we reanalysed previously published data in which a single impulse stimulus was pre-

sented either 1,170 or 1,230 ms after the presentation of a single memory item [17]. The find-

ings largely replicate the results reported above: State-space visualisation of impulse onset and

orientations shows the same circular geometry of the orientations at each impulse onset while

also highlighting a separation of impulse onsets in state space (S2A Fig). Decoding impulse

onset was significantly higher than chance (p = 0.004, one-sided; S2B Fig). Cross-generalisa-

tion of the orientation code between impulse onsets was significant (p< 0.001, two-sided) and

did not significantly differ from decoding the memorised orientation within the same impulse

onset (p = 0.240, two-sided; S2C Fig).

Overall, the results of the current study, as well as the reanalyses of [17], provide evidence

for a low-dimensional change over time, which can be revealed by perturbing the WM net-

work at different time points (as predicted in [20]), while at the same time providing evidence

for a temporally stable coding scheme of WM content [3,4]. Note that a stable coding scheme

at the global scale (as revealed by EEG in the present study) does not rule out the possible exis-

tence of WM-specific neurons that exhibit time-varying activity during WM maintenance

[9,21].

Specific WM coding scheme in space

As a counterpart to the stable coding scheme in time reported above, we explicitly tested

whether the coding scheme is location specific (i.e., dependent on the previous presentation

Fig 4. Cross-generalisation of coding scheme between impulses. (A) Visualisation of orientation and impulse code

in state space. The first dimension discriminates between impulses. The second and third dimensions code the

orientation space in both impulses. (B) Trial-wise accuracy (%) of impulse decoding. (C) Orientation decoding within

each impulse (blue) and orientation code cross-generalisation between impulses (green). Error shadings and error bars

are 95% CI of the mean. Asterisks indicate significant decoding accuracies or cross-generalisation (p< 0.05). Data

available at osf.io/cn8zf. a.u., arbitrary units; norm. volt., normalised voltage; n.s., not significant.

https://doi.org/10.1371/journal.pbio.3000625.g004
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location of the cued orientation). State-space visualisation of cued item location and orienta-

tions shows a clear separation between locations and no overlap in orientation coding between

locations (Fig 5A). The cued location was significantly decodable from the impulse responses

(p< 0.001, one-sided; Fig 5B). Cross-generalisation of the orientation coding scheme between

cued item locations was not significant (p = 0.376, two-sided) and was significantly lower than

same-side orientation decoding (p = 0.004, two-sided; Fig 5C). These results reflect previous

reports of spatially specific WM codes, even when location is no longer relevant [22], though

we cannot rule out the presence of spatially invariant representations that are not detectable

with our experiment.

Drifting WM code

The first approach to test for a possible shift of the neural representation towards the adjusted

response (i.e., without report bias, see Methods and S3 Fig) averaged the trial-wise orientation

similarity profiles obtained from the cross-validated orientation reconstruction on all trials

(see Methods and Fig 6A). No significant shift towards the response was evident during encod-

ing/memory array presentation (circular mean: p = 0.117; asymmetry score: p = 0.125, one-

sided; Fig 6B and 6C, left). No evidence for such a shift was found at impulse 1/early mainte-

nance either (circular mean: p = 0.07; asymmetry score: p = 0.057, one-sided; Fig 6B and 6C,

middle). However, the orientation similarity profile was significantly shifted towards the

response at impulse 2/late maintenance (circular mean: p< 0.001; asymmetry score:

p< 0.001, one-sided; Fig 6B and 6C, right).

Fig 5. No cross-generalisation of coding scheme between cued item locations during impulse responses. (A)

Visualisation of orientation and item location code in state space. The first dimension discriminates between item

locations. The first and second dimensions code the orientation space, separately for WM items previously presented

on the left or right side. (B) Trial-wise accuracy (%) of item location decoding. (C) Orientation decoding within each

item location (blue) and orientation code cross-generalising between different item locations (green). Error shadings

and error bars are 95% CI of the mean. Asterisks indicate significant decoding accuracies and differences (p< 0.05).

Data available at osf.io/cn8zf. a.u., arbitrary units; norm. volt., normalised voltage; n.s., not significant; WM, working

memory.

https://doi.org/10.1371/journal.pbio.3000625.g005
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The second approach to test for a possible shift of the neural representation towards the

adjusted response may be more sensitive, since it trains the orientation classifier only on CCW

trials and tests it on CW trials, and vice versa (see Methods and Fig 7A), thus increasing any

response related shift by a factor of two. This approach yielded similar results as the previous

approach, though the shift magnitudes are indeed larger. Neither the memory array presenta-

tion/encoding (circular mean: p = 0.124; asymmetry score: p = 0.129, one-sided) nor impulse

1/early maintenance (circular mean: p = 0.104; asymmetry score: p = 0.082, one-sided) showed

a significant shift towards the response (Fig 7B and 7C, left and middle), whereas impulse 2/

late maintenance did (circular mean: p< 0.001; asymmetry score: p< 0.001, one-sided; Fig 7B

and 7C, right).

