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Abstract

This study tested the processing of ratios of natural numbers in school-age children. Nine- and eleven-year-olds were
presented collections made up of orange and grey dots (i.e., nonsymbolic format) and fractions (i.e., symbolic
format). They were asked to estimate ratios between the number of orange dots and the total number of dots and
fractions by producing an equivalent ratio of surface areas (filling up a virtual glass). First, we tested whether
symbolic notation of ratios affects their processing by directly comparing performance on fractions with that on dot
sets. Second, we investigated whether children’s estimates of nonsymbolic ratios of natural numbers relied at least in
part on ratios of surface areas by contrasting a condition in which the ratio of surface areas occupied by dots
covaried with the ratio of natural numbers and a condition in which this ratio of surface areas was kept constant
across ratios of natural numbers. The results showed that symbolic notation did not really have a negative impact on
performance among 9-year-olds, while it led to more accurate estimates in 11-year-olds. Furthermore, in dot
conditions, children’s estimates increased consistently with ratios between the number of orange dots and the total
number of dots even when the ratio of surface areas was kept constant but were less accurate in that condition than
when the ratio of surface areas covaried with the ratio of natural numbers. In summary, these results indicate that
mental magnitude representation is more accurate when it is activated from symbolic ratios in children as young as
11 years old and that school-age children rely at least in part on ratios of surface areas to process nonsymbolic ratios
of natural numbers when given the opportunity to do so.
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Introduction

Ratios are frequent in our daily lives: they are used for
cooking, plumbing, sales and probabilities, to name but a few
areas. They establish a relation of division between either two
discrete magnitudes (i.e., ratios of natural numbers; e.g., the
ratio between the number of women and the total number of
members within an executive committee) or two continuous
magnitudes (e.g., ratios of surface areas). There are many
natural situations in which ratios are experienced by animals or
human beings, such as when animals look for food [1,2] or
when babies perceive the aspect ratio of objects or people
around them [3]. Ratios are also an important part of the school
curriculum, which includes learning symbolic notation of ratios
in the form of fractions (e.g., “1/4”). So far, research has not yet
fully investigated the processing of ratios of natural numbers in
school-age children despite the contrast between the
acknowledged complexity of learning fractions at school and

the amazing ability of infants to process nonsymbolic ratios of
natural numbers. The present study addresses this gap (1) by
testing the impact of symbolic notation on processing of ratios
in school-age children and (2) by testing whether children’s
performance on nonsymbolic ratios of natural numbers relies at
least in part on ratios of surface areas that often covary with
the former ratios.

Research on Nonsymbolic Ratios of Natural Numbers
Research on the processing of numbers and more

particularly of natural numbers (i.e., positive whole numbers)
has led researchers to suggest that numerical magnitudes are
mentally represented in an approximate way along an
analogue continuum that obeys the Weber-Fechner law [4 - 7].
According to this law, performance in numerical tasks depends
on the ratio of magnitudes (called the ratio effect) instead of
their absolute difference. For instance, in a magnitude-
comparison task, performance is poorer when the ratio of
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magnitudes is closer to 1 (e.g., when comparing 7 and 9) than
when this ratio is further from 1 (e.g., when comparing 2 and
3).

Recent findings have suggested that the magnitude of ratios
of natural numbers could be mentally represented in an
approximate way and that these representations are supported
by the same mental approximate number system as that used
for the representation of the magnitude of natural numbers [8].
For instance, infants as young as six months are able to
discriminate two ratios in terms of their magnitude and this
ability is apparently limited in the same way as for natural
numbers [9]. Thus six-month-olds are able to discriminate
between sequences of different numbers of sounds when the
ratio of these absolute magnitudes is 2 (e.g., 16 vs. 8 sounds)
but not when that ratio is 1.5 (12 vs. 8 sounds) [10]. In a similar
way, they are able to discriminate between two ratios when the
ratio of these ratios is 2 (e.g., they can discriminate that the
numerical relation between 1 PacMan and 2 pellets differs from
that between 1 PacMan and 4 pellets) but not when that ratio is
1.5 (e.g., they cannot discriminate 1 PacMan/2 pellets from 1
PacMan/3 pellets) [9]. Furthermore, the ratio effect, which is
well-known for the comparison between two natural numbers,
has been shown to apply when children aged from five to
seven compare a set transformed by a scaling factor (1/2 or
5/2) to a second set [11,12].

Nevertheless, at school-age, children seem to struggle with
ratios of natural numbers. Jeong, Levine and Huttenlocher [13]
asked 6-, 8- and 10-year-olds to compare ratios in the context
of a game. Children had to select among two game boards the
one that would give them the greater probability of winning.
Game boards were made up of two parts that were either
continuous (continuous condition) or discretized into units
(discrete condition). The probability of winning was determined
by the ratio between the favourable part (gain) and the
unfavourable part (no gain). All children succeeded in the task
for the continuous condition. In contrast, for the discrete
condition, 6-year-olds performed at the level of success by
chance and 8- and 10-year-olds succeeded only when ratios
were relatively distant. When ratios were closer, these children
tended to rely on the number of units in the favourable part
without considering its relation to the number of units in the
unfavourable part or in the whole.

