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Abstract. Atherosclerosis (AS) is currently the leading cause 
of mortality worldwide, with the development of new strate-
gies to prevent the formation and rupture of atherosclerotic 
plaques being a paramount area of research. Amounting 
evidence suggests autophagy has an important role in the 
pathogenesis of AS and may be a potential therapeutic 
target. In this study, the effect of SBI‑0206965(6965), a novel 
inhibitor of autophagy, was tested on the development of AS 
in apolipoprotein E deficient (ApoE‑/‑) mice. Systemic appli-
cation of 6965 was found to aggravate AS, with increased 
plaque size and decreased plaque stability in comparison with 
the control. Of note, it was observed that 6965 decreased the 
proportion of myeloid‑derived suppressor cells (MDSCs). 
Further investigation demonstrated MDSCs markedly allevi-
ated AS in ApoE‑/‑ mice; while 6965 reduced the viability and 
promoted apoptosis of MDSCs in vitro. This is the first study 
describing an association between autophagy and MDSCs in 
AS models, providing a novel mechanism to potentially target 
in the management of this condition.

Introduction

Atherosclerosis (AS) is a chronic inflammatory disease 
characterized by the formation of plaques in the walls of 
large and medium‑sized arteries  (1). Unstable atheroscle-
rotic plaques‑especially those with scarce smooth muscle 
cells (SMCs) and increased inflammation and apoptosis‑are 
closely related to numerous diseases, including acute 
coronary syndrome, myocardial infarction and stroke  (2). 

Notwithstanding the numerous available therapeutic alterna-
tives, AS remains the leading cause of mortality worldwide. 
Therefore, the development of novel strategies to prevent the 
formation and rupture of plaques has become a paramount 
area of research.

Macroautophagy (hereafter referred to as autophagy) is 
an evolutionarily conserved mechanism which eliminates 
various intracellular components such as damaged proteins, 
lipid droplets and organelles. Accumulating evidence suggests 
autophagy has an important role in the pathogenesis of AS and 
related disorders (3‑5). Basal autophagy maintains cellular 
lipid homeostasis (6‑9) and the induction of autophagy has 
been observed to prevent AS  (10‑13). However, previous 
research shows conflicting results concerning the impact of 
the inhibition of autophagy on AS with some studies indi-
cating impaired autophagy promotes this process (14‑18) and 
others suggesting otherwise. For example, Chen et al  (19) 
found inhibition of autophagy in endothelial cells provided 
anti‑atherosclerotic effects. Similarly, Dai et al (20) found 
3‑methyladenine (3‑MA), a widely used inhibitor of autophagy, 
hindered the formation of atherosclerotic lesions and increased 
plaque stabilization. Further research is needed to elucidate 
the effects and molecular mechanisms of autophagy in AS, in 
order to explore potential therapeutic targets.

SBI‑0206965 (hereafter referred to 6965) is a newly discov-
ered inhibitor of the uncoordinated (Unc) 51‑like kinase 1 
(ULK1), which plays a pivotal role in autophagy. As the 
only conserved serine/threonine kinase in autophagy, ULK1 
has become a very attractive target for therapeutic develop-
ment (21). 6965 has also been observed to suppress autophagy 
induced by inhibition of mammalian target of rapamycin (22), 
inhibit AMP‑activated protein kinase (23) and induce apop-
tosis (24). In one of the authors' previous studies (25), it was 
reported that 6965 regulated the functionality of granulocytic 
myeloid‑derived suppressor cells (MDSCs), which have been 
linked to the development of AS (26).

The present study systemically administered 6965 to apoli-
poprotein E deficient (ApoE‑/‑) mice fed with a high‑fat diet 
(HFD) and assessed its effect on AS. The current study found 
that 6965 promoted the formation of atherosclerotic lesions and 
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reduced plaque stability. Interestingly, lower levels of cluster 
of differentiation (CD)11b+Gr‑1+ MDSCs were also detected 
following treatment with 6965. Subsequent in vitro experi-
ments revealed 6965 reduced the viability and promoted the 
apoptosis of MDSCs in the presence of oxidized low‑density 
lipoprotein (oxLDL). Adoptive transfer of MDSCs impaired 
the development of atherosclerotic plaques in ApoE‑/‑ mice. In 
consonance, these results suggest inhibition of autophagy by 
6965 intervenes in the pathophysiology of AS by decreasing 
levels of MDSCs, outlining the mechanisms underlying the 
role of autophagy in this process.

