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Mining cancer-omics databases deepens our understanding of cancer biology and

can lead to potential breakthroughs in cancer treatment. Here, we propose an

integrative analytical approach to reveal across-cancer expression patterns and

identify potential clinical impacts for genes of interest from five representative public

databases. Using ribonucleotide reductase (RR), a key enzyme in DNA synthesis and

cancer-therapeutic targeting, as an example, we characterized the mRNA expression

profiles and inter-component associations of three RR subunit genes and assess their

differing pathological and prognostic significance across over 30-types of cancers

and their related subtypes. Findings were validated by immunohistochemistry with

clinical tissue samples (n = 211) collected from multiple cancer centers in China and

with clinical follow-up. Underlying mechanisms were further explored and discussed

using co-expression gene network analyses. This framework represents a simple,

efficient, accurate, and comprehensive approach for cancer-omics resource analysis

and underlines the necessity to separate the tumors by their histological or pathological

subtypes during the clinical evaluation of molecular biomarkers.

Keywords: cancer-omics, integrative analysis, ribonucleotide reductase, expression characteristics, clinical

relevance, gene networks

BACKGROUND

To date, an immense and increasing amount of cancer-omics data and associated clinical
annotation has been produced and has become publicly available from diverse repositories. Such
cancer-omics data resources include the Catalog of Somatic Mutations in Cancer (COSMIC) (1),
the Cancer Genome Atlas (TCGA) (2), the International Cancer Genome Consortium (ICGC)
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(3), and the Cancer Proteome Atlas (TCPA) (4). In such
efforts, researchers have collected and annotated enormous
amounts of heterogeneous cancer genomic data and have also
created some powerful data-mining tools such as Oncomine (5),
cBio Cancer Genomics Portal (cBioPortal) (6), Kaplan-Meier
plotter (KM-plotter) (7), and the Human Protein Atlas (HPA)
(8). Although these resources have provided an unprecedent
opportunity to deepen our understanding of cancer development
and progression, the challenge continues to press on toward
increasingly efficient and more effective data mining strategies
that aim at the identification of key molecular targets for
improving cancer treatment.

Ribonucleotide reductase (RR) has been identified as an
important anticancer target and its inhibitors, alone or combined
with other anticancer drugs, have been successfully used to
control multiple solid and hematological malignancies (9–12).
However, three genes coding for RR proteins are located in three
different chromosomes and their expressions are both varied
and diverse in different types of cancers and their histologic
variants (9, 10). The whole-genome expressional landscape of
different RR subunit genes during cancer development, as well as
their underlying molecular regulatory mechanisms and potential
clinical applications, still requires considerable clarification. This
makes RR an ideal candidate example to use for demonstrating
a more integrative analytical approach for the mining of cancer-
omics databases.

In this study, we began by analyzingmultiple publicly available
cancer-omics databases for the expression profiles of a group
of RR-related genes and their correlations with patient survival.
Findings were further validated using clinical samples from
cohorts of lung cancer patients. With this approach, we revealed
the expressional patterns of three RR subunit genes and their
associations with each other in common types of cancers in
Oncomine and TCGA datasets. The differential expression and
prognostic significance of the two types of RR (RRM1-RRM2
and RRM1-RRM2B) were further validated in 211 cases of lung
squamous cell carcinoma (LUSC) and lung adenocarcinoma
(LUAD) patients. Finally, we performed a gene co-expression
network analysis to further define possible roles and explore
the underlying mechanisms of the RRM2 and RRM2B genes
in LUAD and LUSC tumors. Our study provides novel insight
in understanding molecular mechanisms of RR in cancer

Abbreviations: BLCA, Bladder urothelial carcinoma; BRCA, Breast invasive

carcinoma; CESC, Cervical and endocervical cancers; COAD, Colon

adenocarcinoma; COADREAD, Colorectal adenocarcinoma; DEGs, Differentially

expressed genes; ESCA, Esophageal carcinoma; GBM, Glioblastoma multiforme;

GBMLGG, Glioma; HNSC, Head and Neck squamous cell carcinoma; KICH,

Kidney Chromophobe; KIPAN, Pan-kidney cohort (KICH+KIRC+KIRP);

KIRC, Kidney renal clear cell carcinoma; KIRP, Kidney renal papillary cell

carcinoma; LAML, Acute Myeloid Leukemia; LCLC, large cell lung carcinoma;

LGG, Brain Lower Grade Glioma; LIHC, Liver hepatocellular carcinoma;

LUAD, Lung adenocarcinoma; LUSC, Lung squamous cell carcinoma; OV,

Ovarian serous cystadenocarcinoma; PAAD, Pancreatic adenocarcinoma; PCPG,

Pheochromocytoma and Paraganglioma; PRAD, Prostate adenocarcinoma;

READ, Rectum adenocarcinoma; SARC, Sarcoma; SCLC, small cell lung

carcinoma; SKCM, Skin Cutaneous Melanoma; STAD, Stomach adenocarcinoma;

STES, Stomach and Esophageal carcinoma; TGCT, Testicular Germ Cell

Tumors; THCA, Thyroid carcinoma; THYM, Thymoma; UCEC, Uterine Corpus

Endometrial Carcinoma.

development, which may promote precision RR-targeting for
cancer treatment and provides a valuable data-mining approach
that could be applied to any gene of interest.

