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Purpose: During mammalian eye development, the restriction of Wnt/β-catenin signaling at the junction of the neural
retina and the retinal pigment epithelium in the peripheral eyecup is required for the development of the ciliary margin,
a non-neural region of the eyecup that is the precursor of the ciliary body and iris of the adult eye.
Methods: To identify genes that are modulated by β-catenin activity in the embryonic retina, we performed gene
expression profiling in Li+-treated retinal explants, a pharmacological model of β-catenin activation. The Li+-modulated
gene data set was searched for β-catenin/T-cell specific transcription factor binding sites.
Results: Functional annotations of this data set revealed significant enrichments for genes involved in chromatin
organization, neurogenesis, and cell motion/migration. Quantitative real-time polymerase chain reaction (qRT–PCR)
analysis confirmed the modulation of 12 genes in Li+-treated explants and retinas of mice with Cre-mediated induction
of constitutively active β-catenin (β-catact). In situ hybridization revealed β-catenin-specific upregulation of cyclin-
dependent kinase inhibitor 1A (P21) [Cdkn1a] and tumor necrosis factor receptor superfamily, member 19 (Tnfrsf19) in
the developing retina consistent with the antineurogenic and proliferation changes associated with ectopic Wnt/β-catenin
signaling in the eyecup.
Conclusions: This data set of Li+-modulated genes provides a valuable resource for characterizing the Wnt/ β-catenin
regulated gene network in eyecup patterning.

The vertebrate eye comprises tissues originating from
several embryonic lineages, including neuroectoderm,
ectoderm, neural crest, and mesoderm. The coordinated
development of these multiple tissue types is governed by
intercellular interactions, which makes the eye an excellent
model in which to study morphogenesis and inductive events
during central nervous system development. At early stages
of eye development, the neuroectoderm-derived optic vesicles
invaginate to form a bilayered optic cup. The outer layer
differentiates as the retinal pigment epithelium, and the inner
layer is patterned into the central neural retina and peripheral
ciliary margin (CM). The CM gives rise to the distal iris and
proximal highly folded non-pigmented ciliary epithelium that
forms the inner layer of the mature ciliary body (CB), which
functions in secreting aqueous humor [1]. Notably, the CM
does not undergo neurogenesis, despite the structure’s
neuroectodermal origin. The development of this CB structure
is of particular interest because aberrant development and
function of the ciliary epithelium results in eye disease, most
notably glaucoma [2] and because of the potential for retinal
regeneration. The peripheral retina in the adult eye of lower
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vertebrates contains a source of stem cells that generate new
retinal neurons throughout the life of the animal [3], and cells
with clonogenic capacity can be isolated and cultured from
the adult mammalian CB [4]. However, the in vivo potential
of these cells to undergo neurogenesis in the mammalian
retina has yet to be demonstrated.

The genetic and intercellular interactions that regulate
early eyecup patterning and CB development are beginning
to be understood. Although signals from the lens have been
implicated in the induction of the CB [5,6], more recent
studies suggest that the lens may be more involved in
maintenance rather than induction of the CM [7]. With respect
to the molecular regulation of CM/CB development,
orthodenticle homolog 1 (Otx1) and LIM homeobox
transcription factor 1 beta (Lmx1b) and bone morphogenetic
protein signaling are all required for normal CM specification
and differentiation [8–10]. More recently, canonical Wnt
signaling has been implicated as a positive regulator of CM
development [11,12].

The Wnt signaling pathway is a key regulator of
patterning, growth, and cell fate in vertebrates [13]. Secreted
Wnt ligands bind to Frizzled (Fzd) receptors and transduce
intracellular signals through the canonical Wnt/β-catenin,
planar cell polarity, and the Wnt/Ca2+ pathways [14]. In the
canonical Wnt/β-catenin pathway, binding of a Wnt protein
to Fzd results in the stabilization and accumulation of
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intracellular β-catenin, which then translocates to the nucleus
where the protein interacts with the transcription factors T-
cell specific transcription factor (TCF) and lymphoid
enhancer-binding factor to transactivate target genes [13].