Note the reported results of shifts during impulse presentations were obtained by training

the classifier on both impulses but testing it on each impulse separately. This was done to

improve power (as explained in Methods). This improved orientation reconstruction, particu-

larly for the latter shift analysis in which the classifier is trained on only half the trials (CW tri-

als only or CCW trials only). However, the same analyses based on training (and testing)

within each impulse epoch separately yielded qualitatively similar results (no significant shifts

at impulse 1 in either approach, significant shifts at impulse 2 in both approaches; S4 Fig).

Discussion

In the present study, we investigated the neural dynamics of WM by probing the coding

scheme over time, as well as drift in the actual memories. The neural responses to impulse sti-

muli in this nonspatial WM paradigm enabled us to show that the coding scheme of a

Fig 6. Response-dependent averaging of trial-wise similarity profiles demonstrates drift. Schematic and results. (A) Testing for shift

towards response by averaging trial-wise similarity profiles by CCW/CW responses. (B) Results of schematised approach in (A). Orientation

similarity profiles averaged by response such that a rightward shift reflects a shift towards the response (purple) at each event. Purple vertical

lines show circular means of the similarity profiles. Insets show orientation similarity profiles for CCW (blue) and CW (green) responses

separately. Error shadings are 95% CI of the mean. (C) Group-level (circular mean) and participant-level (asymmetry score) shifts towards the

response of each response-dependent similarity profile are shown in black and grey, respectively. Error bars are 95% CI of the mean. The blue

line and shading indicates the mean and 95% CI of the absolute, bias-adjusted behavioural response deviation (approximately 10 degrees).

Data available at osf.io/cn8zf. a.u., arbitrary units; CCW, counterclockwise; CW, clockwise; norm. volt., normalised; n.s., not significant.

https://doi.org/10.1371/journal.pbio.3000625.g006
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parametric visual feature (i.e., orientation) in WM remained stable during maintenance,

reflected in the significant cross-generalisation of the orientation decoding between early and

late impulses (Fig 4). However, memories drift within this stable coding scheme, leading to a

bias in memories (Figs 6 and 7).

This is consistent with previous reports of a stable subspace for WM maintenance [4,5] and

provides evidence for a time-invariant coding scheme for orientations maintained in WM.

However, more dynamic schemes have also been reported [23]—for example, during the early

transition between encoding and maintenance [24,25]. At the extreme end, some have pro-

posed that WM could be maintained in a dynamical system, in which activity continues to

evolve throughout the delay period along a complex trajectory in neural state space (e.g., [26]),

possibly through sequential activation of neurons (e.g., [27]). Dynamic trajectories emerge nat-

urally from recurrent neural networks and provide additional information, such as elapsed

time [28]. However, the dimensionality of dynamic coding places an important constraint on

the generalisability of a particular coding scheme over time [6]. In the current study, we find

evidence for a hybrid model [3,4]: stable decoding of WM content, despite dynamic activity

over time.

Specifically, although there was no cost of cross-generalising the orientation code between

impulses, there was a clear difference in the neural pattern between them, suggesting that a

separate (low-dimensional) dynamic neural pattern codes the passage of time. A reanalysis of

the data of a previously published study [17] confirmed these results, suggesting that the low-

dimensional dynamics code for time per se (rather than impulse number). Importantly, the

low-dimensional representation of elapsed time is orthogonal to the mnemonic subspace,

Fig 7. Response-dependent training and testing demonstrates drift. Schematic and results. (A) Testing for shift towards response by first

splitting the neuroimaging data into CW and CCW data sets and training on CW trials and testing on CCW trials, and vice versa. Given an

actual shift, the shift of the resulting orientation reconstruction will be doubled, since training and testing data are shifted in opposite

directions. (B) Results of schematised approach in (A). Average orientation similarity profiles such that a rightward shift reflects a shift

towards the response (purple) at each event. Purple vertical lines show circular means of the similarity profiles. Insets show orientation

similarity profiles for CCW (blue) and CW (green) responses separately. Error shadings are 95% CI of the mean. (C) Group-level (circular

mean) and participant-level (asymmetry score) shifts towards the response of each response-dependent similarity profile are shown in black

and grey, respectively. Error bars are 95% CI of the mean. Data available at osf.io/cn8zf. a.u., arbitrary units; CCW, counterclockwise; CW,

clockwise; norm. volt., normalised voltage; n.s., not significant.

https://doi.org/10.1371/journal.pbio.3000625.g007
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allowing WM representations to be stable. This hybrid of stable and dynamic representations

may emerge from interactions between dynamic recurrent neural networks and stable sensory

representations [3]. It is also possible that more complex dynamics could be observed in a

more complex WM paradigm [23].

Our index of WM-related neural activity was based on an impulse response approach that

we previously developed to measure WM-related changes in the functional state of the system

[17,18], including ‘activity-silent’ WM states [29,30]. For example, activity states during encod-

ing could result in a neural trace in the WM network through short-term synaptic plasticity

[31,32], resulting in a stable code for maintenance, whereas the time dimension could be rep-

resented in its gradual fading [20,33,34]. The stable WM-content coding scheme could also be

achieved by low-level activity states that self-sustain a stable code through recurrent connec-

tions, a key feature of attractor models of WM [1,35], whereas dynamic activity patterns are

coded in an orthogonal subspace that represents time. Although we did not explicitly consider

tonic delay activity, it is nonetheless possible that the impulse responses also reflect nonlinear

interactions with low-level, persistent activity states that are otherwise difficult to measure

with EEG. Therefore, we cannot rule out a contribution of persistent activity in the stable cod-

ing scheme observed here.