MATERIALS AND METHODS

Databases and Datasets for Integrative
mRNA Expression Analysis
Normalized microarray data used for analysis of RRM1,
RRM2, and RRM2B mRNA expressions across 20 types of
common human cancers were downloaded from the Oncomine
database (5). Expectation-Maximization (RSEM) normalized
RNA-sequencing (RNA-seq) data and clinicopathologic data of
31 types of common cancers, including BLCA (n = 408), BRCA
(n= 1,093), CESC (n= 304), COAD (n= 285), COADREAD (n
= 379), ESCA (n = 184), GBM (n = 153), GBMLGG (n = 669),
HNSC (n = 520), KICH (n = 66), KIPAN (n = 889), KIRC (n =

533), KIRP (n = 290), LAML (n = 173), LGG (n = 516), LIHC
(n = 371), LUAD (n = 515), LUSC (n = 501), OV (n = 303),
PAAD (n = 178), PCPG (n = 179), PRAD (n = 497), READ
(n = 94), SARC (n = 259), SKCM (n = 470), STAD (n = 415),
STES (n = 599), TGCT (n = 150), THCA (n = 501), THYM (n
= 120), and UCEC (n = 176) were downloaded from TCGA via
Firehose. TCGA, Oncomine, and KM Plotter datasets were used
for pathological survival analyses of LUSC and LUAD.

Patient Samples in ZJUC Cohort
A total of 211 surgically-excised tumor tissue samples from
LUSC and LUAD patients (n = 97 and 114, respectively) were
collected between July 2011 and October 2013 in three hospitals
in Zhejiang, China, including the First and Second Affiliated
Hospitals of Zhejiang University, and Zhejiang Cancer Hospital,
and the cohort was named as ZJUC cohort in this study. Prior
to the study, all patients gave their written informed consent
to allow the tissue samples and clinical information to be used
for scientific research. The inclusion criteria were defined as
follows: (i) histologically diagnosed as primary LUSC or LUAD;
(ii) underwent surgical resection as a primary treatment; (iii) full
information available including clinicopathologic characteristics
and follow-up information. Patients were excluded if they
had incomplete or missing data regarding the American
Joint Committee on Cancer (AJCC) staging, survival state,
cause of death and survival time. The disease stages were
classified based on the 7th edition of AJCC staging manual.
This study was approved by the Ethics Committee of each
participating hospitals.

Immunohistochemistry (IHC) Assays
The 211 tissue samples were formalin-fixed and paraffin-
embedded. The immunohistochemistry was conducted using an
Envision Detection System (DAKO, Denmark) according to the
manufacturer’s instructions as described previously (13). We
used the following commercial antibodies against RRM1 (10526-
1-AP, Proteintech, 1:500), RRM2 (ab57653, Abcam, 1:200), and
RRM2B (ab8105, Abcam, 1:500) for immunohistochemistry. PBS
was used as a negative control.

To determine the score of each slide, at least eight individual
fields at 200× were selected, and 100 cancer cells were
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counted in each field. Cells with cytoplasmic and/or nuclear
immunoreactivity of RRM1, RRM2, and RRM2Bwere considered
positive. The immunostaining intensity was divided into five
grades: 0, negative; 1, weak; 2, moderate; 3, strong; and 4,
very strong. The proportion of positive-staining cells was also
divided into five grades: 0, <5; 1, 6–25; 2, 26–50; 3, 51–75; and
4, >75%. The IHC scores were generated by multiplying the
intensity score and the proportion score. To avoid observer bias,
and for consistency, the value of immunostaining intensity and
the percentage of positive-staining cells for all the slides were
evaluated independently by two different well-trained observers
blinded to the clinical data.

Construction of Co-expressed Gene
Networks for RR Subunit Genes in Lung
Cancers
Based on RNA-seq data derived from TCGA, we estimated the
correlations of gene sets tightly associated with RR subunit
genes in different lung cancer types using Pearson’s correlation
coefficient. Gene-annotation enrichment analysis was next
conducted using the DAVID bioinformatics resources version
6.8. Cytoscape 3.0 was used to visualize the topological molecular
network structures that were composed of genes highly correlated
to RRM2B with their Gene Ontology (GO) terms having p <

0.05 (14).

Statistical Analysis
The definitions of overall survival (OS) and disease-free survival
(DFS) followed recommended criteria (15). OS was defined
as the interval between first pathological confirmation and
death or the last date of follow-up. DFS was defined as the
time from random assignment to recurrence, second primary
cancer, or death with evidence of disease progression. Within
a specific cohort, patients were divided into two groups by the
median value of each gene in all samples. Associations with
OS were examined using univariate Cox proportional hazard
regression models. Survival curves were constructed using the
Kaplan–Meier method and compared using the log-rank test.
The correlation coefficients across individual gene expressions
were calculated using Pearson’s correlation coefficient in R
3.1.2 software package. Student t tests were used to compare
continuous data. The One-way ANOVA was used to compare
means of two or more samples, with the Least Significant
Difference (LSD) test used for pair-wise comparisons of different
groups. The Kaplan-Meier plot was drawn using GraphPad
Software (version 6.0, USA). All tests were two tailed, retaining
P < 0.05. Statistical analysis was performed using SAS v9.4 (SAS
Institute, Inc., Cary, NC, USA).