The children’s trend to omit the numerical relation linking the
ratio components has been frequently reported at primary
school age [e.g., 13, 14, 15]. This bias has been labeled the
whole number bias [16] as it apparently results from the
tendency to apply the knowledge of positive whole numbers
(i.e., natural numbers) to ratios without taking their specific
properties into account. This bias appears when children are
asked to compare or match ratios between two sets but has not
been demonstrated when children are asked to match this kind
of ratio to a ratio of surface areas [17]. As this bias is specific to
the case where both ratios are between sets, Boyer, Levine
and Huttenlocher [17] have suggested that it does not reflect
any trouble with processing ratios of natural numbers per se
but it would reflect activation of inappropriate counting
strategies when the nature of stimuli gives children the
opportunity to use them.

One limit of these studies in school-age children is that
processing of nonsymbolic ratios of natural numbers has not
been tested while controlling for the covariance of ratios of
surface areas with ratios of natural numbers. In these studies,
children’s performance may have relied, partially or fully, on the
ratio of the cumulative surface areas occupied by the items.
Indeed, if children are presented a bar discretized into three
equal parts, two of which are orange and the last one is grey,
and they process the ratio between the orange part and the
whole, they can rely either on the ratio between the orange
surface area and the total surface area, on the ratio between
the number of orange parts and the total number of parts, or on
both ratios since they are both equal to 2/3. This issue is
important to address as it is acknowledged that preschoolers’
performance relies at least in part on continuous magnitudes
when they are asked to judge the number of items in a set [18]
and school-age children may do the same [19]. The same
conclusion could be true for ratios, all the more that processing
ratios between continuous magnitudes might be less
challenging for school-age children than processing ratios of
natural numbers [13]. In addition, the processing of ratios of
surface areas might have been fostered in the previous studies
[13,17] by the fact that the ratio components were continuous
parts discretized into units (e.g., a bar or a donut discretized
into units) instead of sets of independent items (e.g., sets of
dots).

The present study tested the processing of ratios between
two sets that were made up of independent items and
contrasted a condition where the ratio of surface areas
covaried with the ratio of natural numbers with a condition
where it was kept constant across ratios of natural numbers. It
allowed us to test whether children’s estimates increased with
ratios of natural numbers even when the ratio of surface areas
was kept constant and, more importantly, whether performance
was poorer in that condition than when the ratio of surface
areas covaried with the ratio of natural numbers.

Research on Symbolic Ratios
Behavioural and functional MRI studies have shown that,

when adults are asked to process the magnitude of symbolic
ratios (i.e., fractions), they access a mental approximate
representation of their magnitude [20 - 29]. Children are also
able to do this, at least at a certain stage of learning. Meert et
al. [30] asked 10- and 12-year-old children to compare fractions
with common denominators (e.g., 3/7 and 5/7) and fractions
with common numerators (e.g., 2/3 and 2/5). Their
performance depended on the numerical distance between
fractions indicating that they accessed an approximate
representation of the magnitude of fractions (see also 31).
Iuculano and Butterworth [32] showed that 10-year-old children
were also able to estimate positions that corresponded to
fractions on a number line.

Like the processing of nonsymbolic ratios, the processing of
fractions is affected by the whole number bias [33-38]. For
instance, when children begin to learn fractions, they tend to
think erroneously that the larger the components, the larger the
numerical value of the fraction [38]. Research on the
processing of fractions in adults has suggested that they also
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use strategies relying on the components in magnitude-
comparison tasks but in a more appropriate way than children
do [21,24,26,39]. For instance, they rightly compare
denominators when all the fraction pairs have common
numerators [e.g., 39] and they tend to compute cross products
for fractions that have different numerators and denominators
and that are close on the number line [21].

The impact of symbolic notation on the processing of ratios
of natural numbers has been recently tested in adults. Meert,
Grégoire, Seron and Noël [40] asked adults to estimate the
magnitude of symbolic ratios (fractions) and of nonsymbolic
ratios (ratios between the number of orange dots and the total
number of dots). The results showed that symbolic notation
allowed adult participants to generate a more precise mental
representation of ratio magnitudes than nonsymbolic notation
even when denominators were as large as 29 (e.g., 7/29). This
advantage of the symbolic notation had been already
suggested for natural numbers [41].

The present study tested the impact of symbolic notation in
school-age children at two different stages of familiarity with
this notation (in 9- and 11-year-olds). For the first time,
children’s performance on fractions was directly compared with
their performance on nonsymbolic ratios. This contrast allowed
us to test whether symbolic notation had a positive or negative
impact on the processing of ratios of natural numbers in these
age groups.

The Present Study
The present study investigated the processing of ratios of

natural numbers in school-age children. For that purpose, a
magnitude-estimation task, which was adapted from that used
by Meert et al. [40] with adults, was presented to children at
two different stages of familiarity with fractions. Nine- and 11-
year-olds (Grades 4 and 6 respectively) were shown fractions
and sets made up of orange and grey dots. They were asked to
estimate the magnitude of fractions and of the ratio between
the number of orange dots and the total number of dots by
producing an equivalent ratio of surface areas. Production of
ratios of surface areas from estimation of ratios of natural
numbers had the advantage of not favouring the whole number
bias and hence allowed the processing of ratios of natural
numbers to be investigated independently of this bias. It was
expected that, in such a task, school-age children’s estimates
would increase consistently with ratio magnitudes.

