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Abstract

Background: Genetic variation in IL28B and other factors are associated with sustained virological response (SVR) after
pegylated-interferon/ribavirin treatment for chronic hepatitis C (CHC). Using data from the HALT-C Trial, we developed a
model to predict a patient’s probability of SVR based on IL28B genotype and clinical variables.

Methods: HALT-C enrolled patients with advanced CHC who had failed previous interferon-based treatment. Subjects were
re-treated with pegylated-interferon/ribavirin during trial lead-in. We used step-wise logistic regression to calculate adjusted
odds ratios (aOR) and create the predictive model. Leave-one-out cross-validation was used to predict a priori probabilities
of SVR and determine area under the receiver operator characteristics curve (AUC).

Results: Among 646 HCV genotype 1-infected European American patients, 14.2% achieved SVR. IL28B rs12979860-CC
genotype was the strongest predictor of SVR (aOR, 7.56; p,.0001); the model also included HCV RNA (log10 IU/ml), AST:ALT
ratio, Ishak fibrosis score and prior ribavirin treatment. For this model AUC was 78.5%, compared to 73.0% for a model
restricted to the four clinical predictors and 60.0% for a model restricted to IL28B genotype (p,0.001). Subjects with a
predicted probability of SVR ,10% had an observed SVR rate of 3.8%; subjects with a predicted probability .10% (43.3% of
subjects) had an SVR rate of 27.9% and accounted for 84.8% of subjects actually achieving SVR. To verify that consideration
of both IL28B genotype and clinical variables is required for treatment decisions, we calculated AUC values from published
data for the IDEAL Study.

Conclusion: A clinical prediction model based on IL28B genotype and clinical variables can yield useful individualized
predictions of the probability of treatment success that could increase SVR rates and decrease the frequency of futile
treatment among patients with CHC.

Citation: O’Brien TR, Everhart JE, Morgan TR, Lok AS, Chung RT, et al. (2011) An IL28B Genotype-Based Clinical Prediction Model for Treatment of Chronic
Hepatitis C. PLoS ONE 6(7): e20904. doi:10.1371/journal.pone.0020904

Editor: Johan K. Sandberg, Karolinska Institutet, Sweden

Received January 25, 2011; Accepted May 12, 2011; Published July 8, 2011

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for
any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Funding: This study was supported by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), the National Institute of Allergy and
Infectious Diseases (NIAID), the National Cancer Institute (NCI), the National Center for Minority Health and Health Disparities, General Clinical Research Center and
Clinical and Translational Science Center grants from the National Center for Research Resources, National Institutes of Health. Employees of NIDDK and NCI
played a role in study design, data collection and analysis, decision to publish, and preparation of the manuscript. Additional funding to conduct this study was
supplied by Hoffmann-La Roche, Inc., and Celera Corporation through Cooperative Research and Development Agreements (CRADA) with the National Institutes
of Health. The present study was also supported by the Intramural Research Program of the National Institutes of Health, National Cancer Institute, Division of
Cancer Epidemiology and Genetics. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human
Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government. Yongwu Shao was employed by
Information Management Services, Silver Spring; Myhanh Dotrang by CSC, Rockville; and John J. Sninsky by Celera Corporation, Alameda. These authors played a
role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Contract and grant numbers: University of Massachusetts
Medical Center, Worcester, MA: (Contract N01-DK-9-2326); University of Connecticut Health Center, Farmington, CT: (Grant M01RR-06192); Saint Louis University
School of Medicine, St Louis, MO: (Contract N01-DK-9-2324); Massachusetts General Hospital, Boston, MA: (Contract N01-DK-9-2319, Grant M01RR-01066; Grant 1
UL1 RR025758-01, Harvard Clinical and Translational Science Center); University of Colorado Denver, School of Medicine, Aurora, CO: (Contract N01-DK-9-2327,
Grant M01RR-00051, Grant 1 UL1 RR 025780-01); University of California Irvine, Irvine, CA: (Contract N01-DK-9-2320, Grant M01RR-00827); University of Texas
Southwestern Medical Center, Dallas, TX: (Contract N01-DK-9-2321, Grant M01RR-00633, Grant 1 UL1 RR024982-01, North and Central Texas Clinical and
Translational Science Initiative); University of Southern California, Los Angeles, CA: (Contract N01-DK-9-2325, Grant M01RR-00043); University of Michigan Medical
Center, Ann Arbor, MI: (Contract N01-DK-9-2323, Grant M01RR-00042, Grant 1 UL1 RR024986, Michigan Center for Clinical and Health Research); Virginia
Commonwealth University Health System, Richmond, VA: (Contract N01-DK-9-2322, Grant M01RR-00065).