RESULTS

Development of an Integrative Analytic
Approach for the Expression Pattern and
Clinical Relevance
We propose a stepwise analytical workflow to investigate
the expression patterns and clinical relevance of virtually

any genes of interest related to the malignancies of human
cancers (Figure 1). This firstly involves collection and
integration of genomics, transcriptomics, proteomics, and
clinical information from multiple publicly available cancer-
omics databases, including COSMIC, TCGA, Oncomine,
HPA, and Kaplan-Meier plotter. This data is then validated
by routine immunochemical examination of clinical cancer
samples collected from multiple archived tissue banks. Finally,
the validated results are further explored for their biological
relevance, underlying pathological mechanisms, and potential
application in diagnosis, treatment, and prevention of cancers. In
this manuscript, a multi-subunit enzyme, human RR, was used
as an example to demonstrate the use, application and efficiency
of this method.

Expression Profiles of RRM1, RRM2, and
RRM2B in Common Types of Human
Cancers
To obtain mRNA expression profiles of three RR subunit genes
in the 20 malignancy types, including both solid and blood
malignancies, we systematically analyzed all the relevant studies
(studies 358, 355 and 209 for RRM1, RRM2, and RRM2B,
respectively) collected from Oncomine version 4.5, with the
search completed on 15 Mar 2019 (Figure 2). We used following
parameters as the filtering criteria to identify differentially
expressed genes (DEGs) between cancer and normal tissues:
concept filter = cancers vs. normal; data type = mRNA, p
< 0.05, and gene rank being ≤10% (in which the genes are
ranked by their p-value and a gene rank ≤10% represents those
genes with their p-value listed in the top 10% of the up- or
down-regulated genes). We found that the mRNA expression
levels of RRM1, RRM2, and RRM2B ranked in the top 10% of
the up-regulated DEGs in 24.0% (86 of 358), 38.3% (136 of
355), and 10.5% (22 of 209) of the identified cancer studies,
respectively. In contrast, RRM1, RRM2, and RRM2B were ranked
in the top 10% of the down-regulated DEGs in only 8.4%
(30 of 358), 4.5% (16 of 355), and 4.8% (10 of 209) of the
cancer studies, respectively. Figure 2A represents the global
distribution of RRM1, RRM2, and RRM2B gene expressions
across the different types of Oncomine cancer studies. Figure 2B
presents the fold changes (FC, cancer vs. normal tissue) of mRNA
expression of RRM1, RRM2, and RRM2B genes in each different
type of the analyzed cancers. Obviously, RRM2 gene expression
levels were higher than that of other two subunits in almost
all the studied cancer types, especially in brain and Central
Nervous System (CNS) cancers, lymphomas, lung cancer, bladder
cancer, head and neck cancer, breast cancer, colorectal cancer,
and sarcomas.

Associations of RRM1, RRM2, and RRM2B

Expression in Common Types of Human
Cancers
To further study associations of RRM1, RRM2, and RRM2B
expression in different cancer types and TNM stages, we
downloaded and analyzed the RNA-seq and clinicopathologic
data of 31 types of cancer from TCGA. Using the Spearman’s
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FIGURE 1 | Workflow of the cancer-omics data based integratively analytic strategy. dbs, databases; N/C, Normal vs. Cancerous tissues; TNM, tumor, node, and

metastasis classification; OS, Overall survival; DFS, Disease-free survival.

correlation coefficient analysis, the consistent positive
correlations were observed between RRM1 and RRM2 expression
in all 31 types of cancer (Figure 3A). This consistency remained
after subdividing patients into different TNM stages across
almost all types of cancer (Figure 3B). In contrast, the
associations between the expression of RRM1 and RRM2B
genes were relatively weak and variable.

Expression Patterns of RRM1, RRM2, and
RRM2B in Different Pathological Subtypes
and TNM Stages of Lung Cancer
To further characterize the expression pattern of RRM1, RRM2,
and RRM2B in different pathological types and stages of cancer,
we chosen lung cancer as a representative cancer type as it is the
leading cause of cancer death all over the world. We performed
differentially expressed genes (DEGs) analyses with the above
filtering criteria using the Oncomine data. We found that the
mRNA expression of RRM1, RRM2, and RRM2B genes were
up-regulated in 57.9% (11 of 19), 78.9% (15 of 19), and 0%
(0 of 9), respectively, of the Oncomine cancer studies covering
the four subtypes of LUSC, LUAD, large cell lung carcinoma
(LCLC), and small cell lung carcinoma (SCLC) (Figure 4A).
In contrast, no study showed down-regulated expression of
RRM1 (0 of 19) or RRM2 (0 of 19) in all subtypes of lung

cancer, 22.2% (2 in 9) of the Oncomine studies demonstrated
a down-regulated RRM2B expression in cases of LUSC and
LCLC. Figure 4B presented the mRNA expression FC values of
RRM1, RRM2, and RRM2B genes in different subtypes of lung
cancer, which appeared quite variable across different types of
lung cancer and even varied in the same type of tumor from
different studies.