In order to test whether children’s performance relies on
ratios of surface areas when they are asked to process ratios
of natural numbers, two conditions were contrasted. They had
to estimate part-whole ratios for sets of either heterogeneous
or homogeneous dots. In the heterogeneous-dot condition, size
of dots varied so that the ratio between surface area occupied
by orange dots (the critical part) and surface area occupied by
all the dots (the whole) was constant across all ratios of natural
numbers. Accordingly, participants could not perform the task
correctly by processing ratios of surface areas but had to
process ratios of natural numbers. Conversely, in the
homogeneous-dot condition, all the dots were the same size,
so that ratios of surface areas covaried with ratios of natural
numbers. We hypothesized that, if school-age children’s

performance relies at least in part on ratios of surface areas
when they are asked to process ratios of natural numbers, their
estimates should be less variable and more accurate when
ratios of surface areas covary with ratios of natural numbers
(homogeneous-dot condition) than when it do not
(heterogeneous-dot condition).

In order to test impact of symbolic notation, performance on
fractions was compared with performance on heterogeneous-
dot sets (nonsymbolic condition in which children were obliged
to process ratios of natural numbers to succeed in the task as
the ratio of surface areas was controlled for). We hypothesized
that impact of symbolic notation depends on the degree of
familiarity with it and hence on participants’ age and on
numerical size of components (fractions with small
denominators are learned first and are more frequent). In the
initial stages of the learning of fractions, a process that is
acknowledged to be slow and complex [e.g., 16, 38], symbolic
notation may impede the processing of ratio magnitudes. In
later stages, as experience of fractions increases, we
hypothesized that symbolic notation activates a more precise
mental representation of magnitude than the nonsymbolic
format does (as seen in adults [40]). Accordingly, we expected
estimates to be less accurate and more variable for fractions
than for heterogeneous-dot sets, especially among 9-year-olds
and for fractions with large components (which are learned
later and are less frequent). We also expected an improvement
of performance due to symbolic notation to appear for fractions,
at least for those with small denominators, in 11-year-olds.

Methods

Ethical Statement
Ethical approval was gained from the Ethics Committee of

the Psychological Sciences Research Institute at the Université
catholique de Louvain (Belgium) under the reference
Projets2011/GM-1. Written informed consent was obtained
from parents prior to testing. Verbal consent was also obtained
from children themselves.

Participants
A total of 17 children in Grade 4 (mean age = 9:4 years old,

Min – Max = 8:9 – 10:2; 5 boys) and of 19 children in Grade 6
(mean age = 11:3 years old, Min – Max = 10:9 – 12:1; 9 boys)
took part in the study in return for a gift voucher for a book.
They were all attending regular classes at two schools in the
French-speaking Community of Belgium and were tested
during the autumn term.

According to the curriculum used in the Belgian French-
speaking Community’s education system, children aged 8 to 10
(Grades 3 to 5) learn (a) to divide a figure or set into parts and
verbally express the fraction corresponding to one part, (b) to
read and write fractions with denominators up to 10, (c) that
taking a fraction of a figure or set involves two successive
operations (dividing it into the number of parts indicated by the
denominator and taking the number of parts indicated by the
numerator), (d) to place fractions on a graduated number line,
(e) to express equivalence between two ratios with a different
total number of parts (up to 10) and (f) to express fractions that

The Processing of Ratios in Children

PLOS ONE | www.plosone.org 3 November 2013 | Volume 8 | Issue 11 | e82002



correspond to whole figures or sets. Children aged 10 to 12
(Grades 5 to 6) learn (a) to read and write fractions with
denominators up to 100 and (b) to express equivalence
between two ratios with a different total number of parts (up to
20).

Stimuli and Design
Participants estimated the magnitude of fifteen ratios. These

ratios resulted from the combination of five ratio magnitudes
and three denominator sizes (see Table 1). Ratio magnitudes
were ~ .22, ~ .40, ~ .53, ~ .65 and ~ .75. Exact ratio
magnitudes deviated from these approximate magnitudes by a
maximum of .03. The denominator was small (less than or
equal to 5), medium (between 6 and 9) or large (between 20
and 29). Each magnitude was thus represented by three ratios
that varied in the size of the denominator (e.g., ~ .40 was
represented by 2/5, 3/8 and 11/28). All the ratios were
irreducible in order to prevent participants from simplifying.

Ratios were presented to each participant in three formats:
(1) symbolic format (fractions), (2) nonsymbolic format without
controlling for ratios of surface areas (homogeneous-dot sets)
and (3) nonsymbolic format with such a control
(heterogeneous-dot sets) (see Figure 1).

Fractions were made up of Arabic numerals presented in
black printed characters (Arial font, normal) on a white screen.
The numerator was presented above the denominator with the

fraction bar between them. The height and the width of
fractions were respectively 3.3° and 1.9° assuming a viewing
distance of 60 cm.

For both nonsymbolic formats, sets of orange and grey dots
were used. The ratio to be estimated was that between the
number of orange dots (the critical part) and the total number of
dots (the whole) (e.g., for 2/5, 2 orange dots out of 5 dots).
Dots were centred and grouped inside an invisible circle with a
diameter of 13.8°. The interdot distance was at least equivalent
to one dot radius. In the homogeneous-dot condition, all dots
had a radius of 1°, so that the ratio of surface areas (the

Table 1. Overview of the ratios to be estimated.