PLoS ONE | www.plosone.org 1 July 2011 | Volume 6 | Issue 7 | e20904



Competing Interests: The authors wish to report the following relationships that might appear to represent a potential conflict: John J. Sninsky is employed by
Celera Corporation, Alameda. T. R. Morgan is on the speaker’s bureau and receives research support from Hoffmann-La Roche, Inc.; is a consultant, serves on an
advisory board, and receives research support from Vertex Pharmaceuticals; serves on an advisory board for Gilead Sciences; and receives research support from
Merck, Schering Plough Corporation, and WAKO Diagnostics. A. S. Lok is a consultant for Hoffmann-La Roche, Inc., Abbott and Gilead; and receives research support
from Schering-Plough Corporation, Bristol-Myers Squibb, Gilead and Eisai Pharmaceuticals. R. T. Chung receives research support from Hoffmann-La Roche, Inc.;
receives research support from Schering-Plough, Novartis, and Romark; and is a consultant for Vertex Pharmaceuticals, Merck, Pfizer, Astellas, Novartis, and Gilead.
M. L. Shiffman is a consultant for Celera Corporation, Hoffmann-La Roche, Inc., and National Genome Sciences; has attended advisor meetings with Anadys, Biolex,
Bristol-Myers-Squibb, Conatus, Globeimmune, Human Genome Sciences, Novartis, Roche, Romark, Pfizer, Schering-Plough, Valeant, Vertex and Zymogenetics; is a
speaker for Roche and Schering-Plough; is on the data safety monitoring boards with Abbott and Anadys; and has received research support from Biolex, Conatus,
Glaxo SmithKline, Globeimmune, Human Genome Sciences, Idenix, Roche, Romark, Tibotec, Valeant, Vertex, Wyeth and Zymogenetics. J. J. Sninsky is an employee of
Celera Corporation. H. L. Bonkovsky receives research support from Hoffmann-La Roche, Inc.; is a consultant for Boehringer-Ingelheim; is a consultant and on the
advisory board for Clinuvel, Inc.; is a consultant, advisory board member and receives research support from Novartis Pharmaceuticals; is a consultant and on the
speakers’ bureau for Lundbeck Pharmaceuticals; and receives research support from Vertex Pharmaceuticals. There are no patents, products in development or
marketed products to declare. This does not alter the authors’ adherence to all the PLoS ONE policies on sharing data and materials. Authors with no financial
relationships related to this project are: T. R. O’Brien, J. E. Everhart, Y. Shao, M. Dotrang, and R. M. Pfeiffer.

* E-mail: obrient@mail.nih.gov

Introduction

Chronic infection with hepatitis C virus (HCV) is an important

cause of liver cancer and end-stage liver disease in the United

States and worldwide [1,2]. About 60–80% of persons who

become infected with HCV fail to clear the virus spontaneously.

Treatment with pegylated-interferon-alfa/ribavirin is associated

with many adverse effects and results in a sustained virological

response (SVR; i.e., undetectable HCV RNA six months post-

treatment) in only 40–50% of interferon-naı̈ve patients who are

infected with HCV genotype 1 [3] (the most common viral

genotype in the United States and many other developed

countries) [4]. Recently, genome wide association studies (GWAS)

found single nucleotide polymorphisms (SNPs) located upstream of

IL28B (alternatively known as interferon-l3) to be associated with

SVR [5,6,7,8]. IL28B variants are also associated with decreased

frequency of spontaneous clearance of HCV [6,9]. Interferon-l
induces the JAK/STAT pathway, which up-regulates genes with

anti-viral effects against HCV [10,11]. The newly identified SNPs

likely mark a functional variant that affects response to interferon-

a [12,13].

A goal of genomic research is to yield information that leads to

treatment decisions based on a patient’s genetic makeup [14].

