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Abstract

Chicken meat and eggs are important sources of food for the world population. The signifi-

cant increase in food demand has pushed the food industry toward a rapid non-expensive

production which in turn raises ethical issues. How chicken are cultivated and processed

in food industry is no longer acceptable. Ethical and economical concerns emerging from

chicken culling need to be solved in the near future. Indeed, in egg production industry,

male chicken are killed at the age of 1-day post-hatching since they are not egg producers.

A number of laboratory all over the world are looking for innovative non-invasive sexing

methods to determine the sex of chicken in the early stages of the development before

hatching. It will allow males’ chicken elimination before the pain-feeling stages. In order to

evaluate the efficiency of these methods, the scientific community need a reliable, easy to

use and cost-effective in-ovo invasive sexing method. In this report, we developed two new

invasive assays based on PCR and Q-PCR techniques respectively, which fulfil the above

mentioned requirements. In the same line with other groups, we exploited the differences

betweed males (ZZ) and females (ZW) chicken sexual chromosomes. We identified two

genes, SWIM and Xho-I, on chromosome W and DMRT gene on chromosome Z allowing a

clear discrimination between the two sexes using PCR and qPCR respectively. These two

new genomic markers and their corresponding methods not only increase the accuracy but

also reduce time and cost of the test compared to previously developed sexing methods.

Depending on the technology available in the lab, one can choose between the two tech-

niques requiring different machines and expertise.

Introduction

The chicken embryo is a well-established model in developmental biology studies since it

allows direct manipulation of living embryo. Moreover, chicken meat and eggs are important

sources of food for the global population. 118 million tons of meat and 1400 billion eggs were

PLOS ONE | https://doi.org/10.1371/journal.pone.0213033 March 1, 2019 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: He L, Martins P, Huguenin J, Van T-N-N,

Manso T, Galindo T, et al. (2019) Simple, sensitive

and robust chicken specific sexing assays,

compliant with large scale analysis. PLoS ONE 14

(3): e0213033. https://doi.org/10.1371/journal.

pone.0213033

Editor: Ruslan Kalendar, University of Helsinki,

FINLAND

Received: November 9, 2018

Accepted: February 13, 2019

Published: March 1, 2019

Copyright: © 2019 He et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: This work was supported by the France

Agrimer Institution for the SOO project (http://

www.franceagrimer.fr/) and the Centre National

pour la Recherche Scientifique (CNRS). Tronico

provided support in the form of salary for LC but

did not play any role in the study design, data

collection and analysis, decision to publish, or

preparation of the manuscript. The specific roles of

http://orcid.org/0000-0002-0182-033X
https://doi.org/10.1371/journal.pone.0213033
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213033&domain=pdf&date_stamp=2019-03-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213033&domain=pdf&date_stamp=2019-03-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213033&domain=pdf&date_stamp=2019-03-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213033&domain=pdf&date_stamp=2019-03-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213033&domain=pdf&date_stamp=2019-03-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213033&domain=pdf&date_stamp=2019-03-01
https://doi.org/10.1371/journal.pone.0213033
https://doi.org/10.1371/journal.pone.0213033
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.franceagrimer.fr/
http://www.franceagrimer.fr/


produced in 2017 (Source: Poultry Trends). In chicken eggs production industry, all males’

chicks are killed at the age of 1 day post-hatching, since only females are valuable. Each year,

all over the world, around 6 billion male chicks are considered as useless products (Source:

Food and Agriculture Organization of the United Nations). It raises ethical and economical

concerns that must be fixed as soon as possible, mostly to avoid animal suffering. Many coun-

tries and companies around the world are running scientific programs in order to be able to

determine the sex of living chicken embryos at the early stages of development. Once working,

it will allow eliminating eggs with male embryos before pain feeling stages (there is a current

consensus before day 11 of egg development). Up to date, various assays have been established

to sex chicken embryos: specific DNA amplification by PCR or Q-PCR [1–11]; hormones

detection [12]; infrared, fluorescence or Raman spectroscopy detection of sex specific signals

following egg opening [13–15]; exalted odour analysis by gas chromatography coupled with

mass spectrometry [16]. Among these approaches, odour analysis represents the sole non-

invasive technique that does not require eggshell opening. However, up to now, this is not yet

a reliable method for egg sexing. Other approaches raise a biological concern since egg sexing

must be run under non-sterile environment i.e. hatcheries.

A reference in-ovo sexing method that is highly reliable, rapid, user friendly and cost effec-

tive to validate ex-ovo approaches is required for the development of non-invasive assays. In

other words, the reference assay serves as a standard to validate future new non-invasive egg

sexing assays. PCR is a molecular method that is typically used in chicken sex identification.