 Ratio magnitude

Denominator Size ~ .22 ~ .40 ~ .53 ~ .65 ~ .75
Small (≤ 5) 1/4 (.25) 2/5 (.40) 1/2 (.50) 2/3 (.67) 3/4 (.75)
Medium (from 6 to
9)

2/9 (.22) 3/8 (.38) 5/9 (.56) 5/8 (.63) 7/9 (.78)

Large (from 20 to
29)

7/29 (.24) 11/28 (.39) 13/25 (.52) 17/26 (.65) 16/21 (.76)

Note. Five levels of approximate ratio magnitude were used. The exact magnitude
of each ratio is in brackets.
doi: 10.1371/journal.pone.0082002.t001

Figure 1.  Instance of stimulus for each ratio format and time course of a trial.  Participants were asked to estimate fractions
as well as the ratio between the number of orange dots and the total number of dots. Sets were made up of either homogeneous
dots (without controlling for the ratio of surface areas) or heterogeneous dots (with such a control). Participants responded by filling
a glass so that the ratio (water surface/total surface) was equal to the estimated ratio. The time line represents the time course of a
trial.
doi: 10.1371/journal.pone.0082002.g001
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orange surface area/the surface area occupied by all dots)
covaried with the ratio of natural numbers. In the
heterogeneous-dot condition, eight sizes of dot were used
(between 0.5° and 2° with an increment of 0.2°), so that the
orange surface area was the same as the grey surface area
and the size difference between the smallest and the largest
dot was maximized within both subsets (i.e., orange and grey
dots). Accordingly, the ratio between the orange surface area
and the total surface area was 1/2 for each ratio of natural
numbers (controlling for the ratio of surface areas) and the size
of dots did not covary with their number (as would have been
the case if we had used constant dot size within each subset).
Eight different configurations were created by Matlab for each
numerical ratio.

Procedure
Children were tested individually. They were asked to

estimate the magnitude of part-whole ratios represented by
fractions and dot sets by producing equivalent ratios of surface
areas in a virtual glass. To do this, they used a potentiometer
that allowed them to virtually adjust the water level in the glass
so that the ratio of surface areas between water and the whole
glass was equivalent to fractions or ratios of dot sets.
Participants were told that their responses were not expected
to be completely accurate as the task involved estimation but
they were asked to do their best and to respond as fast as
possible. Furthermore, participants were asked to estimate
fractions without performing exact calculations and to estimate
the ratio between the number of orange candies and the total
number of candies without counting (dots were presented as
candies in order to make the task more entertaining).
Instructions specified that a candy was always equal to 1,
whatever its size.

To begin a trial, participants had to press the key of the
response box. A fixation cross appeared on the computer
screen for 1000 ms, followed by a fraction or a dot set for 1000
ms (see Figure 1). Next, an empty glass appeared and
participants had to use the potentiometer in the response box
to adjust the water level in the glass. The potentiometer
allowed them to flash images of the glass with different levels
of water onto the screen so that the water level appeared to
increase when the potentiometer was turned in the clockwise
direction and to decrease when it was turned anticlockwise.
Participants were asked to press the key of the response box
once the water level matched their estimate. E-Prime 1.1
recorded the number of levels filled in the glass (from 1 to 254)
and this was divided by 254 to get the ratio. The potentiometer
had a relatively fast speed (1/2 turn = 1 glass) and a relatively
slow speed (1 turn = 1 glass) but did not have either a starting
or a stopping point. The use of two speeds and the absence of
starting and stopping points prevented participants from using
the degree of turning or visual marks on the potentiometer.
They could only estimate the water level in the glass visually.

A block was created for each format in which the 15 ratios
were presented eight times (four with the fast potentiometer
speed and four with the slow speed). Accordingly, the
estimation task was made up of 360 trials (3 formats x 15 ratios
x 8 repetitions). Within a block, all ratios were randomly

presented once, half the ratios with the fast potentiometer
speed and the other half with the slow speed before the next
presentation of the 15 ratios began.

The block order varied between participants according to a
Latin square design. There were two sessions separated by
several days. In the first session (60 min), children were invited
to help a cartoon character to collect three stars in order to get
a cookery certificate. They were told that, to win a star, a task
had to be performed on ratios that are commonly used when
cooking. Once children accepted the invitation, the concept of
estimation was explained as “processing magnitudes quickly
and approximately, that is without counting, computing or
measuring”. To illustrate this instruction, a picture of an apple
basket was then flashed on the computer screen and children
were asked to estimate the number of apples. It was then
explained to them that ratios can also be estimated for stimuli
such as a set of shapes (squares and circles) or a portion of
pie. Next, participants familiarized themselves with the
potentiometer by filling the virtual glass and then emptying it.
Finally, they performed two experimental blocks. Each block
was introduced by showing, in a booklet, the estimate that
might be produced in the glass for 1/3 and 21/23, by showing
the time course of two trials of the computerized task and by
inviting children to perform eight training trials. No feedback
was given during either training or experimental blocks. In the
second session (lasting 30 min), children performed the
remaining block of the magnitude-estimation task after they
had again familiarized themselves with the potentiometer.

Dependent Variables and Statistical Analyses
For each ratio presented in each format, we computed the

mean and the standard deviation (SD) of the eight estimates as
well as the mean absolute error score (AES). SD is a measure
of the consistency of estimates around the subjective
magnitude (i.e., the mean of the eight estimates given by the
participant for a given ratio). AES is a measure of the deviation
of estimates from the objective magnitude that does not take

Table 2. Results of likelihood ratio tests comparing the
fitting of the model including both the intercept and the
slope as random factors with the fitting of the model
including only the intercept.

