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Abstract: High-quality silicon (Si) nanocrystals that simultaneously had superior mesoporous and
luminescent characteristics were derived from sticky, red, and brown rice husks via the facile and
cost-effective magnesiothermic reduction method. The Si nanocrystals were confirmed to comprise
an aggregated morphology with spherical nanocrystals (e.g., average sizes of 15–50 nm). Due to
the surface functional groups formed at the nanocrystalline Si surfaces, the Si nanocrystals clearly
exhibited multiple luminescence peaks in visible-wavelength regions (i.e., blue, green, and yellow
light). Among the synthesized Si nanocrystals, additionally, the brown rice husk (BRH)-derived
Si nanocrystals showed to have a strong UV absorption and a high porosity (i.e., large specific
surface area: 265.6 m2/g, small average pore diameter: 1.91 nm, and large total pore volume:
0.5389 cm3/g). These are indicative of the excellent optical and textural characteristics of the BRH-
derived Si nanocrystals, compared to previously reported biomass-derived Si nanocrystals. The
results suggest that the biomass BRH-derived Si nanocrystals hold great potential as an active source
material for optoelectronic devices as well as a highly efficient catalyst or photocatalyst for energy
conversion devices.

Keywords: biomass rice husk; silicon; nanocrystals; luminescence; high porosity

1. Introduction

Silicon (Si) is one of the most powerful semiconductors that have led to the strong
advancement of modern electronics. However, bulk Si is inadequate as an active material
(i.e., a core part for visible light emission or detection) in optoelectronic devices because
of its indirect bandgap with an infrared energy gap of 1.12 eV at 300 K [1,2]. One effec-
tive way to overcome this issue is the nanocrystallization of Si, which can allow us to
create visible light emission and detection characteristics, attributable to the quantum
confinement effect and the size effect in Si nanocrystals [3–7]. Therefore, the fabrication
of Si nanocrystals has attracted tremendous attention in wide scientific and technologic
communities because of their vast application fields in optoelectronics as well as electronics.
For instance, nanofloating gate flash memory devices [8–11], field-effect electrolumines-
cence devices [12,13], tandem solar cells [14], and optical waveguides [15,16] are typical
examples that can use the quantum-confined electronic energy system in Si nanocrystals.
Owing to the high porosity of Si nanocrystals, furthermore, they are also very useful
as an active source material in energy storage and conversion devices. For example, Si
nanocrystals could be used as an effective catalyst for the hydrogen evolution reaction [17],
and be utilized as an anodic source material for highly energy-efficient lithium-ion and
sodium-ion batteries [18–20].

To obtain highly porous and/or highly luminescent Si nanocrystals, many researchers
have contrived and designed various experimental methods, e.g., laser ablation [21], non-
thermal plasma processes [22], pulsed laser deposition [23], chemical doping [24], electro-
chemical etching [25], chemical vapor deposition [26], annealing of borophosphosilicate
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glasses [27], and laser pyrolysis [28]. However, these methods require expensive equip-
ment, complex procedures, and high thermal budgets (also see Table S1, Supplementary
Materials). Therefore, a facile and cost-effective approach is necessary for the mass produc-
tion of Si nanoparticles. Considering both the cost-effectiveness and the eco-friendliness,
biomass wastes are truly fascinating resources that can provide us with natural siliceous
constituents. Accordingly, various biomass resources (e.g., sugarcane bagasse [29], bamboo
leaves [29,30], beach sand [31], corn leaves [32], and rice husks (RHs) [33–37]) were used in
earlier studies for the derivation of high-quality Si nanocrystals (also see Table S2 for the
comparison of Si production from various biomass resources by using several experimental
techniques, Supplementary Materials). Among them, RHs are one of the most prominent
siliceous precursors because of their huge availability and high silica contents [18,38,39].
These provide us with a good hint to produce a large amount of Si nanocrystals via the
recycling of biomass RHs. Despite such benefits, to our best knowledge, the synthesis
of RH-derived high-quality Si nanocrystals with both high porosity and high lumines-
cence has not been reported to date. Furthermore, the coexistence of both mesoporous
and luminescent characteristics in a single material system is truly helpful for future en-
ergy technology; for example, the photocatalytic hydrogen evolution reaction [40–42] and
oxygen evolution reaction [43–45].

We, therefore, investigated the facile derivation of mesoporous-and-luminescent Si
nanocrystals from various RHs (i.e., sticky RHs, red RHs, and brown RHs) through the
magnesiothermic reduction process, which can be simply performed in an inert atmosphere
without toxic gases and vacuum facilities. Herein, we report on a comprehensive study
from the synthesis to the characterization of RH-derived mesoporous luminescent Si
nanocrystals. The kinetics of magnesiothermic reduction for Si nanocrystal production
is discussed, and the structural, morphological, optical, and textural properties of the
synthesized Si nanocrystals are thoroughly examined in detail.

