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Persistence of protective immunity for SARS-CoV-2 is important against reinfection.
Knowledge on SARS-CoV-2 immunity in pediatric patients is currently lacking. We opted
to assess the SARS-CoV-2 adaptive immunity in recovered children and adolescents,
addressing the pediatrics specific immunity towards COVID-19. Two independent assays
were performed to investigate humoral and cellular immunological memory in pediatric
convalescent COVID-19 patients. Specifically, RBD IgG, CD4+, and CD8+ T cell responses
were identified and quantified in recovered children and adolescents. SARS-CoV-2-specific
RBD IgG detected in recovered patients had a half-life of 121.6 days and estimated duration
of 7.9 months compared with baseline levels in controls. The specific T cell response was
shown to be independent of days after diagnosis. Both CD4+ and CD8+ T cells showed
robust responses not only to spike (S) peptides (amain target of vaccine platforms) but were
also similarly activated when stimulated by membrane (M) and nuclear (N) peptides.
Importantly, we found the differences in the adaptive responses were correlated with the
age of the recovered patients. The CD4+ T cell response to SARS-CoV-2 S peptide in
children aged <12 years correlated with higher SARS-CoV-2 RBD IgG levels, suggesting
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the importance of a T cell-dependent humoral response in younger children under 12 years.
Both cellular and humoral immunity against SARS-CoV-2 infections can be induced in
pediatric patients. Our important findings provide fundamental knowledge on the immune
memory responses to SARS-CoV-2 in recovered pediatric patients.
Keywords: COVID-19, SARS-CoV-2, convalescence, children, adolescents, T cell response, SARS-CoV-2 RBD IgG
INTRODUCTION

At the end of 2019, a pneumonia outbreak with unknown
etiology was reported in Wuhan, China (1, 2). The World
Health Organization (WHO) officially named this disease
Coronavirus Disease-2019 (COVID-19), which was later
identified to be caused by the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) (3). The worldwide
pandemic has significantly impacted public health and the
global economy (4). Preventive measures were enforced to
increase social distancing, including limited gatherings, school
closures, and restricted travel to reduce transmission (3, 5).

The clinical spectrum of COVID-19 ranges from asymptomatic
to fatal disease. Unfavorable outcomes were associated with the age
and comorbidities of patients (6, 7), particularly those older than 65
years and individuals with diabetes mellitus or renal disease (8–10).
Children infected with SARS-CoV-2 generally havemild symptoms
and a low mortality rate (11–13), with a lower likelihood of severe
symptoms in children than in adults (14–16). The SARS-CoV-2
viral-host response plays an important role in the pathogenesis of
the disease, including changes in the biological responses of
peripheral immune cells and the levels of proinflammatory
cytokines. Lymphopenia is a common clinical characteristic
symptom observed in COVID-19 patients, especially in critical
cases (2, 15–20), with up to 83.2% of patients showing lymphopenia
during admission (21). Moreover, symptomatic children with
COVID-19 were found to have higher viral load, lower total
lymphocyte count, lower lymphocyte subsets, and elevated
interleukin 6 (IL-6), IL-10, tumor necrosis factor-alpha (TNF-a),
and interferon-gamma (IFN-g) levels compared with asymptomatic
patients (22, 23). The data collectively suggest that altered immune
cell subsets could be a prognostic factor for COVID-19 (24),
especially in critical cases (25). There are knowledge gaps in
degree of host immune responses among patients in terms of age,
which could help to identify beneficial factors associated with lower
disease severity due to SARS-CoV-2 infections.

The long-term persistence of T cell memory is important in
mediating both cellular and humoral immunity against SARS-
CoV-2 reinfections (26, 27). Patients infected with SARS-CoV-2
virus show T cell memory along with neutralizing antibodies and
polyfunctional T cell responses (26, 28). This T cell memory is
capable of being reactivated in patients with mild symptoms up
to 8 months after recovery (29, 30). Epitope identification studies
of SARS-CoV-2 T cells have demonstrated that both CD4+ and
CD8+ T cells respond to a broad spectrum of structural and non-
structural proteins (NSP) of the SARS-CoV-2 virus. T cells
showed immunodominant responses to spike (S), membrane
(M), and nuclear (N) structural proteins, whereas B cells showed
org 2
sub-dominant responses to ORF-1 ab-encoded NSPs (31, 32).
However, current knowledge of SARS-CoV-2 immune responses
specific to pediatric patients is still lacking, such as the
immunodominance of SARS-CoV-2 epitopes and durability of
antibodies after an infection.