We also found evidence that the orientation code itself drifts along the orientation dimen-

sion, which is correlated with recall errors. Whereas there was no bias in the neural orientation

representation at either encoding or early maintenance, the second impulse towards the end of

the maintenance period revealed a code that was shifted towards the direction of response

error. This pattern of results is consistent with the drift account of WM, in which neural noise

leads to an accumulation of error during maintenance, resulting in a still sharp, but shifted

(i.e., slightly wrong) neural representation of the maintained information [1,14]. Although

previous neurophysiological recordings from monkey PFC found evidence for drift for spatial

information [15], we could demonstrate a shifting representation that more faithfully repre-

sents nonspatial WM content that is unrelated to sustained spatial attention or motor prepara-

tion, by using lateralised orientations in the present study.

Bump attractors have been proposed as an ideal neural mechanism for the maintenance of

continuous representations (i.e., space, orientation, colour), in which a specific feature is rep-

resented by the persistent activity ‘bump’ of the neural population at the feature’s location

along the network’s continuous feature space. Neural noise randomly shifts this bump along

the feature dimension, whereas inhibitory and excitatory connections maintain the same over-

all level of activity and shape of the neural network [36,37]. Random walk along the feature

dimension is thus a fundamental property of bump attractors and has been found to explain

neurophysiological findings [15]. Typically, this is considered within the framework of persis-

tent WM; however, transient bursts of activity could also follow similar attractor dynamics

[32,38]. For example, although temporary connectivity changes of the memorised WM item

may indeed slowly dissolve and become coarser, periodic activity bursts may keep this to a

minimum by periodically reinstating a sharp representation [32]. However, since this refresh-

ing depends on the readout of a coarse representation, the resulting representation may be

slightly wrong and thus shifted. This interplay between decaying silent WM states that are read

out and refreshed by active WM states also predicts a drifting WM code, without depending

on an unbroken chain of persistent neural activity.

Moreover, the representational drift does not necessarily have to be random. Modelling of

report errors in a free-recall colour WM task suggests that an increase of report errors over

time may be due to separable attractor dynamics, with a systematic drift towards stable colour

representations, resulting in a clustering of reports around specific colour values, in addition

to random drift elicited by neural noise [13]. The report bias of oblique orientations seen in
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the present study could be explained by a similar drift towards specific orientations, which

would predict an increase of report bias for longer retention periods. However, clear beha-

vioural evidence for such an increase in systemic report errors of orientations is lacking [10].

In the present study, we isolated random from systematic errors, both as a methodological

necessity and to allow us to attribute any observed shift to random errors. Thus, although a

systematic drift towards specific orientations might be possible, the shift in representation

reported here is unrelated to it.

Our results suggest that maintenance in WM is dynamic, although the fundamental coding

scheme remains stable over time. Low-dimensional dynamics could provide a valuable readout

of elapsed time whilst allowing for a time-general readout scheme for the WM content. We

also show that drift within this stable coding scheme could explain loss of memory precision

over time.

Methods

Ethics statement

The study was approved by the Central University Research Ethics Committee of the Univer-

sity of Oxford (R42977/RE001), which adheres to the Declaration of Helsinki. Participants

gave written informed consent prior to participation.

Participants

Twenty-six healthy adults (17 female, mean age 25.8 years, range 20–42 years) were included

in all analyses. Four additional participants were excluded during preprocessing because of

excessive eye movements (more than 30% of trials contaminated). Participants received mone-

tary compensation (£10 an hour) for participation.

Apparatus and stimuli

The experimental stimuli were generated and controlled by Psychtoolbox [39], a freely avail-

able MATLAB extension. Visual stimuli were presented on a 23-inch (58.42-cm) screen run-

ning at 100 Hz and a resolution of 1,920 by 1,080. Viewing distance was set at 64 cm. A

Microsoft Xbox 360 controller was used for response input by the participants.

A grey background (RGB = 128, 128, 128; 20.5 cd/m2) was maintained throughout the

experiment. A black fixation dot with a white outline (0.242˚) was presented in the centre of

the screen throughout all trials. Memory items and the probe were sine-wave gratings pre-

sented at 20% contrast, with a diameter of 8.51˚ and spatial frequency of 0.65 cycles per degree,

with randomised phase within and across trials. Memory items were presented at 6.08˚ eccen-

tricity. The rotation of memory items and probe were randomised individually for each trial.

The impulse stimulus was a single white circle, with a diameter of 20.67˚, presented at the cen-

tre of the screen. The retro-cue was two arrowheads pointing right (>>) or left (<<) and was

1.58˚ wide. A coloured circle (3.4˚) was used for feedback. Its colour depended dynamically on

the precision of recall, ranging from red (more than 45 degrees error) to green (0 degrees

error). A pure tone also provided feedback on recall accuracy after each response, ranging

from 200 Hz (more than 45 degrees error) to 1,100 Hz (0 degrees error).