Personalized clinical decision-making for treatment of patients

with chronic hepatitis C requires estimates of the probability that a

patient will achieve SVR which consider not only IL28B genotype,

but also other factors that are associated with treatment response

[12]. Here we examine the association of IL28B genotype with

response to treatment among participants in The Hepatitis C

Antiviral Long-term Treatment against Cirrhosis (HALT-C) Trial,

which enrolled patients with bridging fibrosis or cirrhosis who had

not responded to previous interferon therapy [15]. We use these

results to develop a model that predicts the individual probability

of SVR for such patients based on genotype for the IL28B

rs12979860 SNP and four commonly measured pre-treatment

clinical variables.

Methods

Subjects
The design and primary results of the HALT-C Trial have been

reported [15,16]. Briefly, at enrollment, HALT-C patients had an

Ishak fibrosis score $3 by local assessment of liver biopsy, had not

previously responded to interferon treatment, had a Child-

Turcotte-Pugh score ,7 and had no evidence of hepatocellular

carcinoma. Final assessment of fibrosis stage was performed by a

panel of hepatopathologists [15,16]. Patients with other liver

diseases, human immunodeficiency virus infection, active illicit

drug use or current alcohol abuse were excluded. During lead-in,

patients received pegylated-interferon-a2a 180 mcg/week plus

ribavirin 1.0–1.2 g/day. Subjects with undetectable HCV RNA at

week 20 remained on combination treatment through week 48

and were followed until week 72. Subjects with undetectable HCV

RNA at weeks 48 and 72 were considered to have an SVR.

Investigations of human genetics in the HALT-C Trial were

conducted in those participants who provided (written) consent for

genetic testing. Subjects who reported themselves to be ‘White,’

but not of Latino/Hispanic ethnicity, were termed ‘European

American;’ those who reported themselves to be ‘White’ and of

Latino/Hispanic ethnicity were termed ‘Hispanic;’ those self-

reporting as Black were termed ‘African American.’ Subjects who

did not report themselves to be in one of these three groups

(n = 27) were excluded from this analysis. For external comparison,

we genotyped IL28B SNPs in reference populations representative

of European American or African American subjects (Text S1and

Table S1).

The HALT-C Trial was approved by institutional review

boards of the participating institutions: Human Subjects IRB,

University of Massachusetts Medical Center, Worcester, MA;

Human Subjects Protection Office, University of Connecticut

Health Center, Farmington, CT; Biomedical IRB, Saint Louis

University School of Medicine, St Louis, MO; Partners Human

Research Committee, Boston, MA; Colorado Multiple Institu-

tional Review Board, Aurora, CO; University of California -

Irvine Institutional Review Board, Irvine, CA; IRB (Subcommittee

on Human Studies), Long Beach VAMC Research Health Care

Group, Long Beach, CA; Institutional Review Board, University

of Texas Southwestern Medical Center, Dallas, TX; Institutional

Review Board, University of Southern California, Los Angeles,

CA; Institutional Review Board for Human Subject Research,

University of Michigan Medical Center, Ann Arbor, MI; Office of

Research Subjects Protection, Virginia Commonwealth University

Health System, Richmond, VA; Institutional Review Board,

National Institute of Diabetes and Digestive and Kidney Diseases,

National Institutes of Health, Bethesda, MD; Institutional Review

Board, New England Research Institutes, Watertown, MA.

Laboratory
Serum HCV RNA and HCV genotype were determined as

described previously (Text S1) [17]. The methods used to extract

genomic DNA were described in an earlier publication [18].

Genotyping of IL28B SNPs was carried out by allele-specific real-

time PCR [19] at a high throughput facility. For each allele-

specific PCR reaction, 0.3 ng of DNA was amplified. Genotypes

were automatically called by an in-house software program

followed by manual curation without knowledge of phenotype.

Primer sequences can be found in the Text S1.

IL28B-Based Prediction Model for Hepatitis C
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Statistical analyses
HALT-C Trial. Analyses of virological response were

stratified by ethnicity and restricted to subjects who were

infected with HCV genotype 1. To examine the effect of IL28B

genotype over a range of possible virological responses, we divided

patients into four mutually exclusive outcome groups based on

serum HCV RNA levels during and after treatment: 1) null (,2

log10 IU/mL decrease at week 12); 2) partial early viral response

(EVR) only (week 12: .2 log10 decrease; week 20: detectable); 3)

relapse (week 20 and 48: undetectable; week 72: detectable) or

breakthrough (week 20 undetectable; detectable sometime

between week 20 and 48); 4) SVR (week 20, 48, and 72

undetectable). In these analyses, IL28B genotype frequencies were

determined for each virological response group. Using null

responders as the referent (i.e., baseline subject group) and

homozygosity for the ancestral allele (rs12979860-T or rs8099917-

T) as the baseline genotype, the genotype specific odds ratio (OR)

and 95% confidence interval (CI) were determined.