2. Experimental Section
2.1. Material Preparation

The biomass sticky rice husks (S-RHs) were collected from Gyeonggi, South Korea, and
the red rice husks (R-RHs) and brown rice husks (B-RHs) were collected from Perambalur,
Tamil Nadu, India. Hydrochloric acid (HCl, 37%), hydrofluoric acid (HF, 48%), and
magnesium (Mg, 99% purity) powders were purchased from Sigma-Aldrich (St. Louis,
MO, USA) and used with no additional purification.

2.2. Synthesis of Si Nanocrystals

The derivation of the Si nanocrystals via magnesiothermic reduction can be described
by the following chemical reactions:

SiO2(Ashes) + HCl →
27 ◦C (2 h)

SiO2(Colloidal) + H2O + MCl (1)

SiO2(Colloidal) →
700 ◦C (2 h)

SiO2(Nanoparticles) (2)

SiO2(Nanoparticles) + 2Mg →
700 ◦C (2 h)

Si(Nanocrystals) + 2MgO (3)

Si(Nanocrystals) + 2MgO + 4HCl →
27 ◦C (10 h)

Si (Nanocrystals) + 2MgCl2 + 2H2O (4)

M in Equation (1) is the possible precipitates from raw bio-silica in the biomass RHs
(e.g., Na, K, Ca, Fe, and Mg), which are normally removed as MCl after the HCl treatment.
To investigate the dependence of the biomass RH resources, we used three different types
of RHs, i.e., S-RHs, R-RHs, and B-RHs. As schematically illustrated in Figure 1, initially,
all three types of RHs were carbonized at 500 ◦C for 2 h under an air atmosphere to
obtain their ashes. Then, 3 g of each RH ash was stirred in a 10% HCl solution for 2 h
to eliminate metal ions and contamination (e.g., Equation (1)). After HCl leaching, the
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samples were rinsed with deionized water (DI), filtered, and dried at 150 ◦C for 15 h in
an electric oven. Subsequently, the samples were transferred to an alumina crucible and
were further calcinated at 700 ◦C for 2 h under an air atmosphere in a muffle furnace (e.g.,
Equation (2)). During this calcination step, the silica nanopowders were obtained from the
HCl-leached RH ashes. Next, the SiO2 nanopowders were reduced into the Si nanocrystals
through magnesiothermic reduction. To achieve the reduction reaction, as a primary task,
each type of SiO2 nanopowder (2 g) was mixed with the Mg powders (0.5 g). Then, the
mixture powders were annealed at 700 ◦C for 2 h under an Ar atmosphere in a tube furnace
(e.g., Equation (3)). The obtained products were stimulated with 1 M HCl (HCl:H2O:EtOH
= 0.66:4.72:8.88 molar ratio) for 10 h to remove MgO (e.g., Equation (4)). After the HCl
treatment, the colloidal solutions were reacted with 5% HF for 1 h to eliminate the residual
SiO2 inside the magnesiothermically reduced Si nanopowders. Finally, the obtained Si
nanopowders were washed in DI water, filtered, and dried at 80 ◦C for 12 h under vacuum.
Through these sequences, we were able to obtain the powder type of the Si nanocrystals.
For convenience, we denote the three different types of the Si nanocrystals as S-Si, R-Si,
and B-Si, which were derived from S-RHs, R-RHs, and B-RHs, respectively.
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Figure 1. Schematic illustration of the magnesiothermic reduction process for synthesizing the Si nanocrystals by using
biomass sticky rice husks (S-RHs), red rice husks (R-RHs), and brown rice husks (B-RHs).

2.3. Characterization of Material Properties

The morphological and the compositional properties of the Si nanocrystals were
monitored by field-emission scanning electron microscopy (FE-SEM) using an Inspect
F50 system (FEI Co., Mahwah, NJ, USA) and its in situ energy dispersive X-ray (EDX)
spectroscopy, respectively. The structural and the vibrational properties of the samples
were characterized by Raman scattering spectroscopy using a LabRAM HR800 system
(HORIBA Jobin Yvon Inc., Edison, NJ, USA) and X-ray diffractometry (XRD) using a D2
Phaser system (Bruker, Madison, WI, USA), respectively. The functional groups of the
nanocrystals were examined by Fourier transform infrared (FTIR) spectroscopy using
a Spectrum-100 system (Perkin Elmer, Shelton, CT, USA). The optical absorption and
emission characteristics were evaluated by UV–VIS spectroscopy using an S-3100 system
(Scinco, Seoul, Republic of Korea) and photoluminescence (PL) spectroscopy using a Cary
Eclipse Fluorescence Spectrophotometer (Agilent Technologies, Santa Clara, CA, USA),
respectively. The textural properties were analyzed by nitrogen absorption–desorption
isotherms (N2-ADI) using a BELSORP-mini II system (MicrotracBEL, Osaka, Japan).
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3. Results and Discussion
3.1. Morphological and Compositional Properties