Procedure

Participants participated in a free-recall, retro-cue visual WM task. Each trial began with the

fixation dot. Participants were instructed to maintain central fixation throughout each trial.

After 1,000 ms, the memory array was presented for 200 ms. After a 400 ms delay, the retro-
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cue was presented for 100 ms, indicating which of the previously presented items would be

tested, rendering the other item irrelevant. The first impulse stimulus was presented for 100 ms,

900 ms after the offset of the retro-cue. After a delay of 700 ms, the second impulse stimulus

was presented for 100 ms. After another delay of 700 ms, the probe was presented. Participants

used the left joystick on the controller with the left thumb to rotate the orientation of the probe

until it best reflected the memorised orientation and confirmed their answer by pressing the ‘x’

button on the controller with the right thumb. Note that one complete rotation of the joystick

corresponded to 0.58 of a rotation of the probe. In conjunction with the fact that the probe was

randomly orientated on each trial, it was impossible for participants to plan the rotation before-

hand or memorise the direction of the joystick instead of the orientation of the memory item.

Accuracy feedback was given immediately after the response in which both the coloured circle

and tone were presented simultaneously. Each participant completed 1,100 trials in total, over a

course of approximately 135 minutes, including breaks. See Fig 2A for a trial schematic.

EEG acquisition

EEG was acquired with 61 Ag/AgCl sintered electrodes (EasyCap, Herrsching, Germany) laid

out according to the extended international 10–20 system and recorded at 1,000 Hz using

Curry 7 software (Compumedics NeuroScan, Charlotte, NC). The anterior midline frontal

electrode (AFz) was used as the ground. Bipolar electrooculography (EOG) was recorded from

electrodes placed above and below the right eye and the temples. The impedances were kept

below 5 kΩ. The EEG was referenced to the right mastoid during acquisition.

EEG preprocessing

Offline, the EEG signal was re-referenced to the average of both mastoids, down-sampled to

500 Hz, and bandpass filtered (0.1 Hz high-pass and 40 Hz low-pass) using EEGLAB [40]. The

continuous data were epoched relative to the memory array onset (−500 ms to 3,600 ms)

before independent component analysis [41] was applied. Components related to eye blinks

were subsequently removed. The data were then epoched relative to memory array onset and

the two impulse onsets (0 ms to 400 ms), and trials were individually inspected. Trials with

loss of fixation, visually identified from the EOG, and trials with nonarchetypical artefacts,

visually identified from the EEG, in the memory array epoch and in either impulse epoch were

removed from all subsequent analyses. Furthermore, trials in which the report error was 3 cir-

cular standard deviations (SDs) from the participant’s mean response error were also excluded

from EEG analyses to remove trials that likely represent complete guesses [42]. This led to the

removal of M = 2.3% (SD = 1.2%) trials because of inaccurate report trials, in addition to the

M = 3.52% (SD = 4.21%) and M = 5% (SD = 5.2%) of trials removed because of eye movements

and nonarchetypical EEG artefacts from the memory array and impulse epochs, respectively.

MVPA on electrophysiological data is usually performed on each time point separately.

However, taking advantage of the highly dynamic waveform of evoked responses in EEG by

pooling information multivariately over electrodes as well as time can improve decoding accu-

racy, at the expense of temporal resolution [43,44]. Since the previously reported WM-depen-

dent impulse response reflects the interaction of the WM state at the time of stimulation and

does not reflect continuous delay activity, we treat the impulse responses as discrete events in

the current study. Thus, the whole time window of interest relative to impulse onsets (100 to

400 ms) from the 17 posterior channels was included in the analysis. The time window was

based on previous, time-resolved findings, which showed that the WM-dependent neural

response from a 100-ms impulse (as used in the current study) is largely confined to this win-

dow [18]. In the current study, instead of decoding at each time point separately, information
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was pooled across the whole time window. The mean activity level within each time window

was first removed for each trial and channel separately, thus normalising the voltage fluctua-

tions over time and isolating the dynamic, impulse-evoked neural signal from more stable

brain states. The time window was then down-sampled to 100 Hz by taking the average every

10 ms. This was done to reduce the number of dimensions, which both reduces computational

demands but also improves signal to noise by removing redundant dimensions of extremely

high-frequency voltage changes in the EEG (>100 Hz) that are unlikely to reflect genuine

brain activity. This resulted in 30 values per channel, each of which was treated as a separate

dimension in the subsequent multivariate analysis (510 in total). This data format was used on

all subsequent MVPA analyses, unless explicitly mentioned otherwise. The same approach

over the same time window of interest was used in our previous study [45].