Materials and methods

Animals. A total of 40 ApoE‑/‑ mice (19‑21.5 g) were purchased 
from Beijing Vital River Laboratory Animal Technology Co., 
Ltd., and kept in a specific pathogen‑free environment. All 
experiments were conducted according to the institutional guide-
lines for animal care and use, and ethical approval was obtained 
prior to the start of the study from an ethics committee of the 
Jining Medical University (approval number: 2019‑FJ‑002). The 
mice were housed at a constant temperature (22˚C) and relative 
humidity 40‑70% under a 12 h dark/12 h light cycle. All mice 
had access to water and food ad libitum. To induce AS, 8‑week 
old male ApoE‑/‑ mice were fed an HFD (0.25% cholesterol and 
15% cocoa butter) for 6 weeks. After one week of HFD, the 
mice were randomly divided into two groups (n=6 per group): 
The 6965‑treated group, which was injected intraperitoneally 
with 6965 (Selleck Chemicals), 150 µg/mouse once per week for 
4 weeks; and a control group of ApoE‑/‑ AS mice injected with 
PBS following the same pattern. One week after the last treat-
ment, the mice were sacrificed and the tissues were harvested 
for further use. In the experiment with the adoptive transferring 
of MDSCs, mice were fed an HFD for 6 weeks. During this 
time, mice (n=6 per group) received an intravenous injection of 
6x106 MDSCs or PBS every 10 days in the experimental and 
control groups, respectively.

Serum cholesterol levels. Blood samples (110 µl per mouse) 
were collected by retro‑orbital bleed following general 
anesthesia (2‑4% ether inhalation anesthesia) according to 
ethical approvals (27,28). After 30 min of incubation at room 
temperature, samples were centrifuged at 2,775 x g at room 
temperature for 10 min to obtain serum, which was stored 
at ‑80˚C until analysis. Total plasma cholesterol and total 
triglyceride levels were determined with automated enzymatic 
techniques (7080; Hitachi, Ltd.).

Histopathology and immunohistochemistry (IHC). After sacri-
ficing, mice were perfused with PBS via the left cardiac ventricle 
and their hearts and aortic roots were harvested, fixed in 4% 
paraformaldehyde at room temperature overnight and embedded 
with paraffin. Serial paraffin sections of 4‑6 µm were dissected 
longitudinally. At least three sections were obtained from each 
aortic root, with 50 µm of separation between each other. After 
staining with hematoxylin and eosin (H&E) for 15 and 5 min, 
respectively (both at room temperature), sections were blocked 
using 5% goat serum (Beijing Solarbio Science & Technology 
Co., Ltd.) at room temperature for 30  min. Corresponding 
sections on separate sliders were then stained for various anti-

bodies at 37˚C for 1 h. The antibodies used included Anti‑F4/80 
(1:400; cat. no. ab111101; Abcam), rabbit anti‑α smooth muscle 
actin (1:200; cat. no. bs‑10196R; Biosynthesis Biotechnology Co., 
Ltd.) or anti‑mouse Gr‑1 (1:50; cat. no. 108436; Biolegend). The 
Rabbit two‑step test kit (cat. no. PV‑9001; Origene Technologies, 
Inc.) was used for the secondary antibody binding procedure, and 
the staining with secondary antibodies was performed at 37˚C 
for 15 min, according to the manufacturer's protocol. Terminal 
deoxynucleotidyl transferase‑mediated dUTP nick end labelling 
(TUNEL) was performed on paraffin sections with a TUNEL 
kit (Roche Diagnostics) following the manufacturer's protocol in 
order to assess apoptosis. Images were captured using an Olympus 
fluorescence/light microscope (IX71; Olympus Corporation) 
and positive staining was quantified by computer‑assisted histo-
morphometry (Image‑Pro Plus 6.0, Media Cybernetics, Inc.). 
To evaluate vascular obstruction, the ratio of total plaque area 
to aortic root cross sectional area was calculated. For each IHC 
analysis, it was calculated as the percentage of immunostained 
area in relation to the total area. Mean values were calculated 
from the corresponding three consecutive sections from each 
mouse.