Among European American patients who were infected with

HCV genotype 1 (n = 646), we used a step-wise algorithm

(selection criteria: entry, p = 0.10; exit, p = 0.05) to select variables

for a logistic regression model that was used to calculate adjusted

ORs and to estimate an individual’s probability of achieving SVR

or not. Candidate variables for this model were IL28B rs12979860

genotype and other factors that have been reported to be

associated with SVR. All variables listed in Table S2 were entered

into the step-wise model. Continuous variables were divided into

categories with a minimum of 50 subjects per category (Table S2)

and these variables were treated as ordinal predictors in the model,

if appropriate. No variables were forced into the model, but, for

the sake of comparison, we also created a model that was limited

to the clinical variable and another that was limited to IL28B

genotype. We used the likelihood ratio test to compare these

models for fit of the data. To examine whether rs12979860 and

rs8099917 were independently associated with virological re-

sponse, we constructed models including both variants and

compared them to single SNP models by the log likelihood test.

Among European American patients who were infected with

HCV genotype 1 (n = 646), we used the leave-one-out cross-

validation (LOOCV) method [20] to estimate the probability of

SVR for each subject. A series of 646 logistic regression models

was created with each model excluding a different subject from the

dataset. An individual’s probability of achieving SVR was

obtained from the model to which they did not contribute,

making these estimates unbiased a priori predictions of the

probability of SVR.

We used the LOOCV predictions to estimate area under the

‘receiver operating characteristic’ curve (AUC), a popular measure

of model discrimination [21]. To test for differences in AUC

values between models, we computed a p-value based on a chi-

square test (1 df) that used a bootstrap variance estimate computed

by resampling the LOOCV predictions for subjects with SVR and

non-responders, and then repeating the AUC computations for

each bootstrap sample.

IDEAL Study. SVR rates according to the joint distribution

of HCV RNA level (#600,000, .600,000), METAVIR fibrosis

score (F0–2, F3–4) and IL28B rs12979860 genotype (CC, CT,

TT), have been published for 1,121 HCV-infected European

American patients who enrolled in the IDEAL Study (found in

Supplemental Table 4 of the paper by Thompson et al) [22]. The

combination of these three risk factors can be viewed as a single

predicator (X) with twelve (unordered) categories. We used Bayes’s

theorem to determine the distribution of X in IDEAL Study

subjects who achieved SVR and in those who did not. We then

randomly selected 10,000 values of X separately for IDEAL

subjects who achieved SVR and from non-responders, and

computed the logistic probability of SVR given X. We

calculated AUC as the probability that the score for a randomly

selected subject with SVR is greater than the score for a randomly

selected non-responder, where score is the probability of SVR for

a given X.

Results

Virological Response to Treatment in the HALT-C Trial
Demographic and clinical data at entry into HALT-C for all

lead-in subjects who had an IL28B genotype result are shown in

Table 1. Median age was 49 years, 72.4% were male, median pre-

treatment HCV RNA was 6.5 log10 IU/ml; 37.6% had cirrhosis.

Consistent with previous studies [5,9], there was evidence for

selection against the IL28B rs12979860-CC genotype among these

patients, who had failed both to clear HCV spontaneously and to

achieve SVR in response to prior therapy. IL28B rs12979860-CC

frequency was 25.7% among 732 European American subjects in

the Trial compared to 45.6% in the reference population

(p,.0001) and 10.8% in 148 African American Trial subjects

compared to 20.0% in the reference population (p = 0.01).

Among European American patients who were infected with

HCV genotype 1 (n = 646), the overall SVR rate was 14.2%. To

examine the relationship between IL28B genotype and a range of

virological responses, we performed an analysis among the 622

(96.3%) HCV genotype 1-infected European American patients

who could be fully classified for virological response. IL28B

rs12979860-CC frequency varied markedly by the degree of

virological response (Figure 1; Table S3): null responders

(referent), 6.9%; partial EVR, 24.4% (unadjusted OR,6.69;

,.0001); breakthrough/relapse, 48.2%; SVR, 48.9%. The

unadjusted OR observed for those with breakthrough/relapse

and SVR were approximately 20 (p ,.0001, each comparison),

but the frequency of rs12979860-CC did not differ between these

two groups even when other variables were considered in

multivariate models (p = 0.56). Comparing subjects with undetect-

able HCV RNA at week 20 (breakthrough/relapse or SVR) to

those with detectable virus (null or partial EVR) yielded adjusted

ORs of 16.29 for rs12979860-CC (95% CI, 8.44–31.47; p,.0001)

and 2.02 for rs12979860-CT (95% CI, 1.16–3.52; p = 0.01).