Several Wnt and Fzd receptors and other Wnt pathway
components are expressed in the developing eye in several
vertebrate species [15–17]. While the function of Wnt
signaling in proliferation control appears to be species specific
[18], there is a conserved requirement for Wnt/β-catenin
signaling in regulating peripheral eye development. In
Xenopus, canonical Wnt signaling in progenitor cells at the
peripheral margin of the retina promotes neurogenesis [16].
Similarly, in zebrafish, chicks, and mice, Wnt expression and
canonical Wnt signaling are active in the peripheral eyecup
[12,15,17,19]. However, in contrast to Xenopus, the function
of canonical Wnt signaling in the mouse and chick is to inhibit
neurogenesis, and to promote the development of peripheral
eye structures [11,12,17,19–21]. In the mouse and chick,
Wnt2b is expressed in the RPE overlying the CM [15,17], and
gain- and loss-of-function studies demonstrate that canonical
Wnt pathway signaling is necessary and sufficient for CM and
CB development at the expense of the neural retina [12,15,
17].

Activation of Wnt signaling in the mouse retina was
associated with increased expression of CM markers,
including homeobox, msh-like 1 (Msx1), Otx1, and bone
morphogenetic protein 4 (Bmp4), and downregulation of basic
helix–loop–helix (bHLH) and homeodomain transcription
factors and CyclinD1, which is consistent with the inhibitory
effect of Wnt activation on neurogenesis and proliferation
[11,12,20]. However, the exact molecular mechanism of β-
catenin-mediated promotion of CM/CB development is
poorly understood. To identify candidate Wnt/β-catenin target
genes in CM development, we used microarrays to survey
differentially expressed genes in Li+-treated retinal explants.
Previously we showed that Li+ treatment, a well characterized
activator of canonical Wnt signaling [22] in mouse embryonic
retinal explants, mimics the CM-promoting effects of in vivo
β-catenin signaling in that it inhibited proliferation and
neurogenic gene expression and promoted CM gene
expression [11]. To identify candidate β-catenin targets
among the Li+-modulated genes, we searched the genomic
sequences of these genes for conserved TCF consensus
motifs. We validated the Wnt/β-catenin modulation of 12
genes in the retinal explants and retinas of mice with
constitutive β-catenin activation in the peripheral retina (β-
catact). We show that the upregulation of two candidate target
genes, cyclin-dependent kinase inhibitor 1A (P21) [Cdkn1a]
and tumor necrosis factor receptor superfamily, member 19
(Tnfrsf19), is specific to β-catenin-activated regions of the
embryonic mouse retina, suggesting that they may play a role
in mediating the biologic effects of canonical Wnt signaling
in the developing eye.