Flow cytometry. After sacrificing the mice, blood, bone 
marrow and spleen cells were harvested from each group (n=6 
per group). Red blood cells were removed using erythrocyte 
lysis buffer [Multi Sciences (Lianke) Biotech, Co., Ltd.]. Then, 
the remaining cells were washed with PBS and resuspended in 
proportions of 1x106 cells per ml. Fluorescently labeled anti-
bodies against CD11b (FITC‑labeled) and Gr‑1 (APC‑labeled) 
were purchased from Biolegend and used at a 1:100 dilution 
to detect MDSCs (CD11b+, Gr‑1+). Flow cytometry was also 
performed to detect the apoptosis of cells stained with the 
Annexin V‑PI kit (Annexin V‑FITC Apoptosis Detection kit; 
Biouniquer) according to the manufacturer's protocol.

Adoptive transfer of MDSCs. Bone marrow‑derived MDSCs 
were obtained as described previously  (25). In brief, bone 
marrow cells were isolated from the tibias and femurs of ApoE‑/‑ 

mice. Then, these were cultured in complete DMEM, which was 
supplemented and stimulated with combinations of granulocyte 
macrophage colony stimulating factor (GM‑CSF) (40 ng/ml, 
PeproTech, Inc.) and interleukin (IL)‑6 (40 ng/ml, PeproTech, 
Inc.). The cultures were maintained during 4 days in an atmo-
sphere humidified with 5% CO2 at 37˚C with the objective of 
inducing MDSCs. The experimental group of ApoE‑/‑ mice 
which underwent adoptive transfer (n=6) received MDSCs 
suspended in PBS via intravenous injection. Each animal 
received 6x106 cells every 10 days during 6 weeks. The control 
group was injected with PBS only following the same schedule.

En face staining analysis. After the mice were sacrificed, 
the aortas were harvested from heart to the iliac arteries. 
Then, they were fixed in 4% paraformaldehyde overnight at 
room temperature and stained with 0.5% Oil Red O (O0625; 
Sigma‑Aldrich; Merck KGaA) for 12 h at 4˚C using a light 
microscope.

CCK‑8 assay. Cell viability was tested using Cell Counting 
Kit‑8 (CCK‑8) assays (HY‑K0301; MedChemExpress) 
according to the manufacturer's protocols. Mouse MDSCs 
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were seeded in 96‑well cell culture plates at 5x103 cells per 
well and divided into two groups: One subjected to oxLDL 
(25 µg/ml) treatment only, and one preincubated with 6965 
(10 µM) for 30 min before treatment with oxLDL. Next, the 
cells were cultured at 37˚C for 24, 48 and 72 h respectively, 
and then incubated with 10 µk CCK‑8 solution at 37˚C for 
1 h. Well absorbance was set to 450 nm. Each treatment was 
performed in triplicate.

Statistical analysis. Data were expressed as the mean ± standard 
deviation. Unpaired Student's t‑test was used to compare data 
between different groups. Results were considered signifi-
cant when P<0.05. Statistical analysis was performed with 
GraphPad Prism 5.0 software (GraphPad Software, Inc.).