Given the fundamental differences in the immunity of adults
and children (33), we assessed the adaptive SARS-CoV-2-specific
immune responses in children and adolescents recovered from
COVID-19.
MATERIALS AND METHODS

Subject Recruitment
Children and adolescents under 18 years of age who had
recovered from COVID-19 were recruited to the study during
the clinical follow up visits. These subjects were admitted and
managed in the Paediatric Infectious Disease Centre, Princess
Margaret Hospital, Hong Kong, China. Patients were confirmed
to have COVID-19 by a positive SARS-CoV-2 RT-PCR test of
their nasopharyngeal swab (NPS). Patients were confirmed to
have recovered from COVID-19 by either two consecutives
negative NPS by SARS-CoV-2 RT-PCR or the seroconversion
of SARS-CoV-2 anti-NP antibody response. Details of the
admission and discharge criteria and the laboratory
investigations have been previously described (5, 23). Briefly,
all children and adolescents who were tested positive for SARS-
CoV-2 PCR were hospitalized. They were either asymptomatic
or had mild diseases (5). Details of the admission and discharge
criteria and the laboratory investigations have been previously
described (23). Their demographics, clinical symptoms during
the infection, and time since recovery were retrieved.

Uninfected controls were recruited from pediatric patients
admitted to the Queen Mary Hospital for follow up of other
medical conditions unrelated to COVID-19 or from healthy
individuals in the community (Table S1). Subjects below 18
years of age with no history of COVID-19 and a negative SARS-
CoV-2 RT-PCR on the day of recruitment were invited to
participate in the study. Exclusion criteria included participants
with other acute infections 2 weeks before recruitment, having
received any kind of COVID-19 vaccines, known underlying
primary or acquired immunodeficiency, and autoimmune
disease or other condition that required immunosuppressants.

Isolation of Peripheral Blood
Mononuclear Cells
Whole blood samples from recovered patients and controls were
collected in heparin-coated blood tubes. Peripheral blood
December 2021 | Volume 12 | Article 797919
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mononuclear cells (PBMCs) were isolated by Ficoll density
gradient centrifugation as previously described (34). Isolated
PBMCs were cryo-preserved in storage medium containing
90% heat-inactivated fetal bovine serum (FBS; Gibco, Thermo
Fisher Scientific, Inc., Waltham, MA) and 10% cell culture grade
DMSO (Sigma Aldrich, Merck, Germany). Samples were stored
in liquid nitrogen until batch recovery for the assays.

T Cell Stimulation Assay and SARS-CoV-2
Peptide Pools
In vitro T cell stimulation assays were carried out with spike (S),
membrane (M), and nuclear (N) structural proteins. Briefly,
viable cell numbers were determined in the thawed PBMCs by
staining with crystal violet and counting with a hemocytometer.
For the assays, 106 cells were resuspended in 100 mL RPMI 1640
medium (Gibco) supplemented with 10% heat-inactivated FBS
and 1% penicillin/streptomycin. The SARS-CoV-2 peptide pools
(Miltenyi Biotec, Germany) were prepared according to the
manufacturer’s recommendations. Next, 1 mg of peptide/mL
(0.6 nmol) separately or in a mixture was introduced to the T
cells. Along with the peptide pools, 0.1 mg/mL purified anti-
human CD28 (Miltenyi Biotec, Clone: REA612) and 0.1 mg/mL
purified anti-human CD49d (Miltenyi Biotec, Clone: MZ18-
24A9) as coactivators of T cells were also added to the wells
for the entire stimulation period. The T cells and peptide
mixtures were incubated at 37°C in 5% CO2 for 16 hours.
Brefeldin A (Biolegend, San Diego, CA) at a concentration of
0.1 mg/mL was added to the culture medium in the last 4 hours to
enhance intracellular cytokine staining signals. The negative
control was 10% DMSO and the positive control was an
activation cocktail (Biolegend) containing 8.1 nM phorbol-12-
myristate (PMA) and 1.3 mM ionomycin.