METHODS
Explant culture: CD1 wild-type mice (obtained from Jackson
Laboratories, Bar Harbor, ME) were time-mated to generate
E14.5 embryos, with day 0 of gestation designated by the
presence of the vaginal plug. The eyes were harvested from
the embryos, and the RPE was removed in CO2-independent
medium. The retina was then transferred to ethanol sterilized,
13 mm (0.8 μm pore-size) Nucleopore polycarbonate filters
(Whatman, Piscataway, NJ) with the anterior lens oriented
down onto the filter. The retinal explants were cultured at 8%
CO2 and 37 °C in 500 µl serum-free retinal explant medium
(1:1 F12/Dulbecco’s Modified Eagle’s Medium, transferrin
[100 mg/ml], insulin [10 µg/ml], BSA [Fraction V: 100 mg/
ml], putrescine [16 µg/ml], progesterone [60 ng/ml], sodium
selenite [40 ng/ml], and gentamicin [25 µg/ml]). The Wnt/ β-
catenin signaling pathway was activated by supplementing the
retinal explant medium with 20 mM LiCl for 24 h. Control
explants were treated with 20 mM NaCl.
Microarray analysis: Gene expression profiling was
performed on E14.5 retinal explants cultured in the presence
of 20 mM NaCl (control) or 20 mM LiCl for 24 h, a time-
period previously determined to be optimal for β-catenin
activation by Li+ [11]. For each biologic replicate (NaCl or
LiCl), RNA was isolated from pooled explants (eight
explants/treatment group) using RNeasy mini kits (Qiagen,
Valencia, CA) generating a total of 10–15 ug for each sample.
RNA samples (targets) were labeled with Cy5 or Cy3 using
3DNA Array 900 kits (Genisphere, Hatfield, PA) following
the manufacturer’s instructions. Li+ and control samples were
then cohybridized to MEEBO 38.5K arrays (Microarrays Inc.,
Huntsville, AL). For each pairwise comparison, a dye-flip
experiment was also performed (reversing which samples
were labeled with Cy5 or Cy3) to correct for dye bias, for a
total of four microarrays (two biologic and two technical
replicates). Signals were quantified using the ScanArray
express (Perkin Elmer, Waltham, MA), and intra-array
normalization (Cy5/Cy3) was performed with LOWESS
[23] using the ProScan Array Express software package
(Perkin Elmer). M (log2 ratio of Li+/control signal) and A
values (log2 average signal strength) were then determined for
all probes. Differentially expressed genes were identified by
comparing Li+ to control signals across the four arrays under
the following criteria. A probe (gene) was scored as
differentially expressed on an array if it showed at least a 1.5-
fold change. To score a probe as differentially expressed in
the experiment, the following criteria had to be met: If a probe
was differentially expressed in 3/4 arrays, all three must
display a minimum twofold change (i.e., 2/2/2/0). If a probe
was differentially expressed in all four arrays, a minimum of
a 1.8 fold change had to be observed in at least three of the
arrays (1.8/1.8/1.8/1.5), or a twofold change in at least two of
the arrays (2.0/2.0/1.5/1.5). In addition, a probe must also
display a sufficient signal with an average A minimum value
of 7 (log2); otherwise, the probe was considered to have too
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low a signal to be reliably measured (i.e., low/absent
expression).
Gene annotation and motif searches: Gene Ontology (GO)
analysis was performed for all differentially expressed genes
using the online tool DAVID Bioinformatics Resources 6.7.
Biologic processes GO terms annotating these genes were
classified into major categories and tested for significant
enrichment. To prioritize the list of candidate genes for
potential Wnt/β-catenin targets, the microarray results were
mined for genes that contain a consensus T-cell factor (TCF)
binding site. Consensus TCF-binding sites (CCTTTGWW)
[24] are highly conserved motifs generally clustered in groups
of one to four binding sites upstream from the transcriptional
start site [25–27]. Therefore, an interval of 5 kb upstream of
the transcriptional start site to 1 kb downstream of the
transcriptional stop site was used to screen the genomic
sequence (release mm8) of differentially expressed genes in
Li+-treated retinal explants for genes containing TCF-binding
site(s). This analysis did not significantly reduce the number
of differentially expressed genes as the consensus TCF-
binding site occurs by chance approximately once every 16
kb in the genome. To refine the list of candidate genes, the
results were filtered for genes that contain at least one
conserved TCF-binding site. To define conservation, we used
the conservation scores phastCons [28] available at the
University of California, Santa Cruz (UCSC) Genome
Bioinformatics [29]. These conservation scores are generated
from a multiple alignment of 16 vertebrate genomes to the
mouse genome [30,31]. For each match, we computed the
average conservation score. Genes with TCF matches that had
an average score greater than 0.7 (out of a possible 1) were
identified as potential Wnt targets.
RNA extraction, cDNA synthesis, and quantitative real-time–
polymerase chain reaction: Pools of two or three retinal
explants were placed in 1 ml of TRIzol and sonicated with five
pulses (8–10 s each) at an amplitude of 35% followed by RNA
extraction as per manufacturer’s guidelines (Invitrogen/Life
Technologies, Carlsbad, CA). cDNA was synthesized from
2 µg of total RNA using M-MLV reverse transcriptase
(Invitrogen/Life Technologies, Carlsbad, CA) following the
manufacturer’s protocols. Quantitative real-time–polymerase
chain reaction (q-RT–PCR) was performed using 1 μl of
cDNA with JumpStart qPCR mastermix (Sigma-Aldrich, St.
Louis, MO) following manufacturer’s guidelines but in a
25 μl reaction volume. Gene-specific primer pairs (Table 1)
were designed using Primer3 software, with 100% homology
to the target sequence and confirmed using a BLAST search
(National Center for Biotechnology) [32]. The primers were
designed with a melting temperature of 58–59 °C, and the
amplicons ranged from 100 to 200 bp. The PCR reactions were
performed in triplicate using a Stratagene Mx3000P (Agilent
Technologies, Inc., Santa Clara, CA) with the following
cycling parameters: 94 °C for 3 min, followed by 40 cycles of
94 °C for 30 s, annealing at 58 °C for 30 s, and extension at

72 °C for 1 min. Changes in gene expression were quantified
using the 2-ΔΔCT method with normalization to the
housekeeping genes 18S and glyceraldehyde-3-phosphate
dehydrogenase (Gapdh). Statistical significance was
evaluated using a two-tailed, unpaired Student t test, and a
p≤0.05 was considered statistically significant.