These assays exploit the genetic differences between males that have two Z sexual chromo-

somes (ZZ) and females have one Z and one W sexual chromosome (ZW) using different

genes as markers. For instance, the Chromo-Helicase-DNA-binding 1 (CHD-1) genes have

been commonly used as sex determinants for chicken [6, 7]. CHD-1 genes are located on both

Z (CHD-Z) and W (CHD-W) chromosomes in which CHD-Z and CHD-W share common

sequences whilst, at the same time, reserve sexual specific sequences allowing sex differentia-

tion with only one pair of primers. Xho-I and EcoR-I (EE0.6) repetitive regions present on W

chromosome are also among those that have been used as avian female-specific PCR probes

[4, 10]. Nevertheless, none of the previously developed methods was neither assayed in terms

of performances nor fully satisfied all requirements of a reference assay such as sensitivity,

specificity, robustness, rapidity and low-cost. In order to establish such an assay, we addressed

the performances of existing methods and, at the same time, developed two new assays based

on PCR and real-time quantitative PCR (Q-PCR) respectively. Both new assays performances

were extensively evaluated on 176 chicken embryo samples.

Materials and methods

Eggs incubation

Fertilized eggs from 4 different races; ISA Brown, Dekalb White, Bovan Brown and Shaver

Black were obtained from a commercial supplier (SFPA, Saint-Marcellin France). Eggs were

stocked at 19˚C for a maximum of 10 days after laying. Fertile eggs were incubated in a dedi-

cated incubator (Masson, Soyans France) at 37.5 ˚C, 55% humidity and tilted every hour for 9

days.

Samples collection and lysis

10–20 mg of day 9 post-hatching embryo brain tissue was pipetted and lysed in 150 μl of lysis

buffer containing 10% of chelating beads (Chelex 100 Biorad), 0.2% SDS, 10mM Tris-HCl pH

8, 0.2 μg/μl Proteinase K. Brain was chosen for DNA extraction since it is a soft tissue easy to

aspirate with a P1000 pipette. Tissues were incubated for 3h at 55˚C following by 15 minute
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incubation at 95˚C. Samples were then centrifuged for 5 minutes at 13000g at room tempera-

ture. Supernatant were recovered and stored at -20˚C until used. For sensitivity assessment,

DNA lysate quantification was performed with Qubit Fluorometer (dsDNA HS (high sensitiv-

ity) Assay Kit, Invitrogen) and by reading the 260 nm absorbance with a micro volume spec-

trophotometer (Nanodrop One Thermo Scientific, Wilmington USA) to estimate the purity of

the sample.

PCR analysis

(dx.doi.org/10.17504/protocols.io.uf6etre)

Embryo lysates were diluted 10 times in nuclease free water and 1 μl of dilution was mixed

on ice with: 9.5 μl nuclease free water, 12.5 μl of 2X Master Mix (Invitrogen Platinum Green

Hot Start PCR), 200 nM of primer SWIM and 12S (Table 1). Amplification was performed

by using a peqSTAR 96X thermocycler (Ozyme, Montigny-le-Bretonneux France). Thermal

cycling conditions for DNA amplification were: 1 cycle of initial denaturation at 94˚C for 2

minutes; 35 cycles comprising 30s at 94˚C for the denaturation, 30s at 55˚C for annealing, 30s

at 72˚C for the elongation; and a final extension cycle at 72˚C for 5 minutes.

Two different analyses of PCR products were performed: Agarose gel and capillary

electrophoresis

• 15 μl of the PCR reactions were loaded on a 2% Gelgreen (Biotium, California USA) stained

agarose gel in 0.5X TAE buffer and separated by electrophoresis at 100 Volts. 1 μg of DNA

ladder (GeneRuler 50bp, Fisher Scientific, Illkirch France) serves as a reference for the

migration. Gels were revealed by Blue LED GelPicBox at 430nm (Nippongenetics, Düren

Germany).

• 10 μl of the PCR reactions were analysed by microfluidic capillary electrophoresis systems

(Capillary LifeSciences, France) controlled by the Labchip GX version 4.1.1619.0 SP1 soft-

ware. Capillary electrophoresis is the high throughput format of the traditional gel electro-

phoresis. These assays allow a rapid size-based separation and sensitive detection of specific

DNA fragments via UV absorption or fluorescent labelling [17, 18]. The CE system is more

advantageous over the conventional slab gel electrophoresis in terms of speed, high-through-

put applicability, automated workflow, resolution, and sensitivity.

Real-time quantitative PCR (Q-PCR) analysis

(dx.doi.org/10.17504/protocols.io.ugaetse)

Q- PCR reactions were prepared in 384 multi-well plates. Each 10 μl reaction volume con-

tained: 5 μl of LightCycler 480 SYBR Green I Master Mix (Roche, Meylan France), 1 μl of

Table 1. List of PCR and Q-PCR primers used in this study.

