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Discovering widespread microbial processes that drive unexpected variation in carbon
cycling may improve modeling and management of soil carbon (Prescott, 2010;
Wieder et al., 2015a, 2018). A first step is to identify community features linked to
carbon cycle variation. We addressed this challenge using an epidemiological approach
with 206 soil communities decomposing Ponderosa pine litter in 618 microcosms.
Carbon flow from litter decomposition was measured over a 6-week incubation.
Cumulative CO2 from microbial respiration varied two-fold among microcosms and
dissolved organic carbon (DOC) from litter decomposition varied five-fold, demonstrating
large functional variation despite constant environmental conditions where strong
selection is expected. To investigate microbial features driving DOC concentration, two
microbial community cohorts were delineated as “high” and “low” DOC. For each cohort,
communities from the original soils and from the final microcosm communities after the
6-week incubation with litter were taxonomically profiled. A logistic model including total
biomass, fungal richness, and bacterial richness measured in the original soils or in the
final microcosm communities predicted the DOC cohort with 72 (P < 0.05) and 80
(P < 0.001) percent accuracy, respectively. The strongest predictors of the DOC cohort
were biomass and either fungal richness (in the original soils) or bacterial richness (in the
final microcosm communities). Successful forecasting of functional patterns after lengthy
community succession in a new environment reveals strong historical contingencies.
Forecasting future community function is a key advance beyond correlation of functional
variance with end-state community features. The importance of taxon richness—the
same feature linked to carbon fate in gut microbiome studies—underscores the need
for increased understanding of biotic mechanisms that can shape richness in microbial
communities independent of physicochemical conditions.
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INTRODUCTION

Modeling existing soil carbon stocks is a starting point
to predict future feedbacks to climate (Friedlingstein et al.,
2013). Accurate modeling of current carbon stocks remains
a challenge as indicated by large unexplained variance, weak
spatial correlation at the global scale, and deviation of entire
habitat types (Todd-Brown et al., 2013; Wieder et al., 2013;
Wang et al., 2017). Many factors may contribute to these
discrepancies, but an emerging view posits a strong role for
microbial composition (Schimel and Schaeffer, 2012; Wang et al.,
2017; Malik et al., 2019; Woolf and Lehmann, 2019) because
microbial communities are not always functionally equivalent
(Bier et al., 2015). Different microbial community “types” can
occur within a habitat type, contributing substantial variation
to ecosystem function (Arumugam et al., 2011; Ravel et al.,
2011; Falony et al., 2016). A community type is defined as
a discernable compositional cluster in a multi-dimensional
landscape of compositional possibilities (Arumugam et al., 2011).
The existence of alternative soil community types that vary
in function under the same environmental conditions has
been postulated (Malik et al., 2019), including communities
with functional extremes analogous to stable dysbiosis in the
human gut (Ochoa-Hueso, 2017). Such communities in nature
would create variation in carbon cycling that is unexplained in
conventional models.

The specific features of microbial community composition
that may drive substantial variation in soil carbon cycling are
unknown (Prescott, 2010). Features that have been explored
theoretically for effects on litter decomposition rates or soil
organic matter abundance include ratios of fungi versus bacteria
(Waring et al., 2013), active versus dormant populations (Wang
et al., 2017), and oligotrophs versus copiotrophs (Wieder et al.,
2015b). However, experimental validation lags (Louis et al.,
2016). Microbial diversity has been proposed as a driver of
decomposition rates but continues to be intensely debated
(Nielsen et al., 2011; Louis et al., 2016) with conflicting
experimental evidence against (Degens, 1998; Griffiths et al.,
2001; Wertz et al., 2006; de Graaff et al., 2015) and for (Griffiths
et al., 2000; Juarez et al., 2013; Maron et al., 2018; Wagg et al.,
2019). In recent studies supporting a diversity-decomposition
relationship, a single community was manipulated in each
case by extreme dilution (e.g., undiluted versus 10−5 fold)
(Juarez et al., 2013; Maron et al., 2018) or by size-fractionation
of a soil (Wagg et al., 2019) to create diversity gradients,
but these gradients seem unlikely to occur under natural
scenarios. Examining diverse microbial communities in nature
that foster different carbon cycling patterns under the same
environmental conditions is a useful alternative to discover
relevant community features.