Results

6965 increases the size of atherosclerotic plaques inde‑
pendent of lipid levels. To investigate the effects of 6965 
on AS, eight‑week old male ApoE‑/‑ mice were fed an HFD 
for 6 weeks total in order to induce AS. After one week of 
HFD, the 6965‑treated group was injected intraperitoneally 
with 6965 for 4 weeks. One week after the last treatment, the 
mice were sacrificed and analyzed. As shown in Fig. 1A, 6965 
did not affect the lipid profile, including total cholesterol and 
triglyceride levels. H&E staining revealed 6965 administration 
was associated with significantly greater plaque size on aortic 
roots and obvious damage to the adventitia (P<0.05; Fig. 1B). 
To assess vascular obstruction, the ratio of total plaque area to 

Figure 1. Treatment with 6965 promotes the development of atherosclerotic lesions independent of cholesterol levels. (A) Total plasma cholesterol and tri-
glyceride levels of the control and 6965 groups. (B) Representative hematoxylin and eosin staining depicting the aortic roots from mice in the control and 
6965‑treated groups (magnification, x20). Lesion area (µm2) represents the sum of all the areas occupied by plaques in every pathological section. Total plaque 
area (%) represents the ratio of total plaque area to the cross‑sectional area of the aortic root. Data are shown as the mean ± standard deviation. *P<0.05 and 
**P<0.01 vs. the control.
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aortic root cross‑sectional area was measured, and it was found 
that treatment with 6965 was related to significant increases in 
this parameter in comparison with the controls. Therefore, the 
present study surmised that 6965 increased aortic obstruction 
and aggravated AS independently of cholesterol and triglyc-
eride levels.

6965 decreases the stability of atherosclerotic plaques. Plaque 
stability rather than size may be more important in the develop-
ment of complications associated with AS. In order to evaluate 
the effects of 6965 on plaque stability, IHC staining was 
implemented to observe the proportions of SMC and infiltrated 
macrophages in local lesions; whereas the TUNEL method was 
used to assess levels of apoptosis. As shown in Fig. 2, 6965 
significantly increased the proportions of macrophages that 
presented as F4/80 and decreased the proportion of SMC in 
plaques (P<0.05). In addition, 6965 significantly increased the 
number of TUNEL‑positive apoptotic cells (P<0.01). These 
results indicate treatment with 6965 reduced plaque stability.

6965 decreases the levels of MDSCs in atherosclerosis models 
with ApoE‑/‑ mice. A recent study reported that CD11b+ Gr‑1+ 
MDSCs reduce atherosclerotic plaques in LDLr‑/‑ mice (26), 

suggesting these cells play an important role in the patho-
physiology of AS. In this study, the proportions of CD11b+ 
Gr‑1+ MDSCs in peripheral blood, spleen and bone marrow 
were determined by flow cytometry. The present study found 
treatment with 6965 significantly decreased the proportion of 
CD11b+ Gr‑1+ MDSCs in comparison with controls. This was 
the case in the bone marrow, the spleen and the peripheral blood 
(P<0.05; Fig. 3A). IHC staining of the lesions showed Gr‑1+ levels 
were also significantly decreased in 6965‑treated mice (P<0.05; 
Fig. 3B). This suggests 6965 intervenes in the pathogenesis of 
AS by lowering the levels of CD11b+ Gr‑1+ MDSCs.

Adoptive transfer of MDSCs impairs the development of 
atherosclerotic plaques in ApoE‑/‑ mice. To assess the role of 
MDSCs in AS, an adoptive transfer of MDSCs into ApoE‑/‑ mice 
was performed. MDSCs were isolated from the bone marrow 
of ApoE‑/‑ mice without HFD as described previously (25), and 
then injected intravenously in ApoE‑/‑ atherosclerotic models. 
As expected, a significant reduction of atherosclerotic lesions 
in MDSCs‑treated mice in both the aorta (P<0.05; Fig. 4A) and 
aortic root (P<0.05; Fig. 4B) in comparison with the controls 
was observed, which did not undergo adoptive transfer. This 
confirms the protective effect of MDSCs on AS in ApoE‑/‑ mice.