Among all European American subjects infected with HCV

genotype 1, we compared IL28B genotype between those who

achieved SVR and those who did not. Compared to rs12979860-

TT, the OR for rs12979860-CC was 5.29 (95% CI, 2.46–11.38;

p,.0001) and that for rs12979860-CT was 1.48 (95% CI, 0.69–

3.16; p = 0.3). Fibrosis stage did not vary by rs12979860 genotype

(mean and median = 4.0 for all three genotypes) in these subjects,

but, consistent with prior reports [5], higher median pre-treatment

HCV RNA levels were found in subjects with genotype

rs12979860-CC (6.74 log10 IU/mL; p,.0001) and rs12979860–

CT (6.50 log10 IU/mL; p = 0.04) compared to rs12979860-TT

(6.41 log10 IU/mL). The logistic regression model included five

variables: IL28B genotype (three categories), pre-treatment HCV

RNA level (seven ordinal categories), AST/ALT ratio (five ordinal

categories), Ishak fibrosis score (five ordinal categories) and prior

treatment with ribavirin (yes/no). This model yielded an adjusted

OR of 7.56 (95% CI, 3.20–17.87; p,.0001) for rs12979860-CC

and an adjusted OR of 1.83 (95% CI, 0.82–4.11; p = 0.14) for

rs12979860–CT.

The final model is described by this equation:

log odds = 22.854020.35326fibrosis20.40676HCV RNA2

0.42686AST:ALT20.68446prior ribavirin+2.02266IL28B rs129

IL28B-Based Prediction Model for Hepatitis C
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79860(CC)+0.60636IL28B rs12979860(CT). Reference catego-

ries for co-variates are: HCV RNA = 6.50–6.74; AST:ALT =

0.50–0.74, fibrosis = 3; prior ribavirin = yes; IL28B rs12979

860(TT). On the basis of these log odds ratio parameter

estimates, IL28B genotype was the strongest predictor of SVR

in this study.

Figure 1. Distribution of IL28B rs12979860 genotypes, by response to treatment with pegylated-interferon-a2a plus ribavirin
among European American subjects infected with HCV genotype 1, lead-in phase of the HALT-C Trial. EVR, early virological response;
BT, breakthrough; SVR, sustained virological response.
doi:10.1371/journal.pone.0020904.g001

Table 1. Demographic and clinical characteristics of subjects in the HALT-C Trial study of IL28B genotype.

All Lead-In Subjects (n = 992) Prediction Model (n = 646)

Characteristic

Age (median, IQRa) 49 45–53 49 45–53

Race

White (n, %) 732 73.8 646 100.0

Black (n, %) 148 14.9 0

Hispanic (n, %) 85 8.6 0

Other (n, %) 27 2.7 0

Male (n, %) 718 72.4 487 75.4

Ishak Fibrosis Scoreb

2 (n, %) 82 8.3 48 7.4

3–4 (n, %) 534 53.8 357 55.3

5–6 (n, %) 373 37.6 241 37.3

HCV Genotype 1 (n, %) 877 88.4 646 100.0

HCV RNA level (log 10) (median, IQRa) 6.5 6.1–6.8 6.5 6.2–6.8

Prior treatment:

Interferon alone (n, %) 282 28.4 176 27.2

Interferon and ribavirin (n, %) 710 71.6 470 72.8

aIQR – Intra-quartile range (25th percentile–75th percentile).
bFinal assessment of fibrosis stage was performed by a panel of hepatopathologists.
doi:10.1371/journal.pone.0020904.t001

IL28B-Based Prediction Model for Hepatitis C
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Of the 646 European American subjects infected with HCV

genotype 1, 350 were maintained on at least 80% of full dose for

both pegylated-interferon-a2a and ribavirin for the first 20 weeks

of treatment. Among this ‘fully adherent’ subgroup, the association

between IL28B genotype and SVR (rs12979860-CC: adjusted

OR, 7.91; 95% CI, 2.80–22.35; p,.0001. rs12979860–CT:

adjusted OR, 1.75; 95% CI, 0.67–4.57; p = 0.25) was similar to

that found among HCV genotype 1-infected European American

subjects as a whole.