We then analyzed the mRNA expression of three RR subunit

genes in different progression stages of LUSC and LUAD, the two

main pathological subtypes of NSCLC, using the RNA-seq data

retrieved from TCGA. The expression of RRM1 and RRM2 genes

in tumor tissues were both significantly increased in all TNM

stages of LUSC and LUAD, compared with their corresponding

adjacent normal lung tissue samples. In contrast, the RRM2B

gene showed a significantly lower expression in the cancer
tissues in all the TNM stages (Figure 4C). RRM2 expression was
significantly higher in stages II and IIIA of LUSC and LUAD as
well as in stages IIIB/IV of LUAD compared with its expression in
stage I tumors (p < 0.05). In addition, RRM1 expression was also
significantly higher in stages IIIB/IV LUAD than in stage I tumors
(p < 0.05). Interestingly, RRM2B expression was significantly
higher in stages IIIB/IV LUSC than in the stages I, II and IIIA
tumors (p < 0.05), but was significantly lower in stages IIIB/IV
LUAD than in stage I tumors (p < 0.05).
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FIGURE 2 | RRM1, RRM2, and RRM2B gene expression profiles in 20 common types of cancers. (A) mRNA expression data of RRM1, RRM2, and RRM2B genes in

20 common human cancers across all studies retrieved from Oncomine (version 4.5, search completed on Mar, 2019). DEGs were determined with the screening

criteria “concept filter = cancers vs. normal, data type = mRNA, P < 0.05.” The x-axis indicated the proportion of studies with differentially expressed RRM1, RRM2,

and RRM2B in all studies according the criteria. Dark red, red, and brick red colors marked the cancers in which the gene of interest had a gene rank of the top 1, 5,

or 10% in the elevated-expression of the DEGs, respectively (Gene rank: genes are ranked by the p-value, for example, a gene rank ≤ 10% represents that its p-value

lists in top 10% of the up-regulated or down-regulated ones). In contrast, dark blue, blue, and light blue colors marked the cancers in which the interested gene had a

p-value rank of the top 1, 5, and 10% in the decreased-expression of the DEGs, respectively. (B) The visualization of fold change (FC) for RRM1, RRM2, and RRM2B

mRNA expressions in the studies screened out (Details shown in Supplemental File 1). The FC values of overexpressed genes were calculated from

tumor-/normal-tissues expression levels, while those for under-expressed genes were calculated from normal-/tumor-tissue expression levels. The human body parts

diagram was adapted and modified from Robinson et al. (16).

Different Prognostic Impacts of RRM1,

RRM2, and RRM2B Expression in the
LUSC and LUAD Patients
To determine the prognostic values of three RR subunit
expression in LUAD and LUSC patients, we analyzed the cancer
survival data from TCGA and KM-plotter databases. In the

TCGA database, higher RRM1 and RRM2 expression predicted
a significantly shorter OS (p = 0.007 and 0.005 for RRM1 and
RRM2, respectively, Figure 5A) and DFS (p = 0.009 and 0.011
for RRM1 and RRM2, respectively, Figure 5C) in the LUAD
patients, compared with those with lower RRM1 and RRM2
expression. This correlation was not observed in the LUSC
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FIGURE 3 | Associations among RRM1, RRM2, and RRM2B mRNA expressions in 31 types of human cancer. All data were retrieved from TCGA RNA-seq datasets

via Firehose and analyzed using Spearman’s correlation coefficient. Each cell of the figure contains the correlation coefficient (upper line), p-value and sample size

(lower line). The cells were color-coded, red for positive correlations and green for negative correlations. Three different color bars at the top of each column of cells

represented the association between RRM1 and RRM2 (yellow), RRM1, and RRM2B (purple), and RRM2 and RRM2B (blue), respectively. (A) The overall mRNA

expression relevance of the three RR subunits in 31 cancer types. (B) mRNA expression relevance of the three RR subunits in different TNM stages. NA, represents

that the number of cases is <5; Brackets represent that the corresponding information about the TNM stages is not available.

patients. Similarly, in the KM-plotter database, higher RRM1
and RRM2 expressions were also significantly associated with
a shorter OS (P = 3.3e−10 and 0.006 for RRM1 and RRM2,
respectively, Figure 5B) and DFS (P = 1.1e−03 and 2.6e−06 for
RRM1 and RRM2, respectively, Figure 5D) in the LUAD patients,
but not in the LUSC patients. The poor prognosis of high RRM1
and RRM2 expressions in LUAD patients was also observed
in two additional independent studies (9, 10) from Oncomine
(Figure S1).

Interestingly, we observed that a higher RRM2B expression
was associated with a significantly better OS (P = 8.2e−12) and
DFS (P = 9.3e−04) of the LUAD patients in the KM-plotter
cohort (Figures 5B,D). In contrast, a higher RRM2B expression
predicted a shorter OS (P = 0.043) and a poor-trend of DFS (P
= 0.12) in LUSC patients. The differential prognostic implication
of RRM2B expression in the LUSC and LUAD patients appeared

to be weaker in the TCGA dataset when the median expression

was selected as a cutoff point (Figure 5). However, if the optimal

expression was used as a cutoff point, the cancer survivals

predicted by RRM2B also trended differentially in the LUAD and
LUSC patients, similar to the findings in the KM-plotter cohort
(Figure S5). These results showed that RRM2B had opposite
prognostic effects in the patients with LUAD and LUSC, which

suggested that the RRM2B may function differently in LUAD
and LUSC.