Primer name Targeted gene Sequence Specificity Amplicon size Reference

SWIM –F SWIM GAGATCACGAACTCAACCAG Female 212 bp Original

SWIM –R CCAGACCTAATACGGTTTTACAG

12S –F 12S r-RNA gene CTATAATCGATAATCCACGATTCA Female and Male 131 bp [8]

12S –R CTTGACCTGTCTTATTAGCGAGG

XhoI –F Xho-I repeats CCCAAATATAACACGCTTCACT Female 415 bp [19]

XhoI –R GAAATGAATTATTTTCTGGCGAC

D57 –F DMRT CTTTCACAAATGTGTTCTGCTGT Female and Male 57 bp Original

D57 –R AGCAGATACAACCTAAGAATGCC

https://doi.org/10.1371/journal.pone.0213033.t001
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brain lysate diluted 4 times, 500 nM of each of the 4 primers (Xho-I and D57, Table 1) and 2 μl

of nuclease free water. Real-time Q-PCR thermal cycling reactions were performed by the

LightCycler 480 (Roche, Meylan France) directed by the LightCycler 480 Software (version

1.5.1.62). Thermal cycling conditions were: Pre-Incubation 5 minutes at 95˚C, 45 cycles of

DNA amplification—(95˚C for 10s, 53˚C for 20s, 72˚C for 30s). For melting curve analysis, we

set up 1 cycle at 95˚C for 5s, 65˚C for 1 minute, 97˚C in continuous mode and 1 cooling cycle

at 40˚C for 10s.

Robustness assessment of PCR and Q-PCR sexing assays

176 ISA-brown egg embryo tissues at day 9 of incubation were lysed for PCR and Q-PCR anal-

ysis. Lysates were not neither purified nor quantified in order to assess the robustness of the

PCR and Q-PCR assays on heterogeneous samples in terms of DNA concentration and con-

taminants. As reference, we used previously described primers CHD 2250F/2718R[6] for sex

determination. All samples were tested separately using our new PCR (with the primers

SWIM/12S) and Q-PCR (with the primers Xho-I and D57) protocols.

PCR samples were analysed by capillary electrophoresis (LabChip GX) and the data were

processed by an R studio program (Version 0.99.903) that we developed for automatization.

Each electropherogram profile was normalized in time with two markers and the baseline was

subtracted.

For Q-PCR analysis, Crossing Point (CP) and Melting Curve (MC) analysis were combined

to discriminate between females and males. We programed a script in R studio for the routine

analysis of the curves.

Results and discussion

A new simple and robust PCR assay for chicken sexing

In order to find a user friendly and robust PCR egg sexing assay that can be used in high-

throughput format, we designed and characterized 64 different DNA primers targeting differ-

ent Gallus gallus genes (S1, S2, S3 and S4 Figs, S1 Table). Among them the coupling of 4 prim-

ers amplifying parts of SWIM and 12S genes led to a very specific and sensitive assay (Fig 1).

SWIM gene coding for Zinc Finger SWIM domain-containing protein 6 like, is located on

W-chromosome therefore serves as specific marker for female. 12S gene coding for mitochon-

drial ribosomal small subunit is common for males and females thus serves as the reference

of the assay. To validate the specificity and sensitivity of the PCR reaction combining SWIM

(Female) and 12S (Reference) gene primers, we first evaluated PCR amplification for 5 differ-

ent DNA concentrations from crude embryo extracts varying from 1 ng to 1 μg (Fig 1A). Sen-

sitivity of the assay was also evaluated using samples from 4 different chicken races (Fig 1B).

The experimental procedure is detailed in the materials and methods section.

Our results clearly show that the SWIM/12S PCR amplification is highly specific since there

is no miss-amplification even in the presence of large amount of DNA input (1 μg) and no

amplification occurring in the absence of DNA template (negative control). SWIM primers

amplify a 212 bp band for all DNA extracts from female, while the 12S primers amplify a 131

bp product for both males and females. By capillary electrophoresis analysis, which is more

sensitive than agarose gels (Detection of SWIM/12S amplicons from crude extracts containing

0.05 ng of DNA), we detect only 2 peaks corresponding to 12S and SWIM amplicons. This

means that our PCR sexing assay is highly specific (Fig 1C). In term of sensitivity, the SWIM/

12S assay is able to detect low concentrations of DNA since it amplifies SWIM and 12S ampli-

cons from crude extracts containing only 1 ng of total DNA (Fig 1A).
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Fig 1. Specificity and sensitivity of the new PCR sexing assay based on SWIM and 12S gene amplification. (A)

Different crude embryo extracts containing 1 ng to 1000 ng of DNA were tested. Female chicken are detected by the

amplification of two amplicons, the SWIM female specific amplicon of 212 bp and the 12S reference amplicon of 131

bp. (B) SWIM/12S PCR amplification of 4 sexed chicken breeds; Shaver black, Dekalb white, Isa brown, Bovan brown;

on embryo extracts containing 100 ng DNA (M: Male, F: Female, C: Negative control, Mr: 50 bp ladder markers). (C)

Three typical fluorescence profiles from female (♀), male (♂) and negative control containing no DNA template (NC)

obtained by microfluidic capillary electrophoresis analysis. The female samples generated two peaks (SWIM: 212 bp

and 12S: 131 bp), while the male samples gave only one peak at 131 bp (12S). No significant signal was observed for the

negative control.

https://doi.org/10.1371/journal.pone.0213033.g001
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To sex large number of chicken eggs, the sexing method needs to be simple and rapid with-

out extensive and expensive purification and quantification steps. To this aim, we established a

very simple extraction protocol with one incubation step with beads that chelate potential PCR

inhibitors followed by a centrifugation step. We adapted this extraction protocol to analyse

crude extract from different tissues of an egg including outer membrane, inner membrane,

chorion, blood and embryo without DNA quantification (Table 2).