Orientation reconstruction

We computed the Mahalanobis distances as a function of orientation difference to reconstruct

grating orientations [18]. The following procedure was performed separately for items that

were presented on the left and right side. Since the grating orientations were determined ran-

domly on a trial-by-trial basis and the resulting orientation distribution across trials was

unbalanced, we used a k-fold procedure with subsampling to ensure unbiased decoding. Trials

were first assigned the closest of 16 orientations (variable, see below), which were then ran-

domly split into 8 folds using stratified sampling. Using cross-validation, the train trials in 7

folds were used to compute the covariance matrix using a shrinkage estimator [46]. The num-

ber of trials of each orientation bin in the 7 train folds were equalised by randomly subsam-

pling the minimum number of trials in any bin. The subsampled train trials of each angle bin

were then averaged. To pool information across similar orientations, the average bins of the

train trials were convolved with a half cosine basis set raised to the 15th power [47–49]. The

Mahalanobis distances between each trial of the left-out test fold and the averaged and basis-

weighted angle bins were computed. The resulting 16 distances per test trial were normalised

by mean centring them. This was repeated for all test and train fold combinations. To get reli-

able estimates, the above procedure was repeated 100 times (random folds and subsamples

each time), separately for 8 orientation spaces (0˚ to 168.75˚, 1.40625˚ to 170.1563˚, 2.8125˚ to

171.5625˚, 4.2188˚ to 172.9688˚, 5.625˚ to 174.375˚, 7.0313˚ to 175.7813˚, 8.4375˚ to

177.1875˚, 9.8438˚ to 178.5938˚, each in steps of 11.25˚). For each trial, we thus obtained 800

samples for each of the 16 Mahalanobis distances. The distances were averaged across the sam-

ples of each trial and ordered as a function of orientation difference. The resulting ‘similarity

profile’ was summarised into a single value (i.e., ‘decoding accuracy’) by computing the cosine

vector mean of the similarity profile [18], in which a positive value suggests a higher pattern

similarity between similar orientations than between dissimilar orientations. The approach

was the same for the reanalysis of [17].

We also repeated the above analysis iteratively for a subset of electrodes in a searchlight

analysis across all 61 electrodes. In each iteration, the ‘current’ as well as the closest two neigh-

bouring electrodes were included in the analysis (similar as in [50]). The freely available

MATLAB extension fieldtrip [51] was used to visualise the decoding topographies. Note that

the topographies were flipped, such that the left represents the ipsilateral and the right the con-

tralateral side relative to stimulus presentation side.

Orientation code generalisation

To test cross-generalisation between impulses, instead of training and testing within the same

time window, the train folds were taken from the impulse 1 epoch, and the test fold from the
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impulse 2 epoch, and vice versa. The analysis was otherwise exactly as described above using

8-fold cross-validation with separate trials in each fold.

To test cross-generalisation between presented cued locations (i.e., whether the cued item

was previously presented on the left or on the right), the classifier was similarly trained on tri-

als in which the cued item was presented on the left and tested on trials in which the cued item

was presented on the right, and vice versa. Since left and right trials were independent trial

sets, cross-validation does not apply. However, to ensure a balanced training set, the number

of trials of each orientation bin were nevertheless equalised by subsampling (as described

above), and this approach was repeated 100 times.

The cross-generalisation of the orientation code between impulse onsets in [17] was tested

with the same analyses as the location cross-generalisation described in the paragraph above:

the classifier was trained on the early-onset condition and tested on the late-onset condition,

and vice versa, while making sure that the training set is balanced through random

subsampling.

Impulse/time and location decoding

To decode the difference of the evoked neural responses between impulses, we used a leave-

one-out approach. The Mahalanobis distances between the signals from a single trial from

both impulse epochs and the average signal of all other trials of each impulse epoch were com-

puted. The covariance matrix was computed by concatenating the trials of each impulse

(excluding the left-out trial). The average difference of same-impulse distances was subse-

quently subtracted from different impulse distances, such that a positive distance difference

indicates more similarity between same than different impulses. To convert the distance differ-

ence into trial-wise decoding accuracy, positive distance differences were simply converted

into ‘hits’ (1) and negative into ‘misses’ (0). The percentages of correctly classified impulses

were subsequently compared to chance performance (50%).

The presentation side and impulse onset (in [17]) was decoded using 8-fold cross-valida-

tion, in which the distance difference between different and same location/onset was com-

puted for each trial, which was then converted to ‘hits’ and ‘misses’.

Visualisation of the spatial, temporal, and orientation code

To explore and visualise the relationship between the location or impulse/time code and the

orientation code in state space (see Fig 1A for different predictions), we used classical MDS of

the Mahalanobis distances between the average signal of trials belonging to one of four orien-

tation bins (0˚ to 45˚, 45˚ to 90˚, 90˚ to 135˚, 135˚ to 180˚) and location (left/right) or time

(impulse 1/impulse2).

For the visualisation of the code across impulse/time, distances were computed separately

for left and right trials, before taking the average. Within each orientation bin, the data of half

of the trials were taken from impulse 1, and the data of the other half from impulse 2 (deter-

mined randomly). The number of trials within each orientation of each impulse were equalised

through random subsampling before averaging. The Mahalanobis distances between both ori-

entation and impulses were then computed using the covariance matrix estimated from all tri-

als of both impulses. This was repeated 100 times (for each side), randomly subsampling and

splitting trials between impulses each time and then taking the average across all iterations.