Age Format -2 RLL (Intercept) -2 RLL (Intercept + Slope) Df χ2

9 Fractions -356.87 -366.34 2 9.47*
 Homog. dots -463.56 -473.97 2 10.41*
 Heterog. dots -431.69 -474.41 2 42.72*
11 Fractions -617.78 -627.40 2 9.62*
 Homog. dots -695.45 -729.64 2 34.19*
 Heterog. dots -702.63 -746.89 2 44.26*

Note. * p < .01, -2 RLL = -2 Restricted Log Likelihood
The unstructured covariance matrix was used for the model including both the
intercept and the slope as random factors in order to allow these factors to
covariate. The variance component matrix was used for the model including the
intercept as a random factor.
doi: 10.1371/journal.pone.0082002.t002
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into account the direction of the deviation (i.e., whether ratios
were under- or overestimated). This variable was computed by
subtracting the estimate from the ratio magnitude for each trial
in each participant and by taking the absolute value of this
difference. This absolute difference was averaged across the
eight repetitions of the same ratio in order to get the mean
AES. A score of 0.10 means that, on average, estimates
deviated from the ratio magnitude by 0.10. For instance, if AES
equals to 0.10 for 3/4 (0.75), it means that estimates were on
average around 0.65 or 0.85. Finally, we computed the mean
error score (ES) that indicates the direction of the deviation in
order to check that the classical pattern of biases (i.e.,
overestimation below the half and underestimation above the
half) was found in the present study. Results for this variable
are presented in supplementary materials (Results S1 and
Figure S1) as they were not directly related to the main issues
addressed by the present study.

The .05 significance level was used for all analyses. P values
were corrected using the Huynh-Feldt formula if the sphericity
assumption was violated.

Results

Children’s Ability to Deal with the Task: Analyses on
Mean Estimates

In order to test whether estimates increased consistently with
ratio magnitudes, linear mixed models were run with mean
estimates as the dependent variable and ratio magnitudes as
the fixed effect for each age group and each format. These
models included a random intercept and a random slope for
participants as these factors significantly contributed to the
variance according to the likelihood ratio test (see Table 2).
The slope was positive and significant irrespective of the format
and the age group (see Table 3). This result indicates that
estimates globally increased with ratio magnitudes for dot sets
(even when ratios of surface areas were controlled for) and for
fractions and hence that 9 and 11-year-olds could deal with the
task requirement.

Spence [42] and Hollands and Dyre [43] showed that power
models also fit well to mean estimates of ratio magnitudes
because these models take the pattern of bias (under- and

overestimation) into account. We did not fit these models to our
data because the pattern of bias was beyond the aim of the
present study and the design was thus not created for testing
these models. Power models require the whole range of the
magnitudes between 0 and 1 to be covered and a great
number of different magnitudes to be presented, since specific
predictions are made for each portion of the range of ratio
magnitudes. The present study used only five magnitudes with
the smallest and the largest one being far from the boundaries
0 and 1. Nevertheless, we ran an ANOVA on the error score in
order to explore whether the classical pattern of biases shown
in adults was also found in school-age children (see Results S1
and Figure S1).

Impact of Ratios of Surface Areas and of Symbolic
Notation: ANOVAs on AES and on SD

Next, we tested (1) whether children’s estimates of
nonsymbolic ratios of natural numbers relied at least in part on
ratios of surface areas when given the opportunity to do so and
(2) whether symbolic notation of ratios led to more accurate
estimates, at least in 11-year-olds and for fractions with small
denominators. An ANOVA was run on AES with Format (three
levels: fractions, heterogeneous dots and homogeneous dots)
and Denominator Size (three levels: small, medium and large)
as repeated factors and Age Group (two levels: 9- vs. 11-year-
olds) as a between factor. Post hoc tests were run to explain
any significant main effect or interaction. The critical
comparison for assessing the impact of ratios of surface areas
was the comparison of performance on homogeneous-dot sets
(no control for ratios of surface areas) with that on
heterogeneous-dot sets (such a control), whereas the critical
comparison for assessing the effect of symbolic notation was
the comparison of performance on fractions with that on
heterogeneous-dot sets (condition in which children had to
process ratios of natural numbers due to the control for ratios
of surface areas).

The effect of Age Group was significant, F(1, 34) = 16.05, p
< .01. Estimates deviated more from the objective magnitude in
9-year-olds (M = .12, SD = .03) than in 11-year-olds (M = .08,
SD = .02). The effect of Format was not significant, F(2, 68) =
2.29, p > .10, but the effect of Denominator Size, F(1.26, 42.82)

Table 3. Results of the linear mixed models run on the participants’ responses with the ratio magnitude as a predictor
according to the age group and the ratio format.

    Intercept Slope

Age Format AIC BIC EST SE df t EST SE df t
9 Fractions -358.34 -344.21 0.12 0.03 16 3.70* 0.75 .06 16 12.92*
 Homog. dots -465.97 -451.84 0.11 0.03 16 3.61* 0.82 .05 16 17.50*
 Heterog. dots -466.41 -452.27 0.17 0.04 16 4.19* 0.73 .07 16 10.42*
11 Fractions -627.40 -604.82 0.05 0.02 18 2.68* 0.87 .04 18 24.45*
 Homog. dots -721.64 -707.06 0.04 0.02 18 1.96 0.94 .04 18 22.42*
 Heterog. dots -746.89 -724.30 0.09 0.02 18 3.86* 0.88 .04 18 19.74*

Note. * p ≤ .01, AIC = Akaike’s Information Criterion, BIC = Schwarz’s Bayesian Criterion, EST = Estimates of fixed effects, SE = Standard Error, df = degree of freedom, t =
value of t test
doi: 10.1371/journal.pone.0082002.t003
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= 6.82, p < .01, and the interaction between Format and
Denominator Size, F(3.14, 106.66) = 7.79, p < .01, were
significant. All the interactions that involved Age Group were
not significant [Format * Age Group: F(2, 68) = 1.65, p > .10;
Denominator Size * Age Group: F(1.26, 42.82) = 2.70, p = .10;
Format * Denominator Size * Age Group: F(3.14, 106.66) < 1, p
> .10].