In situ hybridization and X-gal staining: In situ hybridization
(ISH) of cryosections of embryonic eyes was performed as
previously described [33] using DIG-labeled antisense probes
for CyclinD1 (a kind gift from Gordon Peters, London
Research Institute, London, UK) and Msx1 (a kind gift from
Yi-Hsin Liu, Keck School of Medicine, University of
Southern California, Los Angeles, CA). All other riboprobes
used in this study were generated by PCR amplification of
cDNA from embryonic retinas. Briefly, gene-specific primer
sets (Table 2) were used to produce 500–800 bp amplicons
that were subcloned into the pGEM®-T Easy Vector
(Promega, Madison, WI). The construct (insert + vector) was
then sequenced to confirm insertion and orientation of the
amplicon and antisense probes were synthesized from the
linearized vector using T7 or SP6 RNA polymerase. 5-
bromo-4-chloro-indolyl-β-D-galactopyranoside (X-gal)
staining in cryosections of embryonic eyes was performed as
previously described [15]. Briefly, embryonic tissue was fixed
in 4% paraformaldehyde for 15 min before embedding for
cryosectioning. Cryosections were cut at 12 µm and dried at
room temperature for 2–6 h. Sections were immersed in
Dulbecco’s Phosphate Buffered Saline with calcium and
magnesium (PBS; Thermo Fisher Scientific, Waltham, MA)
for 5 min and incubated in β-galactosidase (LacZ) staining
buffer overnight at room temperature in the dark. Sections
were then washed with PBS and mounted using glycerol/PBS
(1:1). Images were analyzed using a Zeiss Axioplan 2
microscope and captured with an Axiocam camera (Carl Zeiss
Canada Ltd, Toronto, ON, Canada) at 20× (0.8 N.A). Images
were processed with Adobe Photoshop® CS2.

Transgenic mice: Transgenic mice were maintained and
crossed as previously described [11]. The α-Cre (obtained
from P. Gruss, Max-Planck Institute of Biophysical
Chemistry, Goettingen, Germany [34]) and Catnb+/lox(ex3) [35]
transgenic mouse lines were maintained on a C57BL/6
background, and the TCF/Lef-LacZ mouse line (obtained from
D.Dufort, McGill University, Montreal, QC, Canada [36])
was maintained on a CD1 background. The α-Cre mice were
crossed with the TCF/Lef-LacZ mice to create the α-Cre;TCF/
Lef-LacZ mouse line. Heterozygous α-Cre;TCF/Lef-LacZ
mice were crossed with the Catnb+/lox(ex3) mice to generate α-
Cre;Catnb+/lox(ex3) or α-Cre;Catnb+/lox(ex3);TCF/Lef-LacZ
genotypes and were designated as β-catact mutant mice.
Littermates with α-Cre;Catnb+/+ or α-Cre;Catnb+/+;TCF/Lef-
LacZ genotypes were designated as control. Genotyping for
the transgenic mice was performed with PCR using the
following primer pairs: α-Cre- (F) 5′-ATG CTT CTG TCC
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GTT TGC CG-3′ and (R) 5′-CCT GTT TTG CAG GTT CAG
CG-3′; TCF/Lef-LacZ (F) 5′-CAG TGG CGT CTG GCG
GAA AAC CTC-3′ AND (R) 5′-AAA CAG GCG GCA GTA
AGG CGG TCG G-3′; Catnb+/lox(ex3) (F) 5′-GAC ACC
GCT GCG TGG ACA ATG-3′ and (R) 5′-GTG GCT GAC
AGC AGC TTT TCT G-3′. For analysis, E14.5 embryo heads
were fixed in 4% paraformaldehyde phosphate buffer
overnight and washed in PBS. The heads were then transferred

to a 30% sucrose/PBS solution overnight and embedded in 1:1
optimal cutting temperature/ 30% sucrose/PBS mixture for
cryosectioning.

RESULTS
Gene expression profiling for Li+-modulated genes in retinal
explants: To obtain a comprehensive profile of β-catenin-
dependent gene expression in the retina, we performed