For the visualisation of the code across space, the data of each trial were first averaged

across impulses. The number of trials of orientation bins (same as above) of each location was

equalised through random subsampling. The Mahalanobis distances of the average of each bin
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within each location condition were computed using covariance estimated from all left and

right trials. This was repeated 100 times before taking the average across all iterations.

For the code across impulse onset/time visualisation of the data from [17], the same proce-

dure as in the paragraph above was used, but instead of visualising the stimulus code between

locations, it was visualised between impulse onsets (−30 ms, +30 ms).

Relationship between behaviour and the neural representation of the WM

item

We were interested in whether imprecise reports that are CW or CCW relative to the actual

orientation are accompanied by a corresponding shift of the neural representation in WM (see

Fig 1B for model schematics). We used two approaches to test for such a shift (Figs 6A and

7A).

First, the trial-wise pattern similarities as a function of orientation differences (as obtained

from the orientation-reconstruction approach described above) were averaged separately for

all CW and CCW responses (Fig 6A). Note that CW and CCW responses were defined relative

to the median response error within each orientation bin. This ensures a balanced proportion

of all orientations in CW and CCW trials, which is necessary to obtain meaningful orientation

reconstructions. It furthermore removes the report bias away from cardinal angles in the cur-

rent experiment (S3 Fig), similar to previous reports of orientation response biases [52], and

thus isolates random from systematic report errors.

We used another approach that exaggerates the potential difference between CW and CCW

trials and thus might be more sensitive to detect a shift. The data were first divided into CW

and CCW trials using the same within-orientation bin approach as described above. The clas-

sifier was then trained on CW trials and tested on CCW trials, and vice versa (Fig 7A). The ori-

entation bins in the training set were balanced through random subsampling, and the

procedure was repeated 100 times. Given an actual shift in the neural representation, the shift

magnitude of the resulting orientation reconstruction of this method should be doubled, since

both the testing data and the training data (the reference point) are shifted, but in opposite

directions.

To improve orientation reconstruction from the impulse epochs, the classifier was trained

on the averaged trials of both impulses but tested separately on each impulse epoch individu-

ally. Although training on both impulses improved orientation reconstruction, in particular

for the second approach, in which only half of the trials are used for training, the shifts in ori-

entation representations as a function of CW/CCW reports are qualitatively the same when

training and testing within each impulse epoch separately (Figs 6 and 7 and S4 Fig).

The resulting similarity profiles for CW and CCW reports were summarised such that a

positive/CW shift reflects a shift towards the response. The similarity profile of CCW reports

was thus flipped and then averaged with the similarity profile of CW reports. Evidence for a

shift in the similarity profile was then computed both at the group and at the participant level.

At the group level, the shift magnitude was quantified by averaging the shifted similarity pro-

files across all participants and then taking the circular mean of the resulting population-level

similarity profile. At the participant level, an ‘asymmetry score’ of each participant’s similarity

profile was computed by subtracting the pattern similarities of all negative-orientation differ-

ences (i.e., −67.5, −45, and −22.5 degrees, which represent orientations away from the

response) from all positive-orientation differences (i.e. 67.5, 45, and 22.5 degrees, which repre-

sent orientations towards the response). Thus, if the similarity profile is shifted towards the

response, then the neural patterns of specific orientations should be more similar to
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orientations in the direction of the response error compared to the opposite, resulting in a pos-

itive ‘asymmetry score’.

Statistical significance testing

To test for statistical significance of average decoding, we first repeated the decoding analysis

in question 1,000 times with randomised condition labels over trials (either orientations, cued

location, or impulse), such that the condition labels and the EEG signal were unrelated. The

resulting 1,000 values per participant were then transformed into a null distribution of t values,

which was used to perform a t test against chance performance with a significance threshold of

p = 0.05. Note that tests of within-condition decoding (within presentation location, impulse/

onset) were one-sided, since only positive decoding is plausible in those cases, whereas tests of

cross-generalisation between conditions were two-sided, since negative decoding is theoreti-

cally plausible in those cases.

Comparisons of decodability between conditions/items were tested for statistical signifi-

cance by subtracting the 1,000 values of each ‘null’ decoder from another before computing

the null distribution of difference t values. All difference tests were two-sided.

A null distribution for the ‘asymmetry score’ towards the response was obtained by rando-

mising the report errors within each orientation bin, meaning that trials within each bin were

randomly labelled CW and CCW. In the case of the ‘report-dependent averaging of similarity

profiles’ (Fig 6A), report errors were randomised with respect to the trial-wise similarity profiles

of the orientation decoder output 1,000 times. In the case of the ‘response-dependent training

and testing’ (Fig 7A), report errors were random with respect to the EEG signal before training

the orientation decoder on randomly labelled ‘CCW’ trials and testing it on the other trials that

are randomly labelled ‘CW’ (and vice versa) 1,000 times. These randomly averaged similarity

profiles were then used in both cases to obtain a null distribution of ‘asymmetry score’ t values,

which in turn was used to perform a t test on the ‘asymmetry scores’ against zero.