To verify if the newly designed PCR sexing method could cover genetic diversity among dif-

ferent chicken breeds, samples from 4 different races (Shaver black, Dekalb white, Isa brown

and Bovan brown) were examined (Fig 1B). The versatility of the assay among chicken breeds

was confirmed since the PCR clearly generates a single 131 bp band for male embryos and two

bands (131 bp and 212 bp) for the females.

In addition, among avian, the multiplexed SWIM/12S PCR sexing method is specific to

chicken sex identification since SWIM primers are only able to anneal on Gallus gallus
genome. In order to rule out the possibility for the SWIM and 12S primers to amplify other

birds or human DNA, we performed PCR amplification with the SWIM and 12S primers in

the presence of human, duck, pigeon and guinea fowl DNA (S5 and S6 Figs). These experi-

ments show that there is no amplification of other birds or human DNA with our PCR assay.

This aspect is clearly an advantage if sexing has to be performed in an environment with high

risk of contamination such as hatchery.

Evaluation of the newly designed assay in comparison with the existing PCR methods.

We next compared the specificity, sensibility and robustness of the newly designed assay to

those of previously described methods. We chose some of the most commonly used PCR-

based assays for avian sexing (CHD-1 (P2&P8), CHD-1 (2250F/2718R), EE0.6 & CPE, EE0.6

& SINT, XhoI & 18S [4, 6–8, 10]) to address their performances as reference assays. PCR reac-

tions were performed with different DNA concentrations (1–500 ng) both for newly designed

and reference primers. PCR amplification was analysed by both agarose gels and microfluidic

capillary electrophoresis [20] (Fig 2).

Sex-linked homolog genes—CHD-1 (single primer pair): The chromo-domain helicase

DNA binding 1 (CHD-1) was the first gene proposed to differentiate a wide range of non-ratite

bird species [6, 7, 21]. CHD-1 is located on both Z (CHD-Z) and W (CHD-W) chromosomes

Table 2. PCR sexing accuracy at different development stages for various tissues.

Tissue! Shell Outer membrane Inner

membrane

Albumen Chorion Blood Embryo

tissue

Air Chamber

Side

Opposite side Air Chamber

Side

Opposite side Air Chamber

Side

Chelex Digestion! Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No

Incubation Day #

0 - - - - - - - - - - - - - - - - - -

2 - - - - - - - - - - - - ++ - - - - -

4 - - - - - - - - + - - - ++ - + - + -

6 - - - - + - + - ++ - - - ++ - ++ - ++ -

9 - - + - + - ++ ++ ++ ++ + - ++ ++ ++ + ++ +

Table summarizing the accuracy of our SWIM/12S PCR sexing method on different chicken egg tissues. -: gene not detected;

+: gene detected with low yield or maternal contamination;

++: gene detected with high yield and high specificity. The new assay provides reliable sexing result even in highly heterogeneous samples with unknown DNA

concentrations. For more details about the amount of tissues used and extracted DNA see S2 Table.

https://doi.org/10.1371/journal.pone.0213033.t002
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with the presence of some polymorphisms, allowing their specific detection by PCR amplifica-

tion. Several studies explored these differences to design multiple specific primers [4, 7, 22].

To compare our method to CHD-1 assays, we reproduced CHD1-linked experiments using

P2/P8 [7] and 2250F/2718R primers [6] (Fig 2C and 2E). According to the study concerning

the P2/P8 CHD-1 DNA amplification, we are able to depict 2 different population of ampli-

cons only when microfluidic capillary electrophoresis was used as detection method (Fig 2D).

The regular method using agarose gel electrophoresis does not allow depicting the 10 base pair

difference between the 2 amplicons (Fig 2C). Griffiths et al. suggest using an 8% denaturing

acrylamide gel to resolve this problem, which is less convenient than agarose gels to sex a large

Fig 2. Performance of the newly designed assays in comparison with previously described chicken PCR sexing

methods. (A, C, E, G, H, I) Agarose gel electrophoresis of PCR amplification from extracts of ISA brown chicken

embryo using different primer sets: A. SWIM/12S, C. CHD P2/P8, E. CHD 2250F/2718R, G. EE0.6/CPE, H. EE0.6/

SINT, I. XhoI/18S. 1 to 500 ng of either female or male DNA was used in each reaction (M: Male. F: Female. C:

Negative control. Mr: 50 bp ladder markers). (B, D, F) Labchip analysis of the corresponding PCR (one female and one

male) with different set of primers: B. SWIM/12S, D. CHD 2250F/2718R, F. CHD P2/P8 (500ng DNA input).

https://doi.org/10.1371/journal.pone.0213033.g002
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number of chicken eggs. Moreover, the small difference of only 10bp between the 2 amplicons

can easily lead to misinterpretation.