TABLE 1. QPCR PRIMER SETS

Gene Sequence (5′-3′)
Otx1 F: CGGGAATGGAACGAAAAC
 R: GCTCGTCTCCGAACCCGA
Msx1 F: CACCGCAACCGCCAT
 R: TGCCCAAGTGCTGCAC
Cdkn1a F: AGAGTGCAAGACAGCGACAA
 R: GTCCAATCCTGGTGATGTCC
Med12 F: TATACCGGCAGCAGCAAC
 R: GGAAGAACTAGGGGTCATCTG
Wif1 F: TAAGAGGTATGGAGCCAGCC
 R: ATCCCTTCTATCCTCAGCCTT
Efna3 F: GTGAAGATCAACGTGTTGGAA
 R: GAGGCCAAGAGCTGCAT
Axin2 F: AGACCGGTCACAGGAGTG
 R: CAGGCAGACTCCAATGGGTA
Cdc25b F: ATCCTCAAGAGGCTAGAGCG
 R: ACGGGCCTTAGGTTCTTCA
Epha2 F: TGATCCCCGAGTGTCCA
 R: CAGATAGGAATCCCCACTGTGT
Tnfrsf19 F: GAGAAGTACCAATTCCCTCAA
 R: AGATGCTGCGCTTTCGT
Klf10 F: TTGAGACAGTCCCAGCATTTG
 R: GGCAGCATCGGAGAAAGAT
Lix1 F: GCCCTGGACTGGATTATGAA
 R: CGTGAGGCTTAGCTGGTCAG
Ndrg2 F: ACAAGTTAACTGGCCTTACGTCTT
 R: TGCGTGTTGGATGATACCTCT
Prickle1 F: TTGAAGAGAGGGGATCCAG
 R: ATGGGCATACTGGCTATAGAGGTT
Serpine2 F: CTTCATGTCTCTCACATCTTGC
 R: TACTATAAACCAGGGAGGTGATGA
Syt13 F: TTAAGTTCCCGGACATCTATGGT
 R: GACTCCTCTGTGGTCTCCAA

TABLE 2. PRIMER SETS FOR ISH PROBES

Gene Sequence (5′-3′)
Cdkn1a F: CGGTGGAACTTTGACTTCGT
 R: CAGGGCAGAGGAAGTACTGG
Tnfrsf19 F: GAGACCCACCTCCGTCCTAC
 R: GGAGTCCTTGGAGCATCCTG
Syt13 F: AGTTGAGGATGTCTGTGTCAT
 R: ACCTTGACAGACACATCCTT
Wif1 F: CAAGTTGGTTCCCGTGTCT
 R: TTAAGTGAAGGCGTGTGTCG
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microarray analysis on control and Li+-treated retinal
explants. A total of 919 differentially expressed probes were
identified in the Li+-treated explants, corresponding to 829
different genes, of which 386 were upregulated, 441
downregulated (Appendix 1), and two (engulfment and cell
motility 1, ced-12 homolog [Elmo1] and uracil DNA
glycosylase [Ung]) were reported as being both upregulated
and downregulated. In the case of these last two genes, this
observation may be explained in both instances by the
differential response of alternative transcripts for these genes
(probes detect different transcripts). Included in the list of
upregulated genes were the CB markers Msx1 and Otx1,
which we have shown previously to be modulated by
increased β-catenin activity [11] as well as known Wnt target
genes, Axin2 and Wnt inhibitory factor 1 (Wif1;The Wnt
Homepage) [14]. Thus, the altered expression of known Wnt
targets and CM markers is consistent with Li+ treatment
mimicking a canonical Wnt signaling response in retinal
explants. GO analysis of the differentially expressed genes in
terms of their associated biologic processes identified a broad
range of functional classes: 278 of the genes had no associated
term, 336 genes accounted for 584 hits to 13 major categories,
and the remaining 215 were associated with other biologic
processes. There was significant enrichment (over-
representation) of genes associated with chromatin assembly
and organization, cell death, cell motion and migration,
cytoskeleton organization, and neuron development (Figure
1).

The enrichment of cell death–associated genes in the Li
+-upregulated data set raised the possibility that Li+ treatment

had an impact on cell survival in retinal explants. To address
this issue, we stained control and Li+-treated explants after 24
h with terminal deoxynucleotidyl transferase 2’-
Deoxyuridine, 5′-Triphosphate (dUTP) nick end labeling to
visualize apoptotic cells, which revealed a marked increase in
dying cells in Li+-treated explants compared with controls
(Figure 2). Thus, short-term Li+ treatment in explants is
associated with an increase in cell death, which is consistent
with the upregulation of cell death–specific genes in the
microarray data set. However, we think this effect of Li+ is
secondary because increased β-catenin activity in vivo is not
associated with increased death [11] and because there was no
significant enrichment for apoptotic genes after the data set
was filtered for genes with conserved TCF binding sites (see
below).