Figure 2. Treatment with 6965 decreases plaque stability. Representative images of (A) macrophages, (B) smooth muscle cells and (C) apoptosis from the 
control and 6965‑treated groups (magnification, x40). Macrophage and SMC contents were analyzed through immunohistochemistry. TUNEL staining was 
used to detect apoptotic cells. Data are presented as the percentage of stained plaque areas in the entirety of the lesions. Data are shown as the mean ± standard 
deviation. *P<0.05 and **P<0.01 vs. the control. TUNEL, Terminal deoxynucleotidyl transferase‑mediated dUTP nick end labelling; SMC, smooth muscle cell.
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Figure 3. Treatment with 6965 decreases the levels of MDSCs. (A) Flow cytometry and fluorescent staining were used to evaluate the proportions of CD11b+ 

Gr‑1+ MDSCs. Representative images of the bone marrow, spleen and peripheral blood from different groups are shown. Data are presented as the mean ± SD. 
*P<0.05 and **P<0.01. (B) The expression of Gr‑1 in plaques was analyzed by immunohistochemistry and the percentage of Gr‑1 positive area was calculated 
in the total lesioned area (magnification, x40). Data are shown as the mean ± SD. *P<0.05 vs. the control. SD, standard deviation; CD, cluster of differentiation; 
MDSCs, myeloid‑derived suppressor cells.
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6965 reduces the viability and increases the apoptosis of 
oxLDL‑stimulated MDSCs. In order to investigate the impact 
of 6965 on MDSCs in AS, 6965‑treated MDSCs from C57 
mice were exposed to oxLDL in vitro. Assessment of CCK‑8 
levels revealed 6965 reduced MDSCs viability in the presence 
of oxLDL (Fig. 5A). Cell Annexin V‑PI staining showed 6965 
significantly increased the proportion of apoptosis in the pres-
ence of oxLDL in comparison with exposure to oxLDL alone 
(P<0.001; Fig. 5B).

Discussion

Modulation of autophagy is an attractive potential alterna-
tive for the treatment of AS; therefore, it is a priority to focus 

research on the molecular mechanisms underlying this relation-
ship in order to assess the feasibility and clinical applicability 
of autophagy‑regulating agents. In this study, 6965, a novel 
inhibitor of ULK1, was found to enhance the formation of 
atherosclerotic lesions and reduced plaque stability; reflected 
in increased plaque size, reduced SMC content, and increased 
proportion of macrophage infiltration and apoptosis. Although 
a few studies have associated inhibition of autophagy with 
anti‑atherosclerotic capacity (19,20), most studies harmonize 
with the present conclusions, where inhibition of autophagy 
results in aggravation of AS. The conflicting results may be due 
to the heterogeneous modes of action of the various molecules 
implemented to inhibit autophagy in previous studies. In this 
study, 6965, a highly selective inhibitor of ULK1 was used. 

Figure 4. Adoptive transfer of MDSCs reduces atherosclerotic lesions in ApoE‑/‑ mice. (A) Representative images of oil red O‑stained plaques in entire aortas 
(thoracic aorta and abdominal aorta) from the control and MDSC adoptive transfer groups (magnification, x10). The black arrow indicates where the plaques 
are. (B) Representative cross‑sections of lesions in the aortic valve area stained with hematoxylin and eosin are shown. Lesion area (µm2) represents the sum 
of all the areas occupied by plaques in every pathological section (magnification, x20). Total plaque area (%) represents the ratio of total plaque area to the 
cross‑sectional area of the aortic root. Data are shown as the mean ± standard deviation. *P<0.05 vs. the control. MDSCs, myeloid‑derived suppressor cells; 
ApoE‑/‑, apolipoprotein E deficient.
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This kinase is one of the most upstream components and the 
only serine/threonine kinase in the core autophagy pathway, 
representing an excellent drug target.