Figure 2 shows the FE-SEM images of the S-Si, R-Si, and B-Si nanocrystals. The S-Si
sample exhibited cylindrically interconnected spherical nanocrystals (Figure 2a). However,
the R-Si and the B-Si samples displayed a nanosponge-like morphology, where a lot of
small spherical nanocrystals were densely aggregated (Figure 2b,c).
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Figure 2. Field-emission scanning electron microscopy (FE-SEM) images of the (a) S-Si, (b) R-Si, and (c) B-Si nanocrystals
and energy dispersive X-ray (EDX) spectra of the (d) S-Si, (e) R-Si, and (f) B-Si nanocrystals. The inset in each EDX graph
summarizes the compositional properties of the Si nanoparticles.

Here, it should be noticed that the average crystal size of B-Si (~15 nm) is much
smaller than those of R-Si (~35 nm) and S-Si (~50 nm). We believe such a discrepancy
is attributable to the smaller contents of Si species in the raw sources of the B-RH ashes
(Si~2.46%) than the R-RH (Si~5.95%) and S-RH ashes (Si~24.62%) (see Figure S1, Supple-
mentary Materials). In other words, during the acid treatment and the calcination step
(i.e., Equations (1) and (2)), the size of the colloidal SiO2 should be smaller for the B-RH
case than the others because the lower quantity of Si species in B-RH (i.e., raw bio-silica
in the biomass resource) may increase the segregation of the silica nanoparticles [46]. Ac-
cording to previous literature [47,48], using the Fokker–Planck equation [49–51], the size
distribution of the Si nanoparticles (C(i,t)) can be described as follows:

∂C(i, t)
∂t

= −(N(t)− Ne)
∂(k(i)C(i, t))

∂i
+ (N(t) + Ne)

∂2(k(i)C(i, t))
∂2i2

, (5)

where i is the number of Si atoms, Ne is the equilibrium concentration of impurity atoms in
the substance matrix, and N(t) is the number of Si atoms in the nanocrystal at each moment
of time. The kinetic coefficient k(i) in Equation (5) is proportional to both the diffusion
coefficient of the Si atoms in the matrix D and the Si nanocrystal radius (R(i)):

k(i) = 4πDR(i) (6)
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R(i) = b(i + m)α, (7)

where b is the distance parameter of the nanocrystals, m is the size homogeneity factor,
and α is the geometry factor (= 1/3 for spherical nanocrystals). Hence, the smaller size of
B-Si can be interpreted as resulting from the lower concentration of Si species in B-RH. We
therefore conjecture that the size of the Si nanocrystals could be automatically controlled
by choosing the type of the biomass raw resources.

Next, the compositional properties of the samples were evaluated by EDX. As shown
in Figure 2d–f, all the prepared samples were composed of the main species of Si and O,
arising from the body and the surface of the nanocrystals, respectively. The additional
component of Pt is thought of as sprouting from the conductive coating layer for the
FE-SEM measurements.

3.2. Structural and Vibrational Properties

The crystallographic properties of the S-Si, R-Si, and B-Si samples were characterized
by XRD. As shown in Figure 3a, all of the three samples exhibited the typical diffraction
patterns of crystalline Si at 28.4◦, 47.4◦, 56.1◦, 69.1◦, 76.4◦, and 88.2◦, which correspond to
the (111), (220), (311), (400), (331), and (422) Si planes (JCPDS No. 27-1402 [18,33,52,53]),
respectively. This means that all three, S-Si, R-Si, and B-Si, were well crystallized via
magnesiothermic reduction from the biomass resources of the S-RH, R-RH, and B-RH
ashes, respectively. By using the Scherer formula [54–56], the average crystallite sizes of the
S-Si, R-Si, and B-Si nanocrystals were determined to be 33, 28, and 22 nm, respectively. This
corroborates the dependence of the Si nanocrystal size on the kind of biomass raw source;
i.e., the Si nanocrystal size relies on the different Si contents in each RH, as confirmed
in Figure 2. The nanocrystallization of the samples was further elucidated by Raman
spectroscopy measurements. As shown in Figure 3b, the Raman spectra of all three samples
revealed a similar feature of the typical Raman vibration modes from crystalline Si. Namely,
the sharp peak at 519 cm−1 (i.e., the first-order transversal optical (TO) mode [18,57,58])
and the broad hump at 957 cm−1 (i.e., the second-order TO mode [18,57,58]) are clearly
observable in all the samples, while no other Raman bands are visible. This demonstrates
that the high-purity Si nanocrystals were effectively derived from the biomass RHs through
the magnesiothermic reduction process.
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Figure 3. (a) X-ray diffractometry (XRD) patterns, (b) Raman spectra, and (c) Fourier transform infrared (FTIR) spectra of
the S-Si, R-Si, and B-Si nanocrystals.