Computational screen and target validation of candidate Wnt/
β-catenin target genes: Wnt/β-catenin/TCF signaling
regulates transcription through the interaction of β-catenin/
TCF with TCF/Lef-1 consensus binding motifs in promoters
of target genes. Consensus TCF-binding sites (CCTTTGWW
[24]) are highly conserved and are generally clustered in
groups of one to four binding sites located up to 1 kb upstream
from the transcriptional start site [25–27]. Therefore, to
identify putative TCF/Lef-1 target genes we filtered the list of
Li+-modulated genes for genes that contained a TCF binding
site in an interval spanning 5 kb upstream of the transcriptional
start site to 1 kb downstream of the transcriptional stop site.
This analysis reduced the number of differentially expressed
genes from 829 to 683. The list was further refined by filtering
for genes that contain a TCF-binding site with an average

Figure 1. Graph indicates the frequency
of annotated Gene Ontology (GO) terms
to the non-redundant data set of all
differentially expressed genes and those
with conserved TCF binding sites. The
asterisks indicate that the mapped term
is over-represented in the data set based
on an enrichment score of greater than 1
with GO Annotation clustering
(DAVID).
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conservation value higher than 0.7 out of a possible 1 (see
Methods). This final screen reduced the number of candidate
targets to 225 genes with 84 up, 139 down, and two reported
as both up and down. The final list includes general Wnt target
genes Wif1 and Axin2 and Wnt modulated genes in the CB,
Msx1 and Otx1 [11], confirming the utility of this approach to
capture Wnt/TCF targets (Appendix 2). GO annotation
revealed a significant enrichment for genes associated with
chromatin assembly and organization, cell motion and
migration, neuron development, and Wnt signaling and
transcription, with the latter two categories showing an
increase in representation in this final group (Figure 1). In
most GO categories, the number of genes upregulated versus
downregulated were relatively equivalent; however, this was
not the case with genes associated with neuron development
(11 down, two up), differentiation (16 down, eight up), or
chromatin organization (23 down, one up).

Increased β-catenin activity in the embryonic mouse
retina alters neurogenesis and proliferation [11,12,20].
Therefore, genes with these functions were prioritized for
validation (Table 3). Also included in this list for validation
were genes from the unfiltered data set that exhibited a high
fold-change in response to Li+, known Wnt targets in other
tissues, or genes with several non-conserved TCF-binding
sites (Table 3). We monitored gene expression with qRT–PCR
in two gain-of-function models of β-catenin activity: Li+-
treated E14 retina explants and whole E14 retinas of mice
expressing a Cre-dependent constitutively active allele of β-
catenin in the peripheral retina (β-catAct; described in [11]).
Consistent with the microarray analysis, the expression of
Wif1, Axin2, ephrin A3 (Efna3), serine (or cysteine) peptidase

inhibitor, clade E, member 2 (Serpine2), Tnfrsf19, and
Cdkn1a was upregulated (Figure 3A and Table 3) and that of
synaptotagmin XIII (Syt13), prickle homolog 1 (Prickle1),
and N-myc downstream regulated gene 2 (Ndrg2) was
downregulated in Li+-treated explants (Figure 3B and Table
3). A similar pattern of gene expression was also observed the
retinas of β-catAct mice with the exception that expression of
Serpine2 and Efna3 was unchanged and limb expression 1
homolog (Lix1) was increased, compared with Li+-treated
explants (Figure 3 and Table 3). One explanation for
differences in gene expression between explants and the β-
catAct retina may be reduced sensitivity in the latter, because
the retina samples contained a mixture of wild-type (central
retina) and peripheral (mutant) tissue.

Next, we addressed how specific these changes in gene
expression were to the region of the retina with active β-
catenin signaling by performing in situ hybridization on
retinal sections from β-catAct mutant mice. In β-catAct retinas,
peripherally restricted expression of constitutively active β-
catenin increases TCF-LacZ reporter activity (Figure 4) and
expands the CM, as shown by the expansion of Msx1
expression, a marker of the ciliary margin (Figure 4A,C and
[11]). The expression of Cdkn1a,Tnfrsf19, and Wif1 was
increased and restricted to the expanded CM in the mutant eye,
as their expression overlapped with the Msx1 and Tcf-reporter
expression domains and was excluded from the neural retina,
which is marked by CyclinD1 expression (Figure 4A,B).
Syt13 was expressed in the neural retina but not the expanded
CM in the retinas of mutant mice (Figure 4C), which is
consistent with the downregulation of this gene in the
microarray data set (Table 1 and Table 3) and with the

Figure 2. Reduced cell survival in Li+-treated explants. A-D: Nuclear (A, B) and TUNEL staining (C, D) in E14.5 retinal explants cultured
in control (A, C) and Li+ (B, D) containing medium for one day. Cell death (indicated by TUNEL+ cells) is increased in the ganglion cell
layer (arrow in D) and in the neuroblast layer (arrowhead in D). RGC, retinal ganglion cell layer; RPE, retinal pigment epithelium; NB,
neuroblast layer.
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inhibition of neurogenesis that is a feature of β-catenin
activation in this region of the developing eye [11]. ISH for
Lix1 and mediator of RNA polymerase II transcription,
subunit 12 homolog (Med12) revealed that the former is
undetectable in the retina and the latter is ubiquitously
expressed, which is consistent with why these genes were not
validated in the qRT–PCR analysis of the β-catAct retina (data
not shown).