Validation of the Protein Expression
Patterns and Clinical Relevance of RRM1,

RRM2, and RRM2B in the LUSC and LUAD
Patients Using Immunohistochemistry and
Survival Studies
To validate the potential implication of RRM1, RRM2, and
RRM2B expression in pathology and prognosis of NSCLC,
211 surgically excised tumor specimens were independently
collected from the patients with LUSC and LUAD (n = 97
and 114, respectively) from three academic hospitals affiliated to
ZhejiangUniversity in China (named the ZJUC cohort hereafter).
The demographics and clinicopathological characteristics of the
ZJUC cohort are described in Table S1. Among them, 72 percent
of the ZJUC cohort weremale with amean age of 60.8± 9.6 years,
and a median follow-up period of 45 months.

All specimens were examined by immunohistochemical
(IHC) staining for three RR subunit expression. The results
showed that RRM1 and RRM2 protein mainly localized in the
cytosol while RRM2B protein was found in both the cytosol and
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FIGURE 4 | Expression changes of RRM1, RRM2, and RRM2B in different pathological types and different TNM stages of lung cancer. (A) mRNA expression data of

RRM1, RRM2, and RRM2B in different pathological types of lung cancers across all studies were retrieved from Oncomine. DEGs were determined according to the

above screening criteria. The x-axis indicated the proportion of studies with differentially expressed RRM1, RRM2, and RRM2B in all lung cancer studies. Dark red,

red, and brick red colors mark the cancers in which the gene of interest had a gene rank of top 1, 5, or 10% among the elevated expression genes, respectively (Gene

rank: genes are ranked by the p-value, for example, a gene rank ≤ 10% represents that its P-value lists in top 10% of the up-regulated or down-regulated genes). In

contrast, dark blue, blue, and light blue colors mark the cancers in which the gene of interest had a gene rank of top 1, 5, and 10% among the decreased-expressed

genes, respectively. (B) The visualization of fold change (FC) values for RRM1, RRM2, and RRM2B mRNA expressions in the studies of different pathological types of

lung cancer. The number in each cell represents a FC value from one study. The definition of cell colors is the same as that in (A). The FC value of an overexpressed

gene was calculated from tumor-/normal-tissue expression levels; and the under-expressed gene was calculated from normal-/tumor-tissue expression levels. (C) The

mRNA expression of RRM1, RRM2, and RRM2B in the different TNM stages of LUSC and LUAD. The RNA-seq and clinicopathological information of LUSC and

LUAD patients were downloaded from TCGA through cBioPortal. Five groups of data (Para-cancerous tissues, TNM I, II, IIIA, and IIIB/IV cancer tissues) were analyzed

using one-way ANOVA with LSD test for pair-wise comparisons of different groups. ***P < 0.05; ns, not significant.
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FIGURE 5 | Survival curves for the patients of LUSC and LUAD against the expression levels of RRM1, RRM2, and RRM2B in TCGA and KM Plotter cohorts by using

KM survival plotter analysis. The overall survival (OS) and disease free survival (DFS) against RRM1, RRM2, and RRM2B mRNA expressions in TCGA (A,C) and

Kaplan-Meier Plotter (B,D) databases are shown, respectively. Vertical hash marks indicate points of censored data. For comparisons, the patients are dichotomized

into two groups according to their median expression values.

nucleoplasm of LUSC and LUAD tumor cells (Figure 6A). This
was consistent with the subcellular localization observed in an
immunofluorescent study of three cancer cell lines (A-431, U-
2 OS and U-251MG) in HPA (Figure S2). Representative IHC
pictures of three RR subunit protein expression in the NSCLC
tissue samples were shown in Figure 6B. RRM1 and RRM2
protein expressions were significantly increased in both LUSC
and LUAD cancer cells as compared to the adjacent normal lung
tissues (Figure 6C). RRM2 protein expression was significantly
higher in the stage IIIA LUSC or LUAD tumors compared with
those in the stage I tumors (P < 0.05). A similar pattern of
RRM2 protein expression was also observed in the stage IIIB/IV
LUAD tumors compared to their stage I counterparts (P < 0.05).
RRM1 expression was also significantly higher in the stage IIIA
LUSC and LUAD compared to the stage I tumors (P < 0.05).
Interestingly, while RRM2B expression was also higher in the
LUSC tumors, as compared to their adjacent normal lung tissues,
and was higher in the stage IIIB/IV tumors than the stage II ones
(P< 0.05), RRM2B expression appeared to be decreased in LUAD
tumors although this level was not statistically significant.

Follow-up and survival analyses of ZJUC cohort patients
suggested that higher RRM1 and RRM2 protein levels were
associated with a significantly shorter OS in the LUAD patients
(P = 0.003 and 0.023 for RRM1 and RRM2, respectively), but
not in the LUSC patients (P > 0.05). Higher RRM2B protein
level was associated with a significantly shorter OS (P = 0.005)
in the LUSC patients but a significantly prolonged OS (P =

0.001) in the LUAD patients (Figure 6D). These results were
similar with what were obtained from data-mining (Figure 5). In
conclusion, the IHC analysis of RR subunit protein expressions
and the associated survival study in the ZJUC cohort of lung
cancer patients demonstrated the usefulness and relevance of our

bioinformatic analysis through data mining of multiple cancer-
omics databases.