For the nanostructured materials, the functional groups of the elemental species and
molecular states depend on the shape and the size of the nanomaterials because they
rely on the bonding states at the surface terminals. To examine the functional groups of
the samples, FTIR measurements were carried out. As shown in Figure 3c, the samples
displayed several FTIR features at 795, 869, 956, 1070, 1377, 1643, 2884, 2977, and 3648 cm−1,
all of which are closely relevant to the Si nanostructure. In other words, the transmission
band at 795 cm−1 is ascribed to the Si–C stretching mode [36], and the vibrational band at
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869 cm−1 is attributed to the Si–N stretching mode [59,60]. Similarly, the band at 956 cm−1

arose from the Si–H bending mode [61]. Additionally, the bands at 1070, 1377, 2884,
and 2977 cm−1 correspond to the Si–O bending, CH3 bending, symmetric CH2 vibration,
and CH3 stretching modes, respectively [59,62,63]. The bands at 3648 and 1643 cm−1 are
responsible for the Si–OH vibrations [64].

3.3. Optical Properties

Figure 4a shows the UV−VIS absorption spectra of the S-Si, R-Si, and B-Si samples.
The B-Si nanocrystals revealed strong UV adsorption, while the S-Si and the R-Si nanocrys-
tals exhibited predominant visible-light adsorption characteristics. For B-Si, particularly,
two distinct Si nanocrystal-related absorption bands are observable at A1~270 nm and
A2~340 nm. Namely, the A1 peak and the A2 shoulder are associated with the L−L and
the Γ−Γ transitions in nanocrystalline Si, respectively [6,36]. Since both the A1 and A2
adsorption intensities indicate the degree of nanocrystallization [65], one can observe that
the B-Si sample was well crystallized with a smaller size than the others, as confirmed by
FE-SEM and XRD.
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According to earlier literature [3–5], those transitions originate from the discrete
energy states within the modified electronic band structure of the Si nanocrystal. In other
words, when the nanocrystal size becomes smaller than the exciton Bohr radius (~4 nm for
Si), the subbands above the conduction band and below the valence band could be altered
because of the quantum confinement effect. Then, discrete energy states would be created
inside the modified electronic band structure. Furthermore, since the Si nanocrystal surface
is typically terminated by H, C, and O (also see the FTIR for our samples in Figure 3c), the
overlap of electron and hole wave-functions would become significant [65]. These subband
modulation effects can be elucidated by PL. As shown in Figure 4b, the samples emitted
visible light at P1~485 nm, P2~530 nm, P3~545 nm, and P4~573 nm. The strong P1 emission
is reported to emerge from the radiative optical transitions between the discrete energy
states that are created at the Si-OH surface functional groups [66] (also see Figure 4c).
The other peaks at P2, P3, and P4 are also well known to arise from the radiative optical
transitions between the energy states that are created by the surface functional groups of
Si–O [67], Si–C [5], and Si–H [68,69], respectively. Figure 5 shows the excitation-dependent
PL spectra of the S-Si, R-Si, and B-Si samples. As the excitation wavelength (λex) increased,
the peak position of the light emission (λemit) tended to shift to the longer wavelength
region (i.e., red shift). Such a λemit dependence on λex was present in all the samples,
and the λemit positions were almost identical, regardless of the raw source of the RHs.
These findings depict that the PL emission in all the samples originated from the surface
functional group-related subband modulation rather than the quantum confinement effect.
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3.4. Textural Properties