Microbial features that shape the quantity and quality of
dissolved organic carbon (DOC) from plant litter decomposition
are of particular interest (de Graaff et al., 2015). DOC is the
mobile pool of soil carbon that can be transported to deeper
soil layers where long-term stabilization on mineral surfaces can
occur (Kalbitz and Kaiser, 2008). The quantity and quality of
DOC influence the amount of carbon that binds to mineral

surfaces (Kalbitz and Kaiser, 2008). DOC is released from plant
litter by disruption of plant cells containing soluble material
and by microbial hydrolysis of complex plant compounds.
DOC is also released from microbes via active secretions
(e.g., enzymes, antibiotics, signaling molecules), metabolic waste
products, and necromass. In theory, variation in microbial
community composition can dramatically alter DOC quantity
and quality by changing DOC consumption or production rates
and the types of compounds preferentially decomposed or added
in the DOC pool.

To explore microbial effects on DOC, we used an
epidemiological approach wherein a large population of
plant litter decomposer communities in laboratory microcosms
was screened to delineate cohorts with contrasting DOC
concentrations. Although surface leaf litter decomposition is
only one component of soil carbon cycling, it accounts for about
half of the CO2 efflux in temperate deciduous forests annually
(Schlesinger and Andrews, 2000). Plant litter decomposition
is generally viewed as a two-stage process comprising an
initial fast phase dominated by weedy microbial taxa, and
a subsequent slow phase driven by taxa better equipped to
deconstruct lignocellulose (Cotrufo et al., 2015; Müller et al.,
2015). The early phase of litter decomposition is of interest
because carbon flow during rapid microbial growth on labile
plant carbon is now understood to play an important role
in the formation of soil organic matter (Rubino et al., 2010;
Cotrufo et al., 2015).

To acquire a spectrum of decomposer communities on
Ponderosa pine leaf litter, 206 soil samples were collected from
nine states in the southwestern United States (Supplementary
Figure S1) as source material for the dispersal of microbial
communities onto leaf litter in 618 microcosms. We measured
carbon flow during the early phase of plant litter decomposition
by quantifying DOC from a 6-week decomposition period.
Community cohorts were delineated as “high” versus “low” DOC.
We used a simple mineral binding assay in vitro to assess potential
differences in DOC composition that have implications for soil
carbon accumulation. We also measured cumulative carbon
dioxide (CO2) to assess the degree of variation between CO2 and
DOC. A strong correlation between CO2 and DOC would enable
use of CO2 as a proxy for DOC, which is a slower and expensive
measurement, whereas a weak correlation may suggest variation
in controls on each carbon pool, motivating future comparisons
of microbial community features driving the abundance of each
pool of carbon. We hypothesized that the composition of the
original soils would exert legacy effects that constrain succession
in each microcosm, and therefore specific community features in
the original soils would be linked to the final DOC concentrations
in the microcosms.

MATERIALS AND METHODS

Initial Soil Collection for Microbial
Inoculum
Soil samples were collected from 206 locations throughout the
southwestern United States between February and April, 2015
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(Supplementary Figure S1). The goal of this study was not
to relate functional outcomes to detailed characteristics of the
environments from which the soils were collected. Therefore,
a randomized collection scheme was not used, as this would
have substantially increased the cost and logistical burden
of sample collection without benefit. Samples were typically
collected at locations approximately 80 km apart, at least 15 m
from roadways, from the top 3 cm of the soil surface after
removal of surface litter. In the collection region, ecosystems
routinely have patchy ground cover with exposed soil and little,
if any, litter layer at the soil surface. Samples were collected
in sterile 50-ml screw-cap tubes, and immediately stored on
ice. Samples were stored at 6◦C in the laboratory to avoid
microbial lysis from freeze-thaw effects and were used within
6 weeks to inoculate microcosms. The location of each sample
was recorded by GPS and photographed (e.g., Supplementary
Figure S1) to facilitate description of the eight major ecosystem
types (Table 1) from which samples were obtained. The eight
ecosystem types were defined broadly by dominant and minor
plant types or by agricultural land-use. GPS coordinates, sample
location photos, and ecosystem type for each sample are available
upon request.

Microcosm Construction and CO2
Sampling
Microcosms consisted of 125 ml serum bottles containing
approximately 5 g of sand and 0.12 g (dry weight) of Ponderosa
pine leaf litter, which had been ground in a Wiley Mill (Thomas
Scientific, Swedesboro, NJ, United States). The microcosms were
sterilized by autoclaving (at 121◦C and 15 psi) three times for
1 h each, with at least an 8-h resting interval between each
autoclave cycle. Microbial communities were extracted from soil
samples (n = 206) on the day of inoculation by suspending
1 g of soil in 9 ml of phosphate-buffered saline (PBS, pH
7.4), then creating a 1000-fold dilution in PBS amended with
NH4NO3 at a final concentration of 4.8 mg·ml−1. We used a high

TABLE 1 | Prevalence of DOC categories within ecosystem types.