Different Co-expression Gene Networks of
RRM2B From RRM2 in LUSC and LUAD
To uncover the underlying mechanisms of the opposite
prognostic effects of RRM2B expression in the cases of LUSC as
opposed to LUAD, we performed a co-expression gene network
analysis of RRM2B in these two subtypes of NSCLCs based on
RNA-seq data from TCGA. We used the Pearson’s correlation
coefficient (CC) with around 0.5 as a cutoff, to identify the
RRM2B-associated genes. The resulting networks consisted of 30
genes, 14 in LUSC and 16 in LUAD, with one gene in common.
These genes were connected via 166 expressional interactions.
The positive or negative correlations and the different correlation
intensities are visualized using Cytoscape 3.0 software (Figure 7A
and Table S2). Significantly, the results showed two distinct
panels of co-expressed genes connected by RRM2B between
LUAD and LUSC, with only one overlapping gene.

A further functional enrichment analysis of two co-expression
gene networks using DAVID bioinformatics resources version
6.8 found that the gene set negatively associated with RRM2B
expression in LUAD was enriched together with the genes
promoting cell cycle progression and malignant aggressiveness,
such as those of cell cycle regulation related biological processes
and DNA repair. In contrast, the gene set co-expressed with
RRM2B in the LUSC consisted of the genes associated with
protein destabilization and the ERAD pathway and were not
the obligate participants of cell cycle regulation. These results
suggested that RRM2B may play double- or multifaceted roles
in different types of lung carcinomas using distinct molecular
machineries which resulted in its opposite prognostic impacts on
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FIGURE 6 | Clinical relevance analyses of RRM1, RRM2, and RRM2B protein expression levels in LUSC and LUAD patients including immunohistochemistry staining

and follow-up studies. (A) Localization of RRM1, RRM2, and RRM2B by IHC staining in ZJUC cohort. (B) Protein expression levels by IHC staining in the ZJUC cohort.

(C) Association between RRM1, RRM2, and RRM2B protein expression levels and prognosis of LUSC and LUAD patients. ***P < 0.001. (D) The protein expression of

RRM1, RRM2, and RRM2B in the different TNM stages of LUSC and LUAD in the ZJUC cohort. IHC staining of RRM1, RRM2, and RRM2B proteins in the clinical

tissue samples of LUSC and LUAD patients in the ZJUC cohort (97 LUSC and 114 LUAD). IHC staining was evaluated with a score range from 0 to 16. See Method

for scoring criteria.

LUAD and LUSC. In addition, nine genes involved in cell cycle
progression (MYBL2, PIF1, KIFC1, KIF18B, TROAP, TICRR,
CDCA3, PKMYT1, and TACC3) were found reversely correlated
with RRM2B expression, but tightly positive-correlated with
RRM2 expression, in LUAD (Figure 7B). This observation
further suggests that the different associations of RRM2B and
RRM2 proteins with the members of cell cycle pathway in LUAD
may be the underlying mechanism of the opposite prognostic
effects of different RR subunits observed in patients with LUAD
and LUSC.

DISCUSSION

Among the current publicly available cancer-omics databases,
those genomics and transcriptomics platforms with data-mining
tools and data integration functions have been widely used in
cancer research and precision medicine. Table S3 shows some
popular cancer-omics databases and their main features (1–8, 11,
17–19). However, considering the different specimen sources and
the nature of cancer heterogeneity, significant amounts of the
data needs to be collected and crossly validated. HPA provides

global analysis of how cancer genomes are expressed at the
protein level, but its application is limited by a small sample
size and lack of quantification. More recently, with the advance
of high-throughput single-cell genomics, the Human Cell
Atlas (HCA) Project has made progress in defining distinctive
molecular profiles of all the human cell types and functions (12)
and may soon help promote a profound understanding of the
human tumor cellular ecosystem. Although clinical application
of cancer-omics is encouraging, a significant challenge remains
in terms of how to more efficiently use these rapidly expanding
big data sets from multiple sources. In this work, using the study
of three RR subunit genes (RRM1, RRM2, and RRM2B) as an
example, we proposed a straightforward approach for integrative
analysis of multiple cancer omics databases of virtually any genes
of interest, which, combined with clinical patients validation, can
improve the definition of cancer gene expressional patterns to
further elucidate their underlying mechanisms as well as facilitate
their clinical application (Figure 1).

RR plays a key role in DNA synthesis and thus is essential
for cell proliferation and the development of malignancy
(20). In normal human cells, three RR subunit proteins
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FIGURE 7 | Gene co-expression networks of RRM2B in LUSC and LUAD. (A) Two co-expressed gene networks of highly correlated genes with RRM2B in LUSC (left

panel) and LUAD (right) were constructed using Pearson’s correlation coefficient (CC) analysis. Green nodes represent GO terms for gene function, pink nodes denote

correlated genes, and lines connect paired co-expressed genes (blue for negative correlation and red for positive correlation). Three correlation intensities (strong: |CC|

> 0.9; middle: 0.7 ≤ |CC| ≤ 0.9; weak: |CC| < 0.7) are represented by different line thickness. (B) The mRNA expression associations of RRM2 or RRM2B with 10

RRM2B highly co-expressed genes (MYBL2, PIF1, KIFC1, KIF18B, TROAP, TICRR, CDCA3, PKMYT1, and TACC3) participating in the regulation of the cell cycle in