DISCUSSION
To identify candidate β-catenin target genes in the developing
retina, we performed microarray expression profiling of Li+-
treated retinal explants from E14 mice. To enrich for putative
direct target genes, the data set was filtered to identify genes
with conserved TCF binding sites. The final list of
differentially expressed genes included known Wnt target
genes and previously identified CM markers. Using in vitro
and in vivo gain-of-function models, we confirmed the Li+/β-
catenin modulation of 12 genes and demonstrated that the
expression of two of these genes was enriched in the region
of enhanced β-catenin activity in vivo. This approach thus has

identified several interesting candidate genes for functional
studies of the molecular mechanism of Wnt/ β-catenin-
mediated patterning of the eyecup.

In previous studies, we showed that in vitro treatment
with Li+ and in vivo transgenic activation of β-catenin activity
induced markedly similar effects on gene expression, Wnt
reporter gene induction, and proliferation [11]. However, we
observed that Li+ increased cell death in explants, an effect
that does not appear to be mimicked by β-catenin activation
in vivo. This observation could reflect stage-specific
differences in the response to β-catenin activity or indicate β-
catenin-independent effects of Li+. Although it is well
established that Li+-induced GSK3 inhibition activates the
canonical Wnt signaling pathway [22,37,38], there are off-
target effects of Li+ [reviewed by 39] as well as effects on other
GSK3 substrates, such as p53, activator protein 1, and nuclear
factor-κB [40–43]. As a way to identify the β-catenin-
dependent subset of Li+-modulated genes, we filtered the data
set for genes with conserved TCF binding sites. This list of
candidate direct β-catenin target genes included known Wnt
target genes and ciliary margin-restricted genes that have been

TABLE 3. SUMMARY OF CANDIDATE WNT TARGET GENE VALIDATION.

    
qPCR validation

 

Gene Fold-change on
microarray

# TCF binding sites # conserved sites Explants β-catAct in situ β-catAct

Wnt pathway
Wif1 29.2 7 1 + + +
Axin2 2.8 6 4 + + nd
Ciliary margin
markers
Msx1 2.3 6 3 nd nd +
Otx1 1.8 9 7 nd nd +
Neuron
development
Epha2 8.4 4 1 - - nd
Efna3 1.7 4 1 + - nd
Syt13 −11 6 0 + - +
Prickle1 −6 9 1 + - nd
Ndrg2 −2.8 4 2 + - nd
Cell cycle
Cdkn1a 21.9* 3 0 + + +
Differentiation
Serpine2 25.1 1 1 + - nd
Klf10 2.3 1 0 + - nd
Cdc25b 1.9 4 1 + - nd
Lix1 2.5** 12 4 - + -
Signaling
Tnfrsf19 20.9 10 2 + + +
Med12 2 8 0 - - -

        Gene expression was compared by q-RT–PCR analysis in [1] Li+-treated and untreated retinal explants [2]; whole retinas of
        E14 β-catAct and control littermates and by in situ hybridization in retina sections from β-catAct and control littermates at E14.
        (+) indicates that the expression of the gene exhibited the same trend (either up or down) as reported in the microarray analysis.
        (-) no change in the gene expression was detected or the change in expression was opposite to that reported in the microarray
        analysis. nd, not done. Asterisks indicate that the reported fold-change is the average value obtained from two (*) or three (**)
        different probes on the microarray.
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shown to be modulated by β-catenin activity in the mouse and
chick retina in vivo [11,12,44] suggesting that gene
expression analysis of Li+-treated explants was enriched for
genes that could be relevant to the impact of β-catenin activity
at earlier stages in development.

Recently, several novel ciliary margin restricted and β-
catenin inducible genes have been identified in the developing
eyecup [44,45]. Only two genes in our Li+-modulated data set,
Otx1 and serum/glucocorticoid regulated kinase 1 (Sgk1), are
represented in the Trimarchi et al. [44] study; however,
differences in the screening approach likely account for the
lack of overlap with the two approaches. Although inhibitor
of DNA binding 3 (Id3) has been shown to be a direct target
of β-catenin in the peripheral eye [45], we did not identify it
as a Li+-modulated gene in our study likely because expression
of the gene is not restricted to the CM at E14, the
developmental stage of our screen.