Among 134 HCV genotype 1-infected African American

patients, eight achieved SVR. For rs12979860-CC, the unadjusted

OR was 12.69 (95% CI, 1.19–135.66; p = 0.04) and adjustment for

covariates increased the association (adjusted OR, 48.02; 95% CI,

2.57–898.09; p = 0.01). The rs12979860-CC genotype was much

more common in African American subjects with undetectable

HCV RNA at week 20 (n = 21) than those with detectable virus

(adjusted OR, 15.88; 95% CI, 2.90–86.96; p = 0.001). Hispanic

subjects who were infected with HCV genotype 1 were too few

(n = 67) for a meaningful analysis of virological response.

IL28B rs8099917 has been associated with response to

treatment for chronic hepatitis C [5,6,7,8] and this SNP is in

strong linkage disequilibrium with rs12979860 [5]. Associations of

rs8099917 genotype with virological response were similar to those

for rs12979860, but models including both SNPs showed no

independent effect of rs8099917 (data not presented).

Prediction of Treatment Response in the HALT-C Trial
The subjects for the prediction model, European American

patients who were infected with HCV genotype 1, were similar to

HALT-C Trial lead-in subjects as a whole with regard to other

demographic and clinical variables (Table 1). The distribution of

IL28B rs12979860 genotypes among these 646 subjects was: CC,

24.0%; CT, 56.8%; TT, 19.2%.

The logistic regression model based on IL28B genotype plus

four clinical predictors of SVR (described above) fit the data better

than models that included the four clinical predictors only or

IL28B genotype only (p,0.001, both comparisons). For the full

model (IL28B genotype plus clinical predictors), AUC was 78.5%

compared to 73.0% for the model based on the clinical predictors

without IL28B genotype (p,0.001; Figure 2). AUC was 60.0% for

the model with IL28B genotype only.

Based on the LOOCV models, 30.2% of these HALT-C

subjects had an a priori predicted probability of achieving SVR

,5%, 56.7% had a predicted probability ,10%, 77.6% had a

predicted probability ,20% and 90.1% had a predicted

probability ,35% (Table 2). The distributions of a priori predicted

probabilities of SVR differed markedly between the 554 non-

responders and the 92 subjects who actually achieved SVR

(Figure 3). For example, 36.5% of non-responders had a predicted

probability $10%, compared to 84.8% of HALT-C subjects who

achieved SVR. As a result of this relationship, the IL28B genotype-

based model could predict which HALT-C subjects were more

likely to achieve SVR. Table 2 shows SVR rates under a range of

model-based treatment decision scenarios. For example, among

the 280 HALT-C subjects with a predicted probability $10%, the

observed SVR rate was 27.9%, compared to an SVR rate of 3.8%

among the 366 patients with a predicted probability ,10%. For

HALT-C subjects, a strategy of treating those with a predicted

Figure 2. Area under the ‘receiver operating characteristic’ curve (AUC) for models predicting the probability of sustained
virological response (SVR) - European American patients infected with HCV genotype 1, HALT-C Trial. Full model: IL28B rs12979860
genotype plus four clinical variables. AUC was calculated using predicted probabilities of SVR based on a series of leave-one-out cross-validation
logistic regression models.
doi:10.1371/journal.pone.0020904.g002

IL28B-Based Prediction Model for Hepatitis C
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probability $10% (and deferring treatment for the remaining

subjects) would have yielded ,85% of the total number of patients

with SVR through treatment of 43% of the patients. Limiting

treatment to those with a predicted probability $15%, would

increase the SVR rate to 32.5% and decrease the number treated

to 194 (30.0% of total subjects), while also decreasing the number

who achieved SVR to 63 (68.5% of all subjects who actually

achieved SVR).