The nanocrystallization of Si would have sturdily affected the porosity of the entire
material system because the locally crystallized small nanocrystal has a high surface-to-
volume ratio. In short, the nanocrystals must form structural voids at the surface area,
giving rise to an increase in the porosity of the material. To assess the porosity of the S-Si,
R-Si, and B-Si samples, thus, the textural characteristics were evaluated by the Brunauer–
Emmett–Teller (BET) and the Barrett–Joyner–Halenda (BJH) analysis methods. Firstly,
the specific surface area (Sss) was determined by N2-ADI measurements. As shown in
Figure 6, all the samples exhibited Type-IV isotherm curves (classified according to IUPAC),
representing the distinctive mesoporous characteristics of the materials [33,70]. Through
the BET analysis, the Sss values of the S-Si, R-Si, and B-Si nanocrystals were calculated to
be 168.1, 212.4, and 265.6 m2/g, respectively.
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Next, the pore distribution characteristics were examined by BJH measurements
(Figure 7). The pore surface areas (Sps) were determined to be 149.3, 196.9, and 218.5 m2/g
for the S-Si, R-Si, and B-Si nanocrystals, respectively, and the total pore volumes (Vtp)
were calculated to be 0.4103, 0.4201, and 0.5389 cm3/g for S-Si, R-Si, and B-Si, respectively.
Compared to S-Si and R-Si, the B-Si sample had larger magnitudes of Sps and Vtp because
of both the smaller nanocrystal size and the uniform distribution. Accordingly, the average
pore diameter of B-Si (dap~4.91 nm) was also smaller than those of S-Si (dap~9.76 nm) and
R-Si (dap~7.82 nm).
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Finally, we compared the textural and the optical characteristics of our samples with
various biomass-derived Si nanocrystals previously reported. As can be confirmed from
Tables 1 and 2, the B-Si nanocrystals possessed a superior porosity compared to the others,
and had a great potential for multiple light emissions. Based on all the above results,
therefore, one can surmise that the magnesiothermically reduced biomass B-Si nanocrystals
hold great promise in various applications such as energy storage/conversion devices and
optoelectronic devices.

Table 1. Comparison of the luminescence characteristics for various biomass-derived Si nanostructures.

Biomass Nanostructures Light Emission Color References

Brown Rice Husks Spherical Si Nanocrystals Blue, Green, Yellow This Work
Red Rice Husks Spherical Si Nanocrystals Blue, Green, Yellow This Work

Sticky Rice Husks Spherical Si Nanocrystals Blue, Green, Yellow This Work
Rice Husks Si Nanoparticles Green [36]

Wheat Straws Si Nanoparticles Blue [37]
Sugarcane Bagasse Si Nanoparticles Blue [37]

Rice Husks Si Nanoparticles Blue [37]

Table 2. Comparison of the pore characteristics for various biomass-derived Si nanostructures.

Biomass Sss (m2/g) V tp (cm3/g) References

Brown Rice Husks 265.6 0.5389 This Work
Red Rice Husks 212.4 0.4201 This Work

Sticky Rice Husks 168.1 0.4103 This Work
Bamboo Leaves 302.13 0.526 [30]

Beach Sand 323 - [31]
Corn Leaves 64 - [32]
Rice Husks 288.4 0.35 [53]
Rice Husks 47.3 0.18 [34]
Rice Husks 127.05 0.2306 [71]

Waste Glass Microfiber Filter 66.12 0.64 [72]
Rice Husks 57.9 - [73]

4. Conclusions

High-quality Si nanocrystals that simultaneously showed both strong luminescence
and high porosity were successfully derived from various RHs through the facile magne-
siothermic reduction method. Owing to the different quantities of raw bio-silica in each
RH, the size of the Si nanoparticles could be automatically varied from 15 to 50 nm. Due
to the existence of the surface functional groups at the nanocrystals, the samples showed
multiple light emissions in the visible-wavelength regions (i.e., blue, green, and yellow).
Among the prepared samples, the B-Si nanocrystals exhibited a higher UV absorption and



Nanomaterials 2021, 11, 613 9 of 12

a superior porosity. The results depict that the B-RH-derived Si nanocrystals can play a
crucial role as high-performance electrocatalysts, photocatalysts, and light emitters.

Supplementary Materials: The Supplementary Materials are available online at https://www.mdpi.
com/2079-4991/11/3/613/s1: Chemical Composition of Rice Husk Ashes; Comparison of Various
Methods for Silicon Production; Figure S1. EDX spectra of (a) S-RH, (b) R-RH, and (c) B-RH ashes.
Note that Pt in each raw source material arose from the conductive coating of Pt for better focusing
and imaging during SEM and EDX measurements, Table S1. Summary of silicon synthesized from
various resources through several experimental methods, Table S2. Summary of silicon synthesized
from various biomass resources through several experimental methods.
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