Another CHD-1 gene sexing method using primer pair called 2250F/2718R [6] was exam-

ined. This mono-pair primer designed assay generates one male and one female specific frag-

ment with a difference of 147 base pairs (Fig 2E). However, the CHD-1 2250F/2718R assay

generates a competition between the two amplicons when DNA input was in between 1 and 10

ng range. Indeed, the intensity of the control band (male band) diminishes once the female

specific band is amplified. When more DNA input was used, for 100–500 ng range, unspecific

amplification occurs, which can lead to misinterpretation on large scale sexing (Fig 2E and

2F). The newly designed SWIM assay shows its advantages over CHD-1 assay as generating

neither competition between amplified amplicons nor unspecific amplification in all tested

conditions.

W-linked gene with ribosomal gene as control: XhoI + 18S: Several PCR sexing methods

based on the detection of one W-linked gene and one ribosomal gene as a control were previ-

ously developed. Among them we chose to evaluate the assay that amplifies XhoI and 18S

genes [4] (Fig 2I) in which XhoI is a repetitive DNA sequence located on W chromosome of

Gallus gallus domestic fowl [23]. Compared to our SWIM/12S assay, the XhoI/18S assay is not

advantageous as it generated multiple amplicons together with a smear in the large molecular

mass rang. This noisy amplification profile is probably due to the recognition of the XhoI

primers on multiple sites of the repetitive region on the chromosome W. Moreover, like the

CHD-1 assay, XhoI/18S method also generates a competitive amplification between the two

amplicons (Fig 2I).

W-linked gene with a Z-linked sequence as control: EE0.6 + SINT & EE0.6 + CPE: Other

types of assays, based on the specific detection of one gene on W chromosome and the other

on Z chromosome, have been developed to sex chicken. Among them, we decided to test the

accuracy of the EE0.6 + SINT and EE0.6 + CPE PCR assays (Fig 2G and 2H). EE0.6 is con-

served between bird species [11, 24] allowing female determination of different birds com-

bined with Z-linked Spindling gene sequences (CPE, SINT) as control (male indication) [10,

11, 24, 25]. Three primer sets have been used to reproduce these assays: W-linked EE0.6, Z-

linked SINT and Z-linked CPE. The female specific EE0.6 primers were designed to amplify a

non-repetitive DNA sequence within the EcoRI region of the W chromosome. Z-linked SINT

and CPE primers amplify Spindling genes on chromosome Z of chicken specifically [26]. Both

two methods have a good specificity since no extra-amplicon was detected. However, these

two methods are less sensitive than the newly designed SWIM/12S assay, since PCR amplifica-

tion is very low at 1 ng DNA input.

Based on the obtained results and the literature, we summarized the performance of all

tested assays in Table 3. In summary, to specifically assess chicken sex, our new designed

method SWIM/12S has the best score combining specificity, sensitivity and high-throughput

applicability beyond all the 6 tests.

Large scale assessment of SWIM/12S PCR assay. After demonstrating that the SWIM/

12S assay designed in our study is more advantageous over all other tested assays, we decided

to validate the robustness of our new assay in a large scale analysis. To this aim, we conducted

a study on a large number of samples using SWIM/12S primers and CHD 2250F/2718R prim-

ers as reference for sex determination [6]. 176 Isa Brown chicken embryos’ samples were tested

and DNA amplification was analysed by capillary electrophoresis (CE). We took advantages of

the CE system in terms of speed, high-throughput applicability, automated workflow, resolu-

tion, and sensitivity compared to conventional slab gel electrophoresis (Fig 3A). For robust-

ness assessment, the crude embryo extracts was directly used for PCR amplification without
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DNA quantification and purification to preserve a high heterogeneity among samples in term

of DNA concentration and contaminants.

Among the 176 embryos analysed, we identified 80 females with 2 peaks on the electrophe-

rogram and 94 males with only 1 peak. Due to the heterogeneous nature of the samples in

term of DNA concentration, the fluorescence intensity varies between samples but the position

of the 2 peaks (SWIM and 12S) is highly stable (Fig 3B). Among the 176 samples, 4 of them led

to the amplification of minor unspecific DNA population but it did not affect their sex identifi-

cation (Fig 3A). Embryos sexing obtained with our new SWIM/12S assay are 100% concordant

with the reference assay using 2250F/2718R primers [6]. Two samples were considered as

invalid since the signal to noise was not good enough. To follow up this invalidation, we did

the dosage of these 2 samples and found that DNA concentration was below 0.05 ng. We

decided to redo the PCR reaction for these samples using 2 ng DNA. At this point, we were

able to assign a valid sex for these 2 samples.

Based on these results, we concluded that the SWIM/12S PCR sexing assay represent a reli-

able, robust and effective method for chicken sexing.