Figure 4 displays selected examples of SVR probabilities

predicted by the model, as well as the observed SVR rates overall

(14.2%) and by IL28B genotype (CC, 29.0%; CT, 10.3%; TT,

7.3%). Clinical profile 1consists of relatively favorable values for

the four clinical predictors (HCV RNA, 5.75–5.99; AST/ALT,

0.50–0.74; no prior ribavirin; fibrosis score, 3). Among individuals

with this clinical profile, the model predicted a probability of SVR

as 74.5% for patients with the IL28B-CC genotype, 41.5% for

Figure 3. Distributions of a priori predicted probability of sustained virological response (SVR) for 554 non-responders and 92
subjects who achieved SVR - European American patients infected with HCV genotype 1, HALT-C Trial. Predicted probabilities are
based on a series of leave-one-out cross-validation logistic regression models.
doi:10.1371/journal.pone.0020904.g003

Table 2. Number of subjects with various a priori predicted probabilities of SVR; projected SVR rates and numbers of patients
achieving SVR if decision to treat was based on predicted probablity of SVR estimated from LOOCV models among EA patents
infected with genotype 1, HALT-C Trial.

Predicted Probability SVR

Any 5% 10% 15% 20% 35%

Treatment
Decision Group # % # % # % # % # % # %

$Predicted Probability
SVR

Treat 646 100 451 69.8 280 43.3 194 30 145 22.4 64 9.9

,Predicted Probability
SVR

Defer 0 0 195 30.2 366 56.7 452 70 501 77.6 582 90.1

SVR Rate Treat 14.2 18.8 27.9 32.5 35.9 42.2

SVR Rate Defer N/A 3.6 3.8 6.4 8.0 11.2

SVR Achieved 92 100 85 92.4 78 84.8 63 68.5 52 56.5 27 29.3

SVR Not Achieved 0 0 7 7.6 14 15.2 29 31.5 40 43.5 65 70.7

doi:10.1371/journal.pone.0020904.t002
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IL28B-CT and 27.9% for IL28B-TT. Among individuals with the

‘intermediate’ clinical profile (Clinical profile 2: HCV RNA, 6.25–

6.49; AST/ALT, 0.75–0.99; no prior ribavirin, fibrosis score, 4),

the range in genotype-specific predicted probability of SVR was

30.0% (IL28B-CC, 37.3%; IL28B-CT, 12.6%; IL28B-TT, 7.3%).

With a very unfavorable non-genetic profile (Clinical profile 3:

HCV RNA, 6.75–6.99; AST/ALT, 1.00–1.24; prior ribavirin,

fibrosis score, 5), the model predicted a very low SVR probability

for all genotypes including IL28B-CC (5.7%).

Prediction of Treatment Response in the IDEAL Study
To determine whether both IL28B genotype and clinical

variables improve clinical prediction in a treatment naı̈ve

population, we used published data [22] among 1,121 HCV

genotype 1-infected European American patients enrolled in the

IDEAL study. The overall SVR rate in this population was 45.3%.

AUC values were: IL28B genotype, HCV RNA and fibrosis,

73.7%; IL28B genotype, 67.8%; HCV RNA and fibrosis, 60.0%

(all AUC values differ from each other, p,.01).

Discussion

We demonstrated that IL28B genotype is a very strong predictor

of SVR among patients with advanced chronic hepatitis C who

failed previous therapy and then used these data to create a model

to predict the probability of SVR based on IL28B genotype and

selected clinical factors. The model must be validated in other

populations before it can be implemented clinically, but our results

provide ‘proof of concept’ that this approach has the potential to

improve the care of patients with chronic hepatitis C. Patients with

advanced chronic hepatitis C who have failed to respond to prior

treatment for chronic hepatitis C have a very low rate of SVR

overall, nonetheless the model identified patient profiles associated

with a high probability of treatment response. As expected, most

HALT-C subjects had a profile associated with a very low a priori

probability of achieving SVR. Treatment decisions involve many

considerations, but our work suggests that identifying patients with

a low likelihood of success and advising them to await availability

of more effective regimens could reduce the number of patients

who would be exposed to a treatment with substantial adverse

effects from which they will not derive a benefit, while having

much less impact on the number who respond. For example, if

treatment of HALT-C subjects had been limited to patients with a

predicted probability $10%, 57% would have been spared

treatment, the SVR rate would have been double and the number

of subjects achieving SVR would have been 85% of that attained

through treating the entire group.