Here we identify Tnfrsf19 and Cdkn1a as candidate β-
catenin responsive genes in the peripheral eyecup. The
expression of both genes was upregulated in Li+-treated retinal
explants and in the region of the peripheral retina with active
β-catenin signaling in the β-catAct mice. However, we were

unable to detect expression of these genes in the wild-type
ciliary margin, possibly because their expression is normally
too low to be detected by in situ hybridization, even at
different developmental stages (Ha, unpublished). Tnfrsf19
encodes a member of the tumor necrosis factor receptor
superfamily of proteins that are involved in apoptosis,
differentiation, and proliferation [46]. Tnfrsf19 is expressed
in embryonic epithelia [47–50] and postnatally in the hair
follicle and neurons [47] and loss-of-function studies indicate
a role for Tnfrsf19 in hair follicle development [49] and axon
regeneration [51]. In addition, Tnfrsf19 is a direct target of
Wnt signaling in somitogenesis. Although no eye phenotype
has been described in the Tnfrsf19−/− mouse, Wnt regulation
in somitogenesis [52] and expression in neural progenitors
[53] make this gene an excellent candidate for future
functional studies.

Cdkn1a is known as a repressor of cell cycle progression
by inhibiting cyclin-dependent kinases. Although Cdkn1a is
generally known as a member of the p53-dependent damage
response pathway [54], this gene has also been found to play
a role in development in which Cdkn1a is expressed in
differentiating melanocytes [55] as well as acting as a positive

Figure 3. QRT–PCR analysis in Li+-
treated retinal explants and in β-catAct

mutant eyes of gene expression.
Validation of upregulated (A) and
downregulated (B) genes from the Li+-
modulated data set. A total of three
independent experiments were
performed in triplicate (n=3). Data are
normalized to Gapdh and 18S and
presented as fold-change relative to
control explant cultures and wild-type
littermates±SD *p<0.05.
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cofactor of microphthalmia-associated transcription factor
expression in melanoma cells [56]. Loss-of-function studies
in Cdkn1a−/− mice have shown that Cdkn1a represses neuronal
proliferation in the subgranular zone of the dentate gyrus of
the hippocampus, suggesting that the gene functions to
restrain neurogenesis in this region [57]. Cdkn1a activity also
regulates the proliferative capacity of neural stem cells in the
mammalian brain with loss of Cdkn1a function resulting in a
reduced neural stem cell population in the forebrain of adult
Cdkn1a−/− mice [58]. Although Cdkn1a expression was not
detected in the eyes of wild-type mice in this and previous
studies [59], Cdkn1a has been shown to control patterning in
development of the RPE [59]. Cdkn1a’s ability to arrest cell
cycle progression makes this gene a possible candidate in
Wnt-mediated CM development.

Activation of canonical Wnt signaling in the chick and
mouse retina is associated with a slowing of the cell cycle,
inhibition of neurogenesis, and conversion to CM/ciliary body
[11,12]. Consistent with this complex response, the Li+-

modulated data set included cell cycle regulators, particularly
cell cycle inhibitors, and was enriched for genes involved in
neuronal differentiation. Interestingly, the data set was also
enriched for genes involved in cell migration and chromatin
assembly and modification, highlighting two new avenues for
future studies on the impact of β-catenin activity on cell
behavior in the developing eyecup.
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Appendix 1. All differentially expressed probes.

To access the data, click or select the words “Appendix
1.” This will initiate the download of a Microsoft Excel (.xls)
file. All probes determined to be differentially expressed by
the experimental threshold criteria are shown with their
associated Gene Ontology Biologic Process terms. Index
refers to the microarray spot position. Fold-change is
indicated for the response of the Li+ treated samples versus

controls as an average value across all four arrays. Signal
strength (A) is shown in log2 scale and is calculated as the
average across all four arrays with 7 considered as the
minimum threshold for which the target transcript is
considered detectable. Gene Ontology terms that are
associated with the gene are indicated by the green boxes.

Appendix 2. All differentially expressed genes with conserved TCF binding
sites

To access the data, click or select the words “Appendix
2.” This will initiate the download of a Microsoft Excel (.xls)
file. All genes determined to be differentially expressed by the
experimental threshold criteria and to have conserved TCF
binding sites are shown with their associated Gene Ontology
Biologic Process terms. Index refers to the microarray spot
position. Fold-change is indicated for the response of the Li+

treated samples versus controls as an average value across all
four arrays. Signal strength (A) is shown in log2 scale and is
calculated as the average across all four arrays with 7
considered as the minimum threshold for which the target
transcript is considered detectable. The number of conserved
TCF sites is indicated. Gene Ontology terms that are
associated with the gene are indicated by the green boxes.
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