Flow Cytometry
Stimulated PBMCs were recovered from the culture plates and
resuspended in 100 mL PBS. Cell viability was assessed by staining
with Viobility™ Fixable Dyes (Miltenyi Biotec, Germany). Cells
were washed, fixed, permeabilized, and then stained with an
antibody cocktail containing Pacific Blue™ anti-human CD3
(Biolegend, clone: HIT3a), PE/Cyanine7 anti-human CD4
(Biolegend, clone:A161A1) and PerCP/Cyanine5.5 anti-human
CD8 (Biolegend, clone: SK1) for T cell identification; APC anti-
human CD69 (Biolegend, clone: FN50) and PE anti-human IFN-g
(Biolegend, clone:4S.B3) for the activation analysis; and FITC anti-
human CD14 (Biolegend, clone:HCD14) and FITC anti-human
CD20 (Biolegend, clone:2H7) for the exclusion of non-specific
signals and B cells. Fifty thousand events were analyzed by a BD
LSR-II flow cytometer. (BD Biosciences, San Jose, CA) The gates
applied for the quantificationof the stimulated T cells are illustrated
in Figure S1.

SARS-CoV-2 RBD ELISA
Serum was isolated from whole blood samples obtained from
recovered patients and controls. The RBD IgG antibody level was
measured using an Euroimmun anti-SARS-CoV-2 ELISA assay
Frontiers in Immunology | www.frontiersin.org 3
(Lubeck, Germany) according to manufacturer’s protocol. Data
were expressed as semi-quantitative IgG ratios.

Quantification and Statistical Analysis
Data analyses were performed using FlowJo (version 10.1, BD
Bioscience, Ashland, OR). Statistical analyses were performed
using SPSS for Windows (version 26.0, SPSS Inc., Chicago, IL)
and Prism for Windows (version 8.0.1, GraphPad Software, San
Diego, CA). Data are expressed as mean ± standard deviation
(SD), and statistical details are provided in the respective figure
legends. Comparison analysis was carried out by two-tailed
Student’s t test with p<0.05 considered statistically significant.
The antigenicity effect size of the different SARS-CoV-2 peptides
on T cell activation was assessed by Cohen’s d (35).

To examine SARS-CoV-2-specific T cell response in
recovered patients, we measured the upregulation status of the
early activation marker CD69 and expression of intracellular
cytokine IFN-g, a functional T cell marker for protective
immunity and analyzed the double-positive status of CD69/
IFN-g in CD4+ and CD8+ T cells, normalized to DMSO
control (36–38). To estimate the half-life of SARS-CoV-2 RBD
IgG, we calculated t1/2 = Ao/2k, where Ao is the initial amount of
the antibody obtained from the y-intercept of the trendline and k
is the slope of the trendline obtained from the scattered plot of
RBD IgG ratio against days after diagnosis. The days after
diagnosis is defined as the time between the date of the
patient’s clinical diagnosis to the date of the blood sample
collections. To analyze the relationship between anti-RBD IgG
level and T cells response, we performed Spearman’s correlations
and expressed as correlation coefficient (r).

Ethics Approval
The study was approved by the Institutional Review Board of the
University of Hong Kong/Hospital Authority Hong Kong West
Cluster (Reference: UW 20-292 and UW 21-157) and the
Kowloon West Cluster Research Ethics Committee [Reference:
KW/FR-20-086(148-10)]. Written consent was obtained from
parents or legal guardians of the subjects.
RESULTS

Subject Recruitment andClinical Characteristics
Between 1st December 2020 to 31st March 2021, 31 patients who
had recovered from COVID-19 were recruited from Princess
Margret Hospital, Hong Kong SAR. Fourteen (45.2%) were boys
and 17 (54.8%) were girls with a median age of 12 years (range
2.7-18 years). The age distribution of the recruited patients was
shown in Figure S2. Twenty age-matched uninfected controls
were also recruited from Queen Mary Hospital, Hong Kong SAR,
China and from the community. Subject demographics and
clinical characteristics are shown in Table 1. The majority of
subjects were Chinese (80.6%). Among the COVID-19 cases,
83.9% were domestic cases, 32.3% were asymptomatic, and the
remaining cases (67.7%) had mild disease. Blood samples were
collected at 29 to 219 days after recovery.
December 2021 | Volume 12 | Article 797919
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Quantification of SARS-CoV-2 RBD IgG
Level and Identification of SARS-CoV-2
Reactive T Cells in Recovered Children
and Adolescents
Wedetected the presence of SARS-CoV-2RBD IgGantibodies in 30/
31 recovered COVID-19 patients compared with the 20 healthy
unexposed cases (p<0.001), with 1 patient showed negative in the
RBD IgG antibodies test (Figure 1A). Stimulation of CD4+ and
CD8+ T cells with the mixed SARS-CoV-2 peptide pool (S +M +N
peptides, representing the reactiveepitopesof theSARS-CoV-2virus)
showed significantly highernumbers ofCD69+, IFN-g+, anddouble-
positive CD69+/IFN-g+ T cells in recovered patients compared with
controls.(Figure 1B) Significantly higher numbers of CD4+ and
CD8+ T cells responding to stimulations by mixed M, N and S
peptide pools were observed, with the exception of CD8+CD69
+IFN-g+ subsets that showed statistically marginal differences.
(Table 2) Overall, 29/31 and 28/31 demonstrated CD4+ and CD8+
T-cell response respectively to SARS-CoV-2 mixed-peptide
stimulations at a level above those of the controls. (Figure 1C)