Despite the absence of significant triple interaction, the
pattern of results for 9-year-olds differed from the one for 11-
year-olds as shown in Figure 2. The absence of interaction
might be explained by the fact that the task appeared
challenging for 9-year-olds and that AES was quite variable in
this group. Because running analyses on the two groups
combined masked some effects, we looked at results
separately for each age group. The interaction between Format
and Denominator Size was significant in 9-year-olds, F(4, 64) =
2.80, p = .05, and in 11-year-olds, F(4, 72) = 8.97, p < .01.

In 9-year-olds, the effect of Format was not significant for
ratios with small denominators, F(2, 32) < 1, p > .10, but it was
significant for ratios with medium, F(2, 32) = 4.17, p = .04, and
large denominators, F(2, 32) = 5.19, p = .01. The
homogeneous-dot condition led to lower AES (i.e., more
precise estimates) than the heterogeneous-dot condition for
ratios with medium, t(16) = –3.51, p < .01, and large
denominators, t(16) = –2.92, p = .01. Furthermore, AES for
fractions did not differ significantly from AES for

heterogeneous-dot sets for ratios with medium, t(16) = –0.12, p
> .10, and large denominators, t(16) = –0.76, p > .10, but it was
higher than AES for homogeneous-dot sets for these ratios
[medium denominators: t(16) = –2.07, p = .06; large
denominators: t(16) = –3.26, p < .01]. In summary, 9-year-olds’
estimates relied at least in part on ratios of surface areas in the
homogeneous-dot condition when sets were beyond the
subitizing range and symbolic notation led to estimates as
accurate as estimates of nonsymbolic ratios of natural numbers
(i.e., heterogeneous dot condition).

In 11-year-olds, the effect of Format was significant for all the
sizes of denominators [small: F(2, 36) = 6.92, p < .01; medium:
F(2, 36) = 3.74, p = .03; large: F(2, 36) = 4.61, p = .03].
Regarding the impact of ratios of surface areas, the same
result as in 9-year-olds appeared: AES for homogeneous-dot
sets was similar to AES for heterogeneous-dot sets for ratios
with small denominators but it was lower than for
heterogeneous-dot sets for ratios with medium, t(18) = –2.93, p
< .01, and large denominators, t(18) = –3.31, p < .01.
Concerning the impact of symbolic notation, when
denominators were small, AES was lower for fractions than for
heterogeneous-dot sets, t(18) = 2.82, p = .01, and
homogeneous-dot sets, t(18) = 4.28, p < .01. When
denominators were medium, AES for fractions was lower than
AES for heterogeneous-dot sets, t(18) = 2.16, p = .05, but did
not differ from AES for homogeneous-dot sets, t(18) < 1, p > .

Figure 2.  The mean absolute error score (top panel) and the mean standard deviation (bottom panel) according to the
denominator size and the ratio format by age group.  Error bars represent the 95% confidence intervals corrected according to
the method suggested by Cousineau [44] for repeated measures.
doi: 10.1371/journal.pone.0082002.g002
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10. When denominators were large, processing fractions was
as accurate as processing heterogeneous-dot sets, t(18) < 1, p
> .10, but less accurate than processing homogeneous-dot
sets, t(18) = –2.33, p = .03. These results indicate a gain in
accuracy due to symbolic notation when denominators were
small or medium at the age of 11.

In summary, 11-year-olds produced more accurate estimates
than 9-year-olds, whatever the format. In both age groups,
estimates were more accurate in the homogeneous-dot
condition than in the heterogeneous-dot condition when sets
were beyond the subitizing range. This result indicates that
children relied at least in part on ratios of surface areas to
perform the task, when given the opportunity to do so.
Regarding the impact of symbolic notation, an emergent gain in
accuracy due to this notation was shown at the age of 11: AES
for fractions was smaller than AES for heterogeneous-dot sets
for ratios with small and medium components in this age group.

The same analyses as the ones performed on AES were run
on SD (see Results S2 for detailed results). SD and AES
correlated in a highly significant and positive way for the three
formats (fractions: r = .89, p < .01; homogeneous dots: r = .81,
p < .01; heterogeneous dots: r = .73, p < .01) and results were
quite similar for these variables (see Figure 2). In 9-year-olds,
no evidence of an impact of the format on the variability of
estimates was found. In 11-year-olds, controlling for ratios of
surface areas (i.e., using heterogeneous-dot sets) for medium
and large sets but not for small ones led to more variability than
when this control was not applied (i.e., homogeneous-dot sets).
Furthermore, in this age group, symbolic notation led to less
variable estimates compared with the heterogeneous-dot
condition regardless of the denominator size. Finally, estimates
were less variable in 11-year-olds than in 9-year-olds for
fractions and for homogeneous-dot sets.