The circular mean of the shifted average similarity profile at the group level was tested

against 0. The similarity profile of each participant was flipped left to right with 0.5 probability,

such that a participant’s positively shifted similarity profile would then be negatively shifted,

before computing the circular mean of the resulting similarity profile averaged over all partici-

pants 100,000 times. The resulting null distribution was used to obtain the p-value by calculat-

ing the proportion of permuted similarity profiles with circular means more positive than the

observed group-level circular mean.

All tests of similarity profile shift (asymmetry score and circular mean) were one-sided, since

we expected the shift of the neural representation of the orientation to be towards the response.

For visualisation, we computed the 95% CIs by bootstrapping the data in question 100,000

times.

Supporting information

S1 Fig. Full cross-temporal decoding matrix of the orientation of the cued item between

impulses. Black bars indicate the presentation times of the impulses. Continuous EEG data

from posterior channels (see Methods) were baselined relative to impulse 1 (−200 to 0 ms),

smoothed with a gaussian smoothing kernel (SD = 16 ms), and down-sampled to 100 Hz. The

classifier (the same as described in the Methods) was then trained and tested on all possible

time point–by–time point combinations. Data available at osf.io/cn8zf. EEG, electroencepha-

lography; SD, standard deviation.

(TIF)
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S2 Fig. Cross-generalisation of coding scheme between impulse onsets in reanalyses of

[17]. (A) Visualisation of orientation and impulse-onset code in state space. The third dimen-

sion discriminates between impulse onsets. The first and second dimensions code the orienta-

tion space in both impulses. (B) Trial-wise accuracy (%) of impulse-onset decoding. (C)

Orientation decoding within each impulse onset (blue) and orientation code cross-generalis-

ing between impulse onsets (green). Error shadings and error bars are 95% CI of the mean.

Asterisks indicate significant decoding accuracies or cross-generalisation (p< 0.05). Data

available at osf.io/cn8zf.

(TIF)

S3 Fig. Report bias of orientations. Participants showed a bias, exaggerating the tilt of oblique

orientations, manifesting itself as a repulsion form the cardinal axes (0 and 90 degrees; left),

similar to previous reports [52]. To ensure an unbiased estimate of a possible shift in our analy-

sis and to isolate random from systematic errors, the report bias was removed by subtracting

the median error within 11.25-degree orientation bins (middle). By removing orientation-spe-

cific error, the resulting error distribution is narrower (right). Clockwise and counterclockwise

reports were defined as positive and negative reports relative to this ‘adjusted’, unbiased report

error. Data available at osf.io/cn8zf.

(TIF)

S4 Fig. Within-impulse training and testing to estimate drift. (A) Response-dependent

averaging of trial-wise similarity profiles (Fig 6A). Shift towards response: Impulse 1: p = 0.492

(circular mean), p = 0.500 (asymmetry score); Impulse 2: p = 0.022 (circular mean), p = 0.020

(asymmetry score), one-sided. (B) Response-dependent training and testing (Fig 7A). Shift

towards response: Impulse 1: p = 0.545 (circular mean), p = 0.525 (asymmetry score); Impulse

2: p = 0.009 (circular mean), p = 0.004 (asymmetry score), one-sided. Same convention as Figs

6B, 6C, 7B and 7C. Data available at osf.io/cn8zf.

(TIF)
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Buschman, Mark G. Stokes.

References
1. Compte A, Brunel N, Goldman-Rakic PS, Wang X-J. Synaptic Mechanisms and Network Dynamics

Underlying Spatial Working Memory in a Cortical Network Model. Cereb Cortex. 2000; 10: 910–923.

https://doi.org/10.1093/cercor/10.9.910 PMID: 10982751

2. Wang X-J. Synaptic reverberation underlying mnemonic persistent activity. Trends in Neurosciences.

2001; 24: 455–463. https://doi.org/10.1016/s0166-2236(00)01868-3 PMID: 11476885

3. Bouchacourt F, Buschman TJ. A Flexible Model of Working Memory. Neuron. 2019; 103: 147–160.e8.

https://doi.org/10.1016/j.neuron.2019.04.020 PMID: 31103359

4. Murray JD, Bernacchia A, Roy NA, Constantinidis C, Romo R, Wang X-J. Stable population coding for

working memory coexists with heterogeneous neural dynamics in prefrontal cortex. PNAS. 2017; 114:

394–399. https://doi.org/10.1073/pnas.1619449114 PMID: 28028221

5. Spaak E, Watanabe K, Funahashi S, Stokes MG. Stable and Dynamic Coding for Working Memory in

Primate Prefrontal Cortex. J Neurosci. 2017; 37: 6503–6516. https://doi.org/10.1523/JNEUROSCI.