LUAD. R: Pearson correlation coefficient.
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form two-types of holoenzymes (RRM1- RRM2 and RRM1-
RRM2B) and their genes are separately distributed in three
different chromosomes. Although RRM2 and RRM2B are highly
homologous in their gene sequences, their expressional levels
and subcellular localizations are differently regulated in cells. The
expression and degradation of RRM2 is regulated in a cell cycle-
dependent manner (21), while RRM2B is induced in response
to DNA damage in a p53-dependent manner (22). Our IHC
examination of NSCLC tumor tissue and immunofluorescent
images of three cell lines in the HPA have demonstrated that both
RRM1 and RRM2 are mainly expressed in the cytoplasm, whereas
RRM2B is expressed both in the cytoplasm and the nucleus
(Figure 6A and Figure S2). This is consistent with the notion that
ribonucleotide reduction with RRM2-containing RR takes place
in the cytoplasm and the dNTPs are then transported into the
nucleus for DNA synthesis. Conversely, RRM2B-containing RR
is more likely to remain in the nucleus, ready for the repair of
genetic abnormalities which constantly occur in human cancer
cells (23, 24).

In human cancers, the mutation rates of RRM1, RRM2,
and RRM2B are all below 0.5%, based on the data from
COSMIC and cBioPortal (Table S4). The primary form of
mutation is a missense substitution, which appears to be
randomly distributed. Only several mutants (e.g., RRM1R499C/H,
RRM2BP308L/S, RRM2BF323L) have been identified more than
three times. There is almost no copy number variation (CNV)
of RRM1 and RRM2 genes in common types of cancers, whereas
RRM2B displays CNV gain in more than 3% of breast cancers,
liver cancers, stomach cancers and urinary tract cancers. In this
study, we found that gene expression dysregulation might be
the dominant characteristic of the multi-subunit enzyme RR in
human cancers. The expression of three RR genes, especially
RRM1 and RRM2, increased significantly across common types
of cancers (Figure 2). Typically, RRM2 up-expression occurred
in almost all malignancies, and the FCs of RRM2 expression
between cancer and normal tissues were much larger than those
in either RRM1 or RRM2B. The gene expression of RR in human
cancers has been analyzed previously using Oncomine (last
updated in Nov, 2013) (25). Here, we further analyzed up to 358,
355, and 209 Oncomine studies for the differential expression of
RRM1, RRM2, and RRM2B, respectively (detail comparisons in
Table S5). With approximately twice as many studies collected
in recent years, we demonstrated a more extensive expressional
landscape and increased characteristics of RR genes in common
types of cancers. Some additional information was also included,
such as the down-regulated expression of RRM2B in lung cancer,
leukemia and lymphoma, and the down-regulation of RRM1
expression in bladder, breast and prostate cancers. Importantly,
for the first time, we revealed the correlations among RRM1,
RRM2, and RRM2B expression during cancer development as
well as their individual roles and collaborative relationships
during cancer progression together with their prognosis with
clinical tumor sample validation.

The differential expressional changes and possible roles of
three RR components have been noted previously in different
clinical cancer samples, including lung (26), digestive tract
(13, 27, 28) and other cancers (29). Among the three RR

subunit genes, RRM2 has been proposed to be an oncoprotein
(25, 30). Upregulation of RRM2 has been associated with
cancer cell proliferation, invasion and metastasis in multiple
types of cancers (28, 29, 31, 32). In contrast, although RRM1
expression was also found to be up-regulated in many types of
cancers, its role in cancer development remains controversial.
Consistent with the role of RR in DNA replication and repair,
a high RRM1 expression is known to be associated with a
poor response to the DNA-damaging platinum drugs and to
the RRM1-targeting drug gemcitabine, and thus led to poor
outcomes in these cancer patients (33–35). However, several
studies have also shown that a highly expressed RRM1 might
be associated with a better outcome for some cancer patients
(36, 37), suggestive of a suppressor role of tumor initiation,
invasion andmetastasis. A recent study demonstrated that RRM1
can negatively regulate ZRANB3 function when in the nucleus,
leading to DNA-synthesis reduction (38). The role of RRM2B
in tumors is also not clear (25, 30). For example, it has been
reported that RRM2B expression was reversely associated with
tumor metastasis and was correlated with a better survival in
colorectal cancer patients (39, 40). RRM2B expression was also
shown to be reversely associated with intrahepatic metastasis in
hepatocellular carcinomas (41). Conversely, RRM2B expression
has been previously reported to be positively related to the
development of esophageal squamous cell carcinoma (27). In this
study, by combining RNA-seq and clinicopathologic data from
Oncomine and TCGA (Figures 2, 3), we found that expression
of RRM1 and RRM2 genes were both significantly increased
and correlated with higher TNM stages in most common
types of cancers and demonstrated a tumor-promoting role for
the RRM1-RRM2 holoenzyme. In contrast, the expression of
RRM2B in these cancers varied, and the correlations between
the expression of RRM1 and RRM2B were weak and variably
dependent on cancer type. Notably, the expression of RRM2
and RRM2B were much weaker or even reversely correlated in
some types of cancers. These data suggested that expression of
three RR genes, and thus the related enzyme activities, may be
dysregulated in the cancer cells. They probably operated under
different mechanisms related to aspects of cancer progression or
patient survival in different cancer types and stages. Moreover,
the differential expression pattern of three RR genes in different
types of human cancers suggested that, in addition to forming
a RR holoenzyme to implement the classical enzymatic function
for cancer cell proliferation, each of the three component
proteins may be individually recruited by cancer cells to play
a different non-RR enzymatic role during cancer initiation
and development.