Discussion

The present study investigated the processing of ratios of
natural numbers in school-age children. More particularly, we
tested the impact of ratios of surface areas and of symbolic
notation on that processing in two age groups. Nine- and 11-
year-olds were asked to estimate part-whole ratios presented
in the form of dot sets (either homogeneous or heterogeneous
dots) and fractions by producing an equivalent ratio of surfaces
areas. This design allowed us to investigate the processing of
ratios independently of the whole number bias. This bias, which
refers to children’s trend to consider one part of the ratio
independently of the other part or the whole, has been shown
in tasks involving only ratios of natural numbers [13,17]. This
bias has not been shown for a task in which ratios of natural
numbers had to be processed in relation to ratios of surface
areas [17].

Processing of Nonsymbolic Ratios of Natural Numbers
Regarding the processing of part-whole ratios applied to dot

sets, we first hypothesized that school-age children’s estimates
would increase consistently with ratio magnitudes even if ratios
of surface areas are controlled for (i.e., in the heterogeneous-
dot condition). This hypothesis was drawn from the fact that,

when ratios between continuous magnitudes are controlled for,
even sixth-month-olds are able to discriminate ratios of natural
numbers if these ratios are sufficiently far apart [9]. Our results
showed that, at the group level, the 9- and 11-year-olds’
estimates globally increased with the magnitude of the ratio
between the number of orange dots and the total number of
dots even when they could not rely on ratios of surface areas.
This result extends the result reported by Boyer, Levine and
Huttenlocher [17] to stimuli for which ratios of surface areas
were controlled for. These authors showed that school-age
children were able to match ratios of natural numbers to ratios
of surface areas. However, ratios of natural numbers were not
controlled for ratios of surface areas, which allowed
participants the opportunity to rely on these ratios as was the
case in the homogeneous-dot condition of the present study.

It is noteworthy that, in the present study, children could not
have succeeded in the task by only processing the magnitude
of the critical part or by separately processing the magnitude of
the part and the whole. As the size and the nature of the whole
varied between dot sets and the virtual glass, participants could
not have matched directly the magnitude of the critical subset
(the set of orange dots) to the water surface area. Participants
had to process the part-whole ratio in order to proportionally
adjust the level of water to the magnitude of the whole glass.

Furthermore, we have to qualify the claim that children used
estimation to perform the task because, for ratios with small
denominators (smaller or equal to five), subitizing might have
allowed children to identify the magnitude of the part and the
whole in an accurate way and might even lead children to
symbolize them by verbal labelling. This might have contributed
to more accurate estimates of ratios. It remains nevertheless
possible that estimation was used to process ratios because
exact computation seems unlikely at this age (this would
involve dividing the numerator by the denominator in order to
get a decimal number) and not helpful for the present task
(producing an approximate ratio of surface areas). We could
also wonder whether counting might have been used to identify
the part and the whole for ratios with medium and large
denominators. It seems unlikely because counting was
explicitly discouraged by instructions and because the duration
of presentation of dot sets (one second) was too short to
separately count the critical part and the whole, especially for
children. Moreover, counting is completely irrelevant for
processing the magnitude of the ratio itself.

Our results showed that, despite the global trend of
estimates to increase with actual magnitudes, estimates
significantly deviated from them and in a greater extend in 9-
year-olds than in 11-year-olds. This indicates that the
processing of nonsymbolic ratios of natural numbers is still in
progress at the age of 9. The improvement between the age of
9 and 11 may be due to the refinement of mental numerical
representations as children develop [e.g., 45, 46] and/or more
efficient access to mental magnitude representations from
ratios. The systematic instruction given at school in ratios,
multiplication and division may play a role in these
improvements. As a design very similar to the one of the
present study was used in a previous study in adults [40], we
could compare 11-year-olds’ estimates to adults’ estimates.
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The absolute error score did not significantly differ between
these groups, suggesting that ability to estimate nonsymbolic
ratios of natural numbers is already mature at the age of 11.

We next investigated whether school-age children’s
estimates relied at least in part on ratios of surface areas when
they were asked to estimate ratios of natural numbers. When
the denominator was beyond the subitizing range, the
participants performed better in the homogeneous-dot
condition (i.e., when ratios of surface areas covaried with ratios
of natural numbers) than in the heterogeneous-dot condition
(i.e., when these ratios did not covary). This result indicates
that their performance relied at least in part on ratios of surface
areas. This is reminiscent of data suggesting that young
children’s performance relies at least in part on continuous
magnitudes that are correlated with the number of items in a
collection when they are asked to judge this number [18,19,
see also 47]. The same propensity to rely on ratios of surface
areas has been reported in adults as well [40].

It is noteworthy that children’s trend to rely on ratios of
surface areas might have been fostered by response modality.
Children were asked to produce ratios of surface areas.
Therefore, the degree of stimulus-response compatibility was
greater in the homogeneous-dot condition than in the
heterogeneous-dot condition. The production of ratios of
surface areas with a fixed whole area and a high range of
possible responses (254 levels in the virtual glass) was chosen
as a response modality because of its advantage and the limits
of the alternative response modalities (such as producing
fractions or blackening a subset of the whole set). The
production of ratios of surface areas had the advantage of
making the use of counting and exact computation fully
irrelevant for the task and it allowed us to design a task that did
not favour the whole number bias. Furthermore, this response
format best matches assumptions about the nature of mental
magnitude representations due to its continuous property and
seems thus the best alternative to measure variability and
accuracy of these representations.