A new robust Q-PCR sexing method for high scale use

The Real Time quantitative PCR (Q-PCR) allows high-throughput DNA identification since it

is fast and does not require electrophoresis based DNA migration. This method therefore has

been used widely for chicken sexing [3, 5, 22, 27]. However, it has not yet been validated in

term of sensitivity, specificity and robustness at large scale in a high throughput format. To

this aim, we designed and tested 60 pairs of primers for their ability to sex chicken embryos by

Q-PCR under such constrains. Among them, we identified 2 pairs of primers amplifying the

DMRT gene on the Z-chromosome and the Xho-I repeated region on the W-chromosome as

potential elements for our Q-PCR sexing assay when combined the analysis of the crossing

point (CPA) and of the melting curve (MCA). We first investigated the sensitivity of the reac-

tion by looking at the effect of different embryo template DNA concentration on the Q-PCR

reaction to determine if we could eliminate the DNA quantification step (Fig 4). 5 concentra-

tions of males and females’ chicken DNA from 1 ng to 1 μg were tested (Fig 4A–4E).

Our results show that the DMRT/Xho-I Q-PCR assay allows a clear differentiation between

males and females chicken from very low crude extracts DNA concentration to high concen-

trations. Into detail, we depicted a Cp difference of more than 10 cycles between female and

male samples containing between 1 ng and 1 μg DNA (Fig 4). This Cp analysis constitutes the

first step of our discrimination assay. Taking into account the variability of Cp at different

Table 3. The main general attributes of PCR methods used in the sex identification of birds.

Methods

Primers# W-Linked

genetarget

Control

genetarget

Specificity Sensitivity Reprodu-

cibility

High-

throughputapplicability

Intensiveness of

labor

Ref.

SWIM/12S SWIM 12S +++ +++ +++ +++ Low This

study

P2/P8 CHD1W CHD1Z - - - - Moderate [7]

2250/2718 CHD1W CHD1Z ++ +++ ++ ++ Moderate [6]

XhoI/18S Xho-I 18S + +++ ++ ++ Moderate [4]

EE0.6/CPE EE0.6 CPE +++ + ++ ++ Moderate [10]

EE0.6/

SINF

EE0.6 SINF +++ - ++ ++ ++ [10]

-: fair; +: good, + +: very good; + + +: excellent. The table was modified from F. Morinha [20].

https://doi.org/10.1371/journal.pone.0213033.t003
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concentration we observed that with a cut-off Cp value of 18 we can securely discriminate

between males and females at these concentrations.

As a second step, to reinforce the Cp discrimination, we compared the melting temperature

(tm) profiles at the different DNA concentrations. As shown in Fig 4A–4E, female chicken

exhibit one single peak around 80˚C, whereas males show two peaks around 75˚C and 84˚C.

Fig 3. Robustness assessment of the SWIM/12S PCR assay. Analysis by capillary electrophoresis. (A)

Superposition of the 176 electropherograms corresponding to the analysis of the 176 chicken embryo crude extracts. 2

markers were used to normalize the migration time of the PCR products (M-1: Marker-1 at the beginning of the

measurement, M-2: Marker-2 at 1500bp). (B) All values of males’ and females’ peaks were highlighted with orange and

green point, respectively. All tested female samples generated two peaks (SWIM: 212 bp and 12S: 131 bp), while male

samples gave only one peak at 131 bp (12S). The upper panel contains three boxplots representing the distribution of

the data.

https://doi.org/10.1371/journal.pone.0213033.g003
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We decided to use the ratio of the intensities between 80˚C and 84˚C to discriminate males

and females chicken (Fig 5D).

Q-PCR test performance assessment. In order to evaluate our Q-PCR method, we tested

its reproducibility and robustness on 176 sexed embryos without DNA quantification and

purification. Average Cp was 8.6 for females, 21.1 for males and 32 for negative control (Fig

5A). By defining a Cp value cut-off at 18, we were able to clearly discriminate between males

and females with 100% concordance. The averages Tm ratios of 84˚C/80˚C intensities were

0.033 ±0.1 for females, 1.76 ±0.5 for males (Fig 5B). A 84˚C/80˚C ratio cut-off at 0.33 lead to

100% of discrimination between males and females.

To address the reproducibility, we prepared 2 different extractions for each 176 embryos

for sex determination by the designed Q-PCR. First, Cp and Tm analysis were 100% concor-

dant and we got 100% concordance between the 2 sets of experiment for each of the 176

embryos. In addition, these Q-PCR results were 100% concordance with the sex assessment

and the PCR using CHD assay. Thus, we developed a new simplified Q-PCR based sexing

method, which does not require DNA purification and quantification in the first steps. This

Fig 4. Sensitivity of our DMRT/Xho-I Q-PCR assay. (A-E) CPA and MCA analysis of known sex ISA brown chicken (Green:

Females, Orange: Males). Chicken embryo extracts containing 1 to 1000 ng DNA were used here (A: 1 ng, B: 10 ng, C: 100 ng, D: 500

ng and E: 1000 ng). For CPA analysis, fluorescence intensity was measured at each cycle and is represented in the upper left graph

for each DNA concentration. Melting curves were obtained between 65˚C and 95˚C. (F) Mean melting curve profiles for females

(Green) and males (Orange) chicken at 1 to 1000 ng DNA content. Mean Tm values +/- standard deviation are shown on the graph.

https://doi.org/10.1371/journal.pone.0213033.g004
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subsequently leads to a gain of time and money when large number of analysis is required

both for the industry and the scientific community.