3364-16.2017 PMID: 28559375

6. Cueva CJ, Marcos E, Saez A, Genovesio A, Jazayeri M, Romo R, et al. Low dimensional dynamics for

working memory and time encoding. BioRxiv 504936 [Preprint]. 2019 [cited 2019 Apr 15]. Available

from: https://www.biorxiv.org/content/10.1101/504936v3

7. Barak O, Sussillo D, Romo R, Tsodyks M, Abbott LF. From fixed points to chaos: Three models of

delayed discrimination. Progress in Neurobiology. 2013; 103: 214–222. https://doi.org/10.1016/j.

pneurobio.2013.02.002 PMID: 23438479

8. Romo R, Brody CD, Hernández A, Lemus L. Neuronal correlates of parametric working memory in the

prefrontal cortex. Nature. 1999; 399: 470. https://doi.org/10.1038/20939 PMID: 10365959

9. Druckmann S, Chklovskii DB. Neuronal Circuits Underlying Persistent Representations Despite Time

Varying Activity. Current Biology. 2012; 22: 2095–2103. https://doi.org/10.1016/j.cub.2012.08.058

PMID: 23084992

10. Rademaker RL, Park YE, Sack AT, Tong F. Evidence of gradual loss of precision for simple features

and complex objects in visual working memory. Journal of Experimental Psychology: Human Percep-

tion and Performance. 2018; 44: 925–940. https://doi.org/10.1037/xhp0000491 PMID: 29494191

11. Barrouillet P, Camos V. Developmental Increase in Working Memory Span: Resource Sharing or Tem-

poral Decay? Journal of Memory and Language. 2001; 45: 1–20. https://doi.org/10.1006/jmla.2001.

2767

12. Kinchla RA, Smyzer F. A diffusion model of perceptual memory. Perception & Psychophysics. 1967; 2:

219–229. https://doi.org/10.3758/BF03212471

13. Panichello MF, DePasquale B, Pillow JW, Buschman TJ. Error-correcting dynamics in visual working

memory. Nat Commun. 2019; 10: 1–11. https://doi.org/10.1038/s41467-018-07882-8

14. Schneegans S, Bays PM. Drift in Neural Population Activity Causes Working Memory to Deteriorate

Over Time. J Neurosci. 2018; 38: 4859–4869. https://doi.org/10.1523/JNEUROSCI.3440-17.2018

PMID: 29703786

15. Wimmer K, Nykamp DQ, Constantinidis C, Compte A. Bump attractor dynamics in prefrontal cortex

explains behavioral precision in spatial working memory. Nat Neurosci. 2014; 17: 431–439. https://doi.

org/10.1038/nn.3645 PMID: 24487232

16. Lim PC, Ward EJ, Vickery TJ, Johnson MR. Not-so-working Memory: Drift in Functional Magnetic Reso-

nance Imaging Pattern Representations during Maintenance Predicts Errors in a Visual Working Mem-

ory Task. Journal of Cognitive Neuroscience. 2019; 1–15. https://doi.org/10.1162/jocn_a_01427 PMID:

31112474

17. Wolff MJ, Ding J, Myers NE, Stokes MG. Revealing hidden states in visual working memory using

electroencephalography. Front Syst Neurosci. 2015; 9. https://doi.org/10.3389/fnsys.2015.00123

PMID: 26388748

PLOS BIOLOGY Drifting codes within a stable coding scheme for working memory

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000625 March 2, 2020 17 / 19

https://doi.org/10.1093/cercor/10.9.910
http://www.ncbi.nlm.nih.gov/pubmed/10982751
https://doi.org/10.1016/s0166-2236(00)01868-3
http://www.ncbi.nlm.nih.gov/pubmed/11476885
https://doi.org/10.1016/j.neuron.2019.04.020
http://www.ncbi.nlm.nih.gov/pubmed/31103359
https://doi.org/10.1073/pnas.1619449114
http://www.ncbi.nlm.nih.gov/pubmed/28028221
https://doi.org/10.1523/JNEUROSCI.3364-16.2017
https://doi.org/10.1523/JNEUROSCI.3364-16.2017
http://www.ncbi.nlm.nih.gov/pubmed/28559375
https://www.biorxiv.org/content/10.1101/504936v3
https://doi.org/10.1016/j.pneurobio.2013.02.002
https://doi.org/10.1016/j.pneurobio.2013.02.002
http://www.ncbi.nlm.nih.gov/pubmed/23438479
https://doi.org/10.1038/20939
http://www.ncbi.nlm.nih.gov/pubmed/10365959
https://doi.org/10.1016/j.cub.2012.08.058
http://www.ncbi.nlm.nih.gov/pubmed/23084992
https://doi.org/10.1037/xhp0000491
http://www.ncbi.nlm.nih.gov/pubmed/29494191
https://doi.org/10.1006/jmla.2001.2767
https://doi.org/10.1006/jmla.2001.2767
https://doi.org/10.3758/BF03212471
https://doi.org/10.1038/s41467-018-07882-8
https://doi.org/10.1523/JNEUROSCI.3440-17.2018
http://www.ncbi.nlm.nih.gov/pubmed/29703786
https://doi.org/10.1038/nn.3645
https://doi.org/10.1038/nn.3645
http://www.ncbi.nlm.nih.gov/pubmed/24487232
https://doi.org/10.1162/jocn_a_01427
http://www.ncbi.nlm.nih.gov/pubmed/31112474
https://doi.org/10.3389/fnsys.2015.00123
http://www.ncbi.nlm.nih.gov/pubmed/26388748
https://doi.org/10.1371/journal.pbio.3000625
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