Next, the reactivity of the CD4+ and CD8+ T cells towards
individual M, N, and S peptide pools were analyzed in
convalescent patients. (Figure 2) SARS-CoV-2 reactive CD4+
and CD8+ T cells were detectable towards each structural protein
in most of the patients’ samples (Figure 2A); 24/31 and 25/31
showed stronger CD4+ and CD8+ T cells response respectively
Frontiers in Immunology | www.frontiersin.org 4
to SARS-CoV-2 M peptide stimulation than control. Similar
response levels were also observed in CD4+ T cells stimulated by
SARS-CoV-2 S peptide and CD8+ T cells stimulated by
SARS-CoV-2 N peptide with 27/31 showed higher response
than control. However, relatively lower response was observed
in both S peptide stimulated CD8+ T cells and N peptide
stimulated CD4+ T cells with 11 patients showed similar
response to control. Overall summation analysis on the T cells
response towards SARS-CoV-2 peptides stimulation was
demonstrated. (Figure 2B) The CD4+ T cells responded more
strongly to stimulation by S peptide than to N (Cohen’s d=0.53)
or M peptides (Cohen’s d=0.34). On the other hand, CD8+ T
cells responded less strongly to stimulation by M peptides
compared with N peptides (Cohen’s d=-0.36) or S peptide
(Cohen’s d=-0.23), where the difference in CD8+ T cell
responses between S and N peptides was small (Cohen’s d=0.10).

The Dynamics of Humoral and Cellular
Immunity in Recovered Children and
Adolescents
SARS-CoV-2 specific humoral immunity was found to decay
over time, but not T cell immunity (Figure 3). Linear regression
analysis showed that the level of SARS-CoV-2 RBD IgG was
significantly associated with days after diagnosis (p=6.31e-07, R2 =
0.5808) (Figure 3A), but not with the specific CD4+ (p=0.783) or
TABLE 1 | Demographics and clinical characteristics of recovered pediatric COVID-19 patients and uninfected controls.

Children Recovered From COVID-19 (N = 31) Uninfected Controls (N = 20)

Median age in years 12 14
Age range 2.7-18 8-15
Sex (%)
Male 45.2 (14/31) 80.0 (16/20)
Female 54.8 (17/31) 20.0 (4/20)

Residence (%)
Hong Kong 100 100

Ethnicity (%)
Han Chinese 80.6 (25/31) 80.0 (16/20)
Others 19.4 (6/31) 20.0 (4/20)

Travel history (%)
Yes 16.1 (5/31) N/A
No 83.9 (26/31) N/A

Disease awareness (%)
Asymptomatic 32.3 (10/31) N/A
Symptomatic 67.7 (21/31) N/A

Signs/symptoms (%)
Fever 61.9 (13/21) N/A
Cough 47.6 (10/21) N/A
Runny nose 28.6 (6/21) N/A
Ageusia 19.0 (4/21) N/A
Vomit 14.3 (3/21) N/A
Anosmia 9.5 (2/21) N/A
Sputum 4.9 (1/21) N/A
Headache 4.9 (1/21) N/A

SARS-CoV-2 PCR positivity (%)
Positive 100 (31/31) N/A
Negative 0 (0/31) 100(20/20)