The clinical significance of different RR expression in cancers
have attracted much attention, especially in NSCLC (33, 42).
However, discrepancies among different reports remains to be
elucidated. For RRM1, some studies showed that high RRM1
expression was associated with better survival in early stage
NSCLC (26) or had poor prognosis in advanced NSCLC (43)
or lung adenocarcinoma (44), while another study showed
that RRM1 protein expression had no significant predictive
value for early NSCLC patients (45). For RRM2, some studies
suggested that high expression of RRM2 prognosticated a shorter
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overall survival for NSCLC patients (46, 47), while the others
did not find any predictive value (26, 48). For RRM2B, while
it was shown that high expression of RRM2B protein was
a favorable prognostic factor in early NSCLC patients (49),
other authors reported that RRM2B protein expression did
not play a prognostic role in NSCLC patients with resected
TNM stages I–III tumors (45, 50). Such controversies can
be attributed into the following reasons: different expression
detection means, sample selection bias and cancer heterogeneity.
In this study, we revealed another important reason that
there was no distinction of different pathological subtypes.
LUSC arises in proximal airways and is more strongly
associated with smoking and chronic inflammation than is
LUAD, which arises more frequently in the distal airways.
By integrative cancer-omics data analysis and clinical sample
validation with IHC, we showed that differential expression of
three RR components individually and collaboratively impact
malignant progression and patient survival in LUSC and
LUAD. In addition, we found that LUSC had higher RRM1
and RRM2 expression than LUAD, while RRM2B expressed
lower in tumor tissues of LUSC than in those of LUAD
(Figure S3). The results implied the different roles of RR
subunits in LUSC and LUAD. Recently, Uhlen et al. found
high expression of the Endoplasmic Reticulum Oxidoreductase
1 Alpha (ERO1A) gene was correlated with a bad prognosis
in NSCLC (including LUSC and LUAD) (51). However, after
distinguishing pathological subtypes, we also found opposite
prognostic effects of a high expression of ERO1A in LUSC
and LUAD (Figure S4). This further supported the necessity to
separate the tumors by their histological or pathological subtypes
during research and clinical evaluation of molecular biomarkers
in NSCLC.

It was unanticipated that a higher expression of RRM2B was
significantly associated with a shorter survival in LUSC but
a more prolonged survival in LUAD, while higher expressed
RRM1 and RRM2 predicted a poorer clinical outcome in LUAD
(Figures 5, 6). By co-expression gene network analysis, distinct
gene sets were revealed to be associated with RRM2 and RRM2B
in LUSC and LUAD, respectively (Figures 7A,B and Table S1).
RRM2B expression was reversely correlated with cell cycle-
promoting molecules in LUAD but not in LUSC, suggesting
that RRM2B may directly or indirectly suppress cell cycle
progression, hence cancer cell proliferation, in LUAD. DNA
microarray analysis has shown that the gene set regulating
cell-cycle progression was significantly enriched in p53R2 (the
alias of RRM2B)-silenced human KB oropharyngeal carcinoma
cells. RRM2B may suppress cancer cell proliferation partially
by upregulation of p21 and downregulation of cyclin D1 in
addition to playing a critical role in DNA repair (52). By
contrast, RRM2 expression was significantly associated with
cell cycle-progression (Figure 7B), consistent with its role as
a RR subunit to promote cancer cell proliferation. Thus, the
different co-expressed gene networks are compatible with the
opposite roles and different underlying mechanisms of RRM2
and RRM2B in different types of cancers, which further stressed
the importance of the rationale of the use of RR inhibitors in
precision cancer medicine.

CONCLUSIONS

Taken together, the systematic translation of cancer-omics
data into the fields of tumor biology and cancer therapy
remains challenging. Herein, we demonstrated an integrative
analytical approach based on mining multiple cancer-omics
databases to reveal across-cancer-type expression patterns and
their impacts on clinical outcomes of any genes of interest,
followed by validation of protein-levels in clinical cancer
samples from multiple cancer centers. Using this technique,
we depicted a landscape of expression and association of three
RR components in different types of common cancers. We
further demonstrated a more complex pattern of three RR
components in different subtypes and stages of lung cancer
and associated these with clinical survival and discussed the
possible underlying mechanisms. While the extensive high-
expression of RR components in common cancers suggests them
to be the targets of a broad-spectrum anti-cancer therapies,
the heterogeneous expression pattern of each component of
RR in different types of cancers and individual cancer patient
supports their important requirement for more specifically
targeted aspects and increased precision in cancer therapy.

NOVELTY AND IMPACT

Herein, we developed an integrative analytical approach to
reveal across-cancer expression patterns and identify potential
clinical impacts for genes of interest from public databases. Using
ribonucleotide reductase (RR) as an example, we characterized
the expression profiles and inter-component associations of three
RR subunit genes across over 30-types of cancers. In addition, we
assessed and validated pathological and prognostic significance of
RR in lung cancer and related pathological subtypes. Underlying
mechanisms were further explored and discussed.
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