Notably, the proportion of CD11b+Gr‑1+ MDSCs were also 
found to be decreased after treatment with 6965. MDSCs are a 

heterogeneous population of cells, composed of early myeloid 
progenitor cells and immature myeloid cells. MDSCs can 
block hematoprogenitor cell differentiation and play a critical 
role in suppressing immune responses. Previous research has 
demonstrated that MDSCs are important immunosuppres-

Figure 5. Treatment with 6965 decreases viability and increases apoptosis in oxLDL‑stimulated MDSCs. (A) Cells were preincubated with 6965 (10 µM) for 
30 min and then stimulated with 25 µg/ml oxLDL. Cell Counting Kit‑8 assays were performed at different times after oxLDL stimulation to measure MSDC 
viability. (B) Flow cytometry detected MDSCs apoptosis. Data are shown as means ± standard deviation, calculated from triplicate experiments. *P<0.05 and 
***P<0.001 vs. oxLDL. oxLDL, oxidized low density lipoprotein; MDSCs, myeloid‑derived suppressor cells; PI, propidium iodide; OD, optical density.
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sive mediators in cancer and inflammatory disorders (29‑34), 
including endotoxin shock, experimental autoimmune enceph-
alomyelitis, graft‑vs.‑host disease, rheumatoid arthritis and 
diabetes. Recently, Foks et al (26) showed MDSCs reduced 
AS via suppression of pro‑inflammatory immune responses in 
LDLr‑deficient mice. To verify the effect of MDSCs on ApoE‑/‑ 
AS models, MDSCs were transplanted into ApoE‑/‑ mice, 
which resulted in amelioration of the atherosclerotic plaques. 
In the present study, it was found that treatment with 6965 
was associated with a decrease in MDSCs levels. Considering 
MDSCs mainly migrate to inflamed tissue, Gr1+ proportions 
were detected in atherosclerotic lesions and confirmed the 
decrease of MDSCs in local plaques in 6965‑treated mice. 
Thus, the decrease of MDSCs may be a key mechanism under-
lying the of pro‑atherosclerotic effects of 6965.

Numerous studies have identified autophagy as a major 
regulator of MDSC viability and function. Wu  et  al  (35) 
demonstrated that the expression of autophagy marker LC3B 
and p62 was positively associated with MDSCs number. 
Parker et al (36) found that autophagy inhibitor chloroquine 
or bafilomycin reduced MDSCs viability. However, in another 
research, 3‑MA did not induce MDSC‑like cell model J774M 
cell death (37). In the authors' previous publication (25), inhibi-
tion of autophagy was found to contribute to the accumulation 
of granulocytic MDSCs in the context of endotoxin shock. 
In the present study, the influence of 6965 on MDSCs in the 
presence of oxLDL was appraised. The present results showed 
inhibition of autophagy by 6965 decreased MSDC viability and 
increased their apoptosis when exposed to oxLDL. It suggested 
that autophagy might regulate cell survival depending on the 
cellular context. Various conditions and effector molecules 
linking to autophagy are known to facilitate MDSC survival. 
For example, endoplasmic reticulum stress (ER stress) 
regulates MDSC half‑life by controlling TRAIL receptor 
mediated apoptosis (38) and a novel study found that autophagy 
protected human umbilical vein endothelial cells against ER 
stress‑mediated apoptosis (39). It is suggested that inhibition 
of autophagy might induce MDSC apoptosis through interrup-
tion of ER stress pathways. Moreover, increased apoptosis and 
impaired degradation capacity of lysosomes was observed in 
tumor‑infiltrating autophagy deficient monocytic‑MDSCs (40) 
which indicates that interruption of autophagy flux at the late 
stage induces cell death. Cytokines and chemokines, such as 
GM‑CSF and IL‑6, contributed to the expansion and accu-
mulation of MDSCs (41). In the authors' previous study, 6965 
treatment reduced the levels of IL‑6, IL‑12, tumor necrosis 
factor‑α and CXCL9 in mice, which suggests that the influ-
ence of cytokines of 6965 might also affect the viability of 
MDSCs. Although there are numerous possible mechanisms, 
an accurate regulatory pathway remains to be determined.

In conclusion, 6965 may aggravate AS by reducing 
MDSCs functionality with a decrease in cell viability and the 
promotion of apoptosis being key related mechanisms. The 
present findings confirm the importance of autophagy in the 
pathophysiology of AS and highlight MDSCs as potential 
therapeutic targets in this condition.
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