Comparison with the existing Q-PCR methods. Different Q-PCR based methods have

been developed to sex chicken. Based on literature studies, we compared our method to the

most used ones (Table 4). Among the criteria, we considered the accuracy, the sensitivity and

the time and money costs of the methods.

Q-PCR sexing based on TaqMan probes with CT (threshold cycle) analysis: This approach

developed in 2010 is based on the threshold cycle analysis of Q-PCR reactions [22]. It has a

good sensitivity and specificity but is very expensive due to the probes needed for the detection

of males and females specific amplicons. It is a disadvantage for large scale analysis.

Fig 5. Robustness analysis of the DMRT/Xho-I Q-PCR assay. 176 chicken samples sexed by conventional PCR method with primers 2250F/2718R [6]

were used. Among them, 97 males (♂- Orange) and 84 females (♀- Green) were tested. 2 negative controls containing no DNA were included (A, B);

Crossing point analysis (CPA) (C, D); Melting curve analysis (MCA). (A) Fluorescence signal of Q-PCR amplification for males (Orange), females

(Green) and negative controls (Grey). (B) Cp values analysis of the 176 samples. Boxplots represent the statistical distribution of females and males’

CPA. (C) Mean Tm curves for females and males samples. Statistical distribution was represented by mean value, first and third quartiles +/- Standard

deviation. (D) Ratio of Tm peak value 84˚C/79˚C for the 176 samples.

https://doi.org/10.1371/journal.pone.0213033.g005
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Sybr Green Q-PCR method based on CHD1 amplification: In 2012, a Sybr Green Q-PCR

method based on CHD1 amplification was proposed to sex chicken [3]. This approach was

based on the melting curve comparison (MCA) between males and females chicken tissues. It

is effective for sex identification but it needs DNA purification and two distinct Q-PCR reac-

tions with specific primers for female and male. This is time and cost consuming, which again,

is a strong weakness in the context of simplified and large scale analyses.

Q-PCR sexing combined with High Resolution Melting analysis (HRM): Q-PCR combined

with High Resolution Melting analysis (HRM) has also been adapted for chicken sex identifi-

cation [27]. HRM is an optimized MCA analysis that allowed the discrimination of amplified

product with less than 10 bp difference (like P2/P8 amplicons). Despite, its high accuracy, the

main negative aspect is the requirement of beforehand DNA enrichment and dosage. This

increase the number of steps making it time and cost consuming.

FRET probes assay adapted for chicken sexing from Clinton et al: In 2016, a FRET probe

based assay has been used for chicken sexing [5]. They used the invader approach by targeting

Xho-1 and CR1 genes with specific FRET probes. This method has the advantage to be effec-

tive at isothermal temperature (63˚C) without the need of thermocycler. This technique seems

highly specific, sensitive and fast but the main disadvantages remains its high cost compared

to a regular Q-PCR.

Compared to all these existing methods that already show relevant performances, our

newly designed Q-PCR DMRT/Xho-I assay combines all the advantages suitable to simplified,

reduced cost and high throughputs assays by keeping a very high sensitivity and specificity. In

particular, our assay requires a reduced number of steps (neither DNA purification nor DNA

quantification) leading to efficiency improvement and time saving. Consequently, our assay is

time and cost saving reaching the constraints for further large scale studies.

Table 4. Comparative analyses of the main advantages and limitations of existing Q-PCR sexing methods.

Method name

(1st Author)

Our method Rosenthal[22] Chen[3] Morinha[27] Clinton[5]

Targeted genes (�) DMRT / Xho-I CHD-1 CHD-1 CHD-1

(P2/P8 region)

Xho-I / CR1

Detection method Sybr green Taqman Sybr green Evagreen FRET Cassette

Parameters

Analysed

CPA / MCA (Cycles / Melt.

Curve)

CPA (CT) MCA MCA Quenching

release

Accuracy +++ ++ + ++ +++

Number of reactions necessary 1 1 2 1 1

Necessity of quantification of input DNA No No Yes Yes No

Sensitivity / Reproducibility +++ ++ + ++ +++

Minimum input DNA 1ng 1ng 5 ng 20ng 1ng

Number of samples tested 176 408 18 111 500

Robustness assessed in the paper Yes No No Partially Yes

Column DNA extraction (DNeasy Kit

Qiagen)

No No Yes Yes No

Experiment time-cost ~2 hours ~2 hours ~3 hours ~3 hours ~1 hour

Estimated consumable cost per reaction 0.3$ ~2$ ~3$ ~2$ ~2$

Avian Specificity G. gallus specific G. gallus
specific

G. gallus, P.

Chinensis
tested

14 avian species

tested

G. gallus specific

For more details about the cost estimation, please see S3 Table.