SARS-CoV-2 anti-NP IgG positivity (%) 100 N/A
Sample collection period Dec 2020 - March 2021
Days After Diagnosis 29-219 (Median=46.5) N/A
December 202
N/A, Not Applicable.
1 | Volume 12 | Article 797919
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CD8+ (p=0.915) T cell responses (Figure 3B). SARS-CoV-2 RBD
IgG had a fast decay rate (-0.0377 anti-RBD IgG ratio/day) while
CD4+ (-0.0022%/day) and CD8+ (-0.0001%/day) T cell responses
persist over time, including the patient with the longest follow-up
time at 219 days who had undetectable anti-RBD IgG but
persistent SARS-CoV-2 specific CD4+ and CD8+ T-cell
response. The average SARS-CoV-2 RBD IgG half-life (t1/2)
decay was 121.6 days, and the presence of antibodies was
estimated to last for 237.7 days or 7.9 months. The same
Frontiers in Immunology | www.frontiersin.org 5
estimation was not applicable to CD4+ and CD8+ T cell
responses because of the lack of association with time.

Age Is a Factor Associated With the
Measured RBD IgG Level and T Cell
Activation Magnitudes in Recovered
Children and Adolescents
Fifteen patients were younger than 12 years and 16 patients were
12 years or older. The results demonstrated differences in the
TABLE 2 | Comparison of SARS-CoV-2 specific T cells subsets in controls and recovered children and adolescents.

M (Mean ± SD) p-value N (Mean ± SD) p-value S (Mean ± SD) p-value Mixed (Mean ± SD) p-value

CD4 CD69+ Control 0.183 ± 0.177 <0.0001
***

0.193 ± 0.253 <0.0001
***

0.238 ± 0.212 <0.0001
***

0.241 ± 0.224 <0.0001
***Patients 1.039 ± 0.692 0.933 ± 0.573 1.295 ± 0.786 1.957 ± 1.084

IFN-g+ Control 0.036 ± 0.068 <0.0001
***

0.022 ± 0.038 <0.0001
***

0.085 ± 0.140 0.0023
**

0.015 ± 0.039 <0.0001
***Patients 0.252 ± 0.191 0.225 ± 0.183 0.232 ± 0.186 0.282 ± 0.217

CD69+/IFN-g+ Control 0.017 ± 0.027 0.0016
**

0.019 ± 0.029 <0.0001
***

0.030 ± 0.036 0.0001
***

0.021 ± 0.023 <0.0001
***Patients 0.070 ± 0.080 0.083 ± 0.058 0.108 ± 0.093 0.156 ± 0.136

CD8 CD69+ Control 0.073 ± 0.085 0.0001
***

0.118 ± 0.204 0.0009
***

0.091 ± 0.132 0.0001
***

0.136 ± 0.182 <0.0001
***Patients 0.392 ± 0.395 0.490 ± 0.523 0.468 ± 0.459 1.302 ± 0.775

IFN-g+ Control 0.046 ± 0.047 <0.0001
***

0.083 ± 0.152 0.0001
***

0.073 ± 0.145 0.0004
***

0.053 ± 0.088 <0.0001
***Patients 0.259 ± 0.186 0.341 ± 0.274 0.275 ± 0.237 0.378 ± 0.280

CD69+/IFN-g+ Control 0.012 ± 0.022 0.0050
**

0.012 ± 0.034 0.0263
*

0.028 ± 0.049 0.0517 0.011 ± 0.020 0.0060
**Patients 0.049 ± 0.065 0.097 ± 0.197 0.106 ± 0.209 0.159 ± 0.279
D
ecember 20
21 | Volume 12 | Article
Immunophenotyping of PBMCs for frequency of CD4+, CD8+, or CD69+ T cells, IFN-g+ cells, and CD69+/IFN-g+ double-positive cells from uninfected individuals (n=20) or convalescent
children and adolescents (n=31). Data are presented as mean ± SD and analyzed using two-sided Student’s t-test between control and patient groups. *p<0.05, **p<0.01, ***p<0.001
A