Although IL28B genotype was the strongest predictor of SVR in

this study, the prediction model was greatly improved by the

inclusion of four parameters commonly available in clinical

practice (pre-treatment HCV RNA level; AST/ALT ratio; fibrosis

score; whether or not the patient received ribavirin during

previous interferon-based treatment). In building the model, we

divided continuous variables into multiple categories to avoid

assumptions about the relationship between a variable and SVR

based solely on the associations observed among HALT-C

subjects. In addition, although the difference in SVR rate between

rs12979860-CT and rs12979860-TT (adjusted OR, 1.83) did not

reach statistical significance (p = 0.14), we retained all three IL28B

genotype categories, which is consistent with the approach of some

other groups [7]. The number of variables and categories in the

model should not present a barrier to its clinical implementation,

as these could be accommodated easily in a computer-based

instrument.

Some variables previously associated with SVR were not

selected into our logistic regression model. The effect of these

variables may have been accounted for by variables in the model

or our statistical power may have been inadequate to select these

variables. Additional subjects might allow us to add variables to

the model and improve its predictive ability.

Published data on joint SVR rates by IL28B genotype, HCV

RNA level and fibrosis score (from the IDEAL study), allowed us

Figure 4. Observed and predicted probabilities of sustained virological response (SVR), by IL28B rs12979860 genotype, among
European American patients infected with HCV genotype 1, HALT-C Trial. ‘Overall’ probabilities were directly observed. Probabilities for the
selected clinical profiles were predicted from the model.
doi:10.1371/journal.pone.0020904.g004
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to verify that AUC is increased among treatment naı̈ve patients

when both IL28B genotype and clinical variables are considered.

However, individual patient data are required for our model and

with additional data, our modeling approach could be extended.

The HALT-C Trial was limited to subjects with advanced chronic

hepatitis C who had failed to respond to previous interferon-based

treatment. In developing the model, we further restricted subjects

to those who were infected with HCV genotype 1 and of European

ancestry because there were too few subjects in other ‘race’ or viral

genotype groups for meaningful analysis. Given sufficient data, a

prediction model for chronic hepatitis C treatment response could

encompass the full range of HCV-infected patients, including

those previously naı̈ve for peg-interferon- alfa/ribavirin and those

receiving regimens that include additional agents. Our modeling

approach also could be expanded to include data on rapid

virological response, but, unfortunately, those data are incomplete

among HALT-C subjects. A ‘non-invasive’ prediction model that

would not require measurement of fibrosis by liver biopsy might be

desirable, but development and evaluation of such a model

requires subjects encompassing the full range of fibrosis values.

Direct acting anti-viral agents that inhibit HCV replication,

currently in late clinical development, promise to improve the

SVR rate for patients who have failed to respond to treatment with

interferon- alfa and ribavirin [23], as well as for patients who have

not been treated for chronic hepatitis C previously [24,25]. These

compounds, which select drug-resistant HCV strains if used alone

[26], will likely be combined with peginterferon alfa/ribavirin to

reduce viral replication and mutational escape. Among patients

who were treated with a regimen of peginterferon alfa/ribavirin

plus the HCV-protease inhibitor telaprevir, 84% of those with the

IL28B rs12979860-CC genotype achieved SVR compared to 32%

among those with either IL28B rs12979860-CT or –TT [27].

Indirect evidence also suggests that IL28B genotype may be

associated with response to a peginterferon alfa/ribavirin/

telaprevir regimen. A recent trial among HCV-infected patients

who had failed initial peginterferon alfa/ribavirin treatment found

that retreatment with a regimen that included telaprevir was more

effective among patients who had relapsed during previous

treatment compared to previous nonresponders [23]. Given the

strong association we observed between IL28B genotype and

breakthrough/relapse, it is quite plausible that IL28B genotype is

associated with response to a peginterferon alfa/ribavirin/

telaprevir regimen. Therefore, an IL28B genotype-based model

may identify patients who are at high risk for treatment failure

(and selection of resistant HCV strains) when treated with this

regimen.

Our work demonstrates that a model based on IL28B genotype

and a few clinical variables can provide individualized predictions

for the probability of achieving SVR after treatment with peg-

interferon- alfa/ribavirin. If the IL28B genotype-based model is

validated in a wide range of patients with chronic HCV infection,

then development of a computer based algorithm for clinical

decision making would seem warranted. Such a tool could

improve patient outcomes among patients treated for chronic

hepatitis C by increasing SVR rates and reducing the frequency of

futile treatment, with its substantial costs and adverse effects.
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