Among the two dot conditions, the homogeneous-dot
condition was the most similar one to those used in previous
studies [e.g., 13, 15, 17, except 9]. By contrasting the
homogeneous-dot condition and the heterogeneous-dot
condition, we showed that children tended to rely on ratios of
surface areas when given the opportunity to do so even if ratio
components were sets made up of independent entities
(instead of continuous parts discretized into units such as in
[13,17]). Therefore, future studies aiming to investigate the
processing of ratios of natural numbers per se should control
for this confounded variable. In addition, results of previous
studies should be considered in the light of the present result:
children might have relied on ratios of surface areas to perform
the task all the more that stimuli were continuous magnitudes
that had been discretized into units [13,15,17]. However, the
absence of control for ratios of surface areas does not call into
question the main conclusion of these studies: school-age
children tend to ignore the link between the ratio components
(the whole number bias) in tasks involving only ratios of natural
numbers, probably because discrete magnitudes activate
counting strategies that are inappropriate to the task.

Processing of Symbolic Ratios
Turning to the processing of symbolic ratios, the first

important result is that, at the group level, estimates of fractions
globally increased with the magnitude of fractions in both
groups of school-age children. This result was shown with a set
of fractions including some fractions that had not yet been
covered in the school curriculum (i.e., fractions with
denominators larger than 10 for 9-year-olds and larger than 20
for 11-year-olds). It suggests that even 9-year-olds have some
sense of how to process the magnitude of fractions even
though understanding fractions is a slow and gradual process
[e.g., 16, 38]. So far, studies that have shown school-age
children’s ability to mentally represent the magnitude of
fractions have been carried out with children from 10 to 13
years old [31,32] or with children selected for their good
performance in a magnitude-comparison task on fractions [30].
The present study has found this ability among younger
children without any selection of participants and using
fractions that were not all included in the curriculum even if we
should notice that estimates deviated from the actual
magnitude in a significant way and in a greater extent in 9-
year-olds than in 11-year-olds.

The children’s ability to represent fraction magnitudes does
not necessarily imply that these representations were directly
activated from fractions. Indeed, they might as well be
activated by first processing the magnitude of the numerator
and the denominator and then their numerical relation. It seems
not plausible that school-age children are able to directly
represent the magnitude of all fractions since there are an
infinite number of fractions to represent the same magnitude
and most of them are not familiar, especially for children. We
might hypothesize that a direct mapping can take place for
some fractions, the most familiar ones, after frequent
exposures. Future studies should test this issue, firstly in
adults.

To test the impact of symbolic notation on processing of
ratios, we compared performance on fractions with that on
heterogeneous-dot sets. We expected poorer performance for
fractions than for heterogeneous-dot sets, especially in 9-year-
olds and for fractions with medium and large denominators. We
hypothesized that as children’s experience with fractions
increases, symbolic notation would allow school-age children to
activate a more precise mental magnitude representation than
the nonsymbolic format allows them to do. The results showed
that the 9-year-olds’ estimates were globally as accurate and
as variable for fractions as they were in the heterogeneous-dot
condition. By 11 years of age, in comparison with the
heterogeneous-dot condition, symbolic notation was associated
with a substantial gain in accuracy for ratios with denominators
up to 9 and with a significant reduction in variability for fractions
with denominators up to 29. Using a very similar paradigm,
Meert, Grégoire, Seron and Noël [40] showed that, in adults,
improvement in performance due to symbolic notation was
even greater as it appeared for fractions with denominator up
to 29 in comparison with both the heterogeneous- and the
homogeneous-dot conditions.

These results suggest that symbolic notation does not really
have a negative impact on the processing of ratios in 9-year-
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old children but it already has a positive impact on performance
by the age of 11. These results are consistent with the
hypothesis that the approximate mental representation of
numbers is more precise when it is activated from symbols
than from sets [41]. We might hypothesize two sources of
better precision for the mental representation of fraction
magnitudes. The mental representation of the magnitude of the
components may be more precise when it is activated from
symbols (compared to when it is activated from sets) and
hence the processing of their numerical relation would lead to a
more precise representation of the fraction magnitude. We
might also hypothesize that direct mapping takes place
between some fractions (the most familiar ones; e.g., ½ and ¼)
and the mental representation of their magnitude and that this
mapping allows these representations to be activated more
efficiently from symbolic ratios than from nonsymbolic ones.
Future studies should test whether such a mapping exists in
adults and when it appears across development.

Conclusions

The present study has deepened our knowledge of the
processing of ratios in school-age children. First, we have
shown that 9- and 11-year-olds’ estimates of nonsymbolic
ratios of natural numbers tend to rely on ratios of surface areas
when given the opportunity to do so. Second, the present study
has confirmed that 9- and 11-year-olds have some sense of
how to process the magnitude of fractions (even for fractions
which have not yet been covered in the school curriculum)
even if this ability is still immature at the age of 9. Finally, we
have shown that symbolic notation already has a positive
impact on performance by the age of 11. Further research
should take these results into account in order to better target
the sources of the difficulties that children encounter in the
processing of ratios of natural numbers and to draw relevant

implications for mathematical instruction and remediation.
Relying on children’s ability to approximate the magnitude of
ratios, rather than focusing on the procedures for exact
computation on components (such as the search of a common
denominator and the computation of cross products) in tasks
such as the one used here could help children to learn the
meaning of fractions and to extend their conceptual and
procedural knowledge of those symbolic ratios (see also 31).
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