C i C ii

B

FIGURE 1 | Comparison of SARS-CoV-2 RBD-specific antibodies and SARS-CoV-2-specific T cell response in healthy controls and recovered children and
adolescents. (A) Serological responses to recombinant RBD protein in 31 recovered COVID-19 patients with median 46.5 recovery days and ranging 29-219 days
and 20 uninfected controls. Dash line indicated the anti-RBD IgG ratio reference obtained from uninfected controls. (B) Representative data of the T cell response
towards SARS-CoV-2 peptide pools in controls and recovered patients. (C) (i) CD4+ and (ii) CD8+ T cell responses to SARS-CoV-2 mixed peptides in the recovered
COVID-19 patients and uninfected controls. Dash line indicated the measured T cell responses reference obtained from the uninfected controls. Data are presented
as mean ± SD and analyzed using two-sided Student’s t-test between control and patient groups. ***p < 0.001.
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immune responses to SARS-CoV-2 between older and younger
children. In comparison to children older than 12 years, the
younger patients had a significantly higher level of SARS-CoV-2
RBD IgG ratio (p=0.041) (Figure 4A). While the frequency of
CD4+ T cells reactive to mixed M, N and S peptide pool was
similar between the age groups (Cohen’s d=0.071) [Figure 4B
(i)], the frequency of S-peptide specific CD4+ T cells was higher
in younger children (Cohen’s d=0.3058) [Figure 4B(ii)].
Correlative analysis showed that the four patients with highest
level of anti-RBD IgG and S-peptide specific CD4+ T cells were
all from the younger age group [Figure 4D(i)]. In contrast, no
difference was observed between the two age groups in SARS-
CoV-2 S-reactive CD8+ T cells (Cohen ’s d=0.03164)
[Figures 4C, 4D(ii)].
DISCUSSION

This study characterizes SARS-CoV-2-specific humoral and
cellular immunity in children recovered from COVID-19.
Frontiers in Immunology | www.frontiersin.org 6
There was acquired immunity observed in children with either
symptomatic or asymptomatic infections. Both SARS-CoV-2-
specific humoral and cellular immunity were detectable at
different time points during the recovery period. Detection of
SARS-CoV-2 RBD IgG and reactive CD4+ and CD8+ T cells
against the various peptide pools suggests broad humoral and
cellular immunity are present that can counter re-infections.

Our study showed that there were both CD4+ and CD8+ T
cell responses to SARS-CoV-2 S, N, and M proteins. The
observed up-regulated production of intracellular IFN-g in our
patients cohort was similar to previous published adults studies,
suggesting the protective cellular immunity elicited by the T cell
memory towards SARS-CoV-2 was also developed in children
and adolescents (26, 30, 39). A larger-scale study will be needed
to confirm our observations.

The persistence of humoral and cellular responses against the
SARS-CoV-2 virus is key to understanding the risk of re-
infections (40, 41). We observed a decline in humoral
immunity associated with days after diagnosis. The SARS-
CoV-2 RBD IgG antibody level lasted on average 7.9 months
A B i

B ii

FIGURE 2 | Measurement of SARS-CoV-2-specific T cell response in in healthy controls and recovered pediatrics patients. (A) Comparison of T cell responses
stimulated by SARS-CoV-2 Membrane (M), Nuclear (N), Spike (S) peptides in the recovered COVID-19 patients and uninfected controls. Dash line indicated the
measured T cell responses reference obtained from the uninfected controls. Data are presented as mean ± SD and analyzed using two-sided Student’s t-test
between control and patient groups. ***p < 0.001 (B) Total T cell responses towards SARS-CoV-2 M, N,S peptides and mixed peptide pools in stacked columns
representing the summation of different measured immune subsets in (i) CD4+ and (ii) CD8+ T cells after 16 hours of incubation of PBMCs from recovered patient.
Data are expressed as mean ± SD. Dash line in the stack columns indicated the corresponding reference CD4+ and CD8+ T cells response stimulated by different
SARS-CoV-2 peptide in uninfected controls group.
December 2021 | Volume 12 | Article 797919
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with a half-life of 121.6 days, which is similar to other studies
across different age groups (42–47). There have only been a few
studies demonstrating the longevity of SARS-CoV-2 T cell
response in recovered pediatrics patients. Dan et al.,
demonstrated that approximately 92% and 50% of recovered
patients had specific CD4+ and CD8+ responses, respectively, up
to 8 months after the primary infection (30). Based on our
finding and the above study, the humoral immunity against
SARS-CoV-2 in recovered pediatrics patients can last up to 7-8
months after the primary infection, which seems shorter than
cellular immunity.