�Primers are different for the targeted gene CHD-1 between Chen, Rosenthal and Morinha studies.

https://doi.org/10.1371/journal.pone.0213033.t004
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Conclusions

The scientific community and the poultry industry lack a reliable method to determine

chicken embryo sex for which the performances have been evaluated and validated in a large

scale manner. Indeed, benchmarking new technologies aiming to sex chicken eggs in a non-

invasive way, will need a highly-reliable invasive method as reference (gold standard) to deter-

mine the sex of the embryo a posteriori that works at early stage of embryo development.

Here, we developed two new simple alternative methods to sex chicken embryos and demon-

strated their high performance for large-scale purpose. The 2 methods exhibit 100% of concor-

dance and specificity for the sex determination of the 176 embryos tested in our studies.

One of the methods is based on PCR technologies once the other one is based on RT qPCR.

Depending on their resources and equipment, the users, in a scientific lab or in the poultry

industry can choose between the 2 approaches. For users equipped with real-time PCR readers

the RT qPCR will be more convenient since this approach requires fewer steps than PCR and

the results analysis can be easily automatized. PCR will be more convenient for users that do

not want to invest too much money in the equipment. Compared to the other technologies

already developed to sex chicken, our testes combine high compliancy with large scale analysis,

cost effectiveness and high sensitivity. Moreover, we showed that our testes are efficient on

many different tissues of the embryo and can be used for different chicken breeds in a short-

time scale since the 2 methods do not require any DNA purification step. Consequently, any

laboratory from any speciality can easily implement our simplified and robust sexing assays

using the Standard Operating Procedures (SOP) provided on protocols.io (dx.doi.org/10.

17504/protocols.io.uf6etre). The positive results from experiments with membrane samples

(external and internal) from which the embryos continue to develop encourage a future devel-

opment for a semi invasive in ovo sexing method.

Supporting information

S1 Fig. Primer couples tested for our PCR test. Control and Female specific primers:

SWIM, 12S, CHD-P8F/P2R, DMRT2 NCB343, HTW-10, DMRT2’-NCBI82, FOX8-NCBI91,

DMRT2’-NCBI57.

(TIF)

S2 Fig. Primer couples tested for our PCR test. Control and Female specific primers:

HTW4’, HTW3-R1, FET1-NCBI786, HTW3-R2, DMRT2’-NCBI343, HTW-NCBI879,

HTW-NCBI689, HTW-NCBI731.

(TIF)

S3 Fig. Primer couples tested for our PCR test. Control and Female specific primers:

HTW2-F2, HTW2, FET1-NCBI743, FOX8-NCBI166, FOX8-NCBI109, FOX8, 18S-5, XhoI-7.

(TIF)

S4 Fig. Primer couples tested for our PCR test. Control and Female specific primers: EE06,

CHD5, Sinf, Cpe, RAS326, RAS400, RAS454, WC430.

(TIF)

S5 Fig. Specificity of the SWIM / 12S PCR test for chicken versus Human DNA. The

SWIM / 12S PCR test is specific for chicken versus Human DNA. DNA extracted from human

SH-S5Y cells is not amplified by the SWIM / 12S PCR test. Hum: Human DNA extract; F:

Chicken female DNA extract; M: Chicken male DNA extract; NT: No DNA template.

FAM192A: Primers specifics for human DNA amplification.

(TIF)

Robust chicken sexing assays for large scale analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0213033 March 1, 2019 14 / 17

http://dx.doi.org/10.17504/protocols.io.uf6etre
http://dx.doi.org/10.17504/protocols.io.uf6etre
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0213033.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0213033.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0213033.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0213033.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0213033.s005
https://doi.org/10.1371/journal.pone.0213033


S6 Fig. Specificity of the SWIM / 12S PCR test for chicken versus duck, guinea fowl and

pigeon DNA. The SWIM / 12S PCR test is specific for chicken versus Duck, Guinea fowl and

Pigeon DNA. DNA was extracted from adult anatomically confirmed sex birds. Duck, Guinea

fowl and Pigeon brain DNA is not amplified by the SWIM / 12S PCR test whilst those from

adult chicken are amplified. F: Female DNA extract; M: Male DNA extract; NT: No DNA tem-

plate. DNA was extracted from brain tissues for all the different birds as described in materials

and methods.

(TIF)

S7 Fig. Agarose gel electrophoresis profile of DMRT / Xho I QPCR amplification. The

DMRT / Xho I QPCR amplification profiles of males and females DNA on Agarose gel electro-

phoresis is clearly different. It explains the Tm profiles difference for males and female. 3 inde-

pendent experiments were performed and show the same result.

(TIF)

S1 Table. Detail of the primers tested for the development of the PCR assay.

(TIF)

S2 Table. Amount of DNA extracted from the various tissues tested. Table summarizing the

amount of tissues used for each DNA extraction (in mg) and amount of DNA extracted from

each tissue (in ng/mg of tissue).

(TIF)

S3 Table. Detail of the cost estimation of the different Real-Time PCR sexing methods.

(TIF)
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