Ding et al., demonstrated an age-specific variation in
childhood CD4+ and CD8+ T cell subsets in healthy
Chinese, suggesting differences in immune composition
across pediatric age groups (48). Along with this finding, our
data demonstrated that the age of the pediatric patients is an
important factor influencing the level of SARS-CoV-2 RBD
IgG and the magnitude of the T cell response to SARS-CoV-2.
Recovered children younger than 12 years had higher SARS-
CoV-2 RBD IgG levels. There was also age-dependent CD4+ T
cell activity in the production of the RBD IgG antibody. Based
on our data, we demonstrated an unreported observation of
stronger SARS-CoV-2 S CD4+ T cells response correlated with
higher level of anti-RBD IgG ratio in younger children. Our
novel findings on the immune responses in convalescent
Frontiers in Immunology | www.frontiersin.org 7
pediatrics patients in younger age group underscored the
importance of SARS-CoV-2 S specific CD4+ dependent
humoral response in relations to the level of anti-RBD IgG
against reinfections, which warrant further larger-scale studies
to confirm the observations.

The study findings need to be interpreted with the following
caveats. First, the number of patients and controls was relatively
small. However, all the controls demonstrated negative immune
memory responses with undetectable SARS-CoV-2 anti-RBD
antibody titer, indicating immune protection against SARS-CoV-
2 in unvaccinated and undiagnosed children were minimal.
Second, the duration of follow-up was limited and unevenly
distributed, it may affect the correlation analysis in determining
the kinetics of SARS-CoV-2 anti-RBD decays in this study. Third,
only SARS-CoV-2 anti-RBD, which targeted the S1 domain of the
Spike protein, was investigated in this study. Other protective
neutralizing antibodies targeted to other parts of SARS-CoV-2
spike protein, such as fusion peptide and heptad repeats located in
S2 domain, were not evaluated. Last, the quantity of blood that can
be obtained from younger children is limited, hence, other subsets
of T cell responses to SARS-CoV-2 peptide pools were not
evaluated in this study. Future investigations should include
other T cell subsets such as regulatory T cells and T follicular
helper cells (Tfh) to draw a more comprehensive picture of the T
cell response against SARS-CoV-2 in children.
A

B

FIGURE 3 | SARS-CoV-2-specific RBD and T cell responses over time. (A) Regression analysis of the measured RBD IgG ratio in convalescent serum was
plotted against the days after diagnosis. The best fitting trendline is shown. The calculated t1/2 was 121.6 days and the estimated duration of antibodies was 7.9
months compared with the average basal level obtained from uninfected individuals. (B) Representative T cell subset frequencies in PBMC of recovered patients
were plotted against the post-infection period showing a flat slope for (i) CD4+ and (ii) CD8+, indicating a sustained T cell response to SARS-CoV-2 virus in
recovered pediatric patients.
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CONCLUSION

SARS-CoV-2 infection induces immune memory in recovered
pediatrics patients. The T cell reactivity upon stimulation by M,
N, S peptide pools in recovered pediatric patients were similar.
There were differences in the level of SARS-CoV-2 RBD IgG and
Frontiers in Immunology | www.frontiersin.org 8
the magnitude of T cell responses between younger and older
children. Our findings pave the way for large-scale studies, which
could help explain the differences in clinical findings between
children and adults with COVID-19. Our findings also have
important implications for the development of COVID-19
vaccines targeting younger children.
A

C i C ii

D i

D ii

B iiB i

FIGURE 4 | Age-dependent differences of SARS-CoV-2-specific S-RBD IgG level and SARS-CoV-2-specific T cell response in recovered children and
adolescents. The corresponding reference anti-RBD IgG ratio and T cell response obtained from uninfected control was indicated as a dash line in the figures.
(A) Serological analysis in 15 patients who were younger than 12 years and 16 patients who were 12 years or older. Data was adjusted by days after diagnosis
and comparisons analyzed by two-sided Student’s t-test *p<0.05. (B) Comparison analysis of the total measured CD4+ T cell responses to (i) mixed peptide
pools and (ii) S peptide between younger children and older children. (C) Comparison analysis of the total measured CD8+ T cell responses to (i) mixed peptide
pools and (ii) S peptide between younger children and older children. (D) Correlation analysis of anti-RBD IgG level against (i) CD4+ and (ii) CD8+ T cells
response in the recovery patients. Data was plotted as age-subgroups with color-labelled dots in the scattered plots. A trendline indicated the correlations
direction of the analysis parameters.
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