Samples per DOC categoryc

Ecosystem typea Low Medium High

Grassland - shrub 23 44 50

Mixedb 10 8 3

Juniper woodland - grass 10 3 2

Agricultural field, active 3 10 2

Agricultural field, fallow 4 6 3

Grassland - juniper 5 3 2

Pinyon juniper woodland - grass 6 2 0

Pine forest 3 2 2

aFor the hyphenated ecosystem types, the dominant plant type is listed first.
b“Mixed” represented locations that were predominantly low-lying drainage areas
with highly mixed plant types (trees, shrubs, and grasses).
cThe frequency of samples in “high” or “low” categories differed significantly from
chance (X2 test, d.f. = 2, X2

= 17.89, P < 0.001). For this test, data were used
only from the first three ecosystem types, which were adequately sampled such
that the expected frequency of high or low DOC samples was greater than 5.

nitrogen background comparable to levels used in field studies
(Mueller et al., 2015) to represent the atmospheric deposition
of nitrogen that has already occurred and will continue to
increase in natural ecosystems (Galloway et al., 2004). The
44-day microcosm incubation included a 14-day equilibration
phase with a small amount of litter intended to activate the
communities, followed by a 30-day test phase with a much
larger amount of litter. At the beginning of the equilibration
phase, three microcosms per soil sample each received 1.3 mls
of inoculum, pipetted directly onto a 0.02 g aliquot of pine
litter (n = 618 microcosms). These microcosms were then
sealed with Teflon-lined crimp caps (preventing desiccation) and
incubated at 25◦C in the dark for 14 days to equilibrate the
communities. Four negative control microcosms, used to confirm
the efficacy of sterilization, received the same quantities of PBS
and NH4NO3, but no microbial communities. The headspace in
each microcosm was evacuated using a vacuum pump on days
3 and 7, and replaced with sterile-filtered air. On day 14, an
additional 0.1 g aliquot of litter sterilized by three rounds of
autoclaving was added to each microcosm (resulting in a total of
0.12 g litter), and microcosms were re-sealed. The microcosms
were incubated at 25◦C in the dark for a further 30 days.
On days 2, 5, 9, 16, 23, and 30, CO2 was measured by gas
chromatography using an Agilent Technologies 490 Micro GC
(Santa Clara, CA, United States). After each measurement, the
headspace air was evacuated with a vacuum pump and replaced
with sterile-filtered air.

Dissolved Organic Carbon (DOC) and
Litter Community Sampling
After the 44-day (total) incubation, microcosms were
destructively sampled to measure DOC and community
composition. DOC extractions were performed using a rapid,
gentle procedure to avoid measurement artifacts arising
from microbial growth or microbial cell disruption. For each
microcosm, 5 ml of sterile deionized water was added, swirled
manually for 30 s, then transferred to two 2-ml tubes. The tubes
were centrifuged 4 min at 16,400 × g. The supernatants were
combined and sterilized by filtration through a 0.2 µm filter. The
concentration of DOC in each sample was measured on an OI
Analytical model 1010 wet oxidation TOC analyzer (Xylem Inc.,
Rye Brook, NJ, United States), calibrated daily. Following DOC
sampling, material (sand and litter) from each microcosm was
frozen at−80◦C for DNA extraction.

Bacterial and Fungal Community
Taxonomic Profiling
Samples for community profiling were down-selected based on
the mean DOC concentration of each set of three replicate
microcosms at day 44 (Supplementary Figure S2). The profiled
samples represented the two tails of the distribution of DOC
concentrations. Ribosomal RNA gene profiles were obtained for
original soil samples (n= 128) and their corresponding replicate
microcosms (n = 384). DNA extractions were performed with
a DNeasy PowerSoil 96-well plate DNA extraction kit (Qiagen,
Hilden, Germany). The standard protocol was used with the
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following two exceptions: (1) 0.3 g of material (either soil
or microcosm samples comprised of mixed sand and plant
litter) was used per extraction; (2) bead beating was conducted
using a Spex Certiprep 2000 Geno/Grinder (Spex SamplePrep,
Metuchen, NJ, United States) for 3 min at 1900 strokes per
minute. DNA samples were quantified with an Invitrogen Quant-
iTTM dsDNA Assay Kit (Thermo Fisher Scientific, Eugene,
OR, United States) on a BioTek Synergy HI Hybrid Reader
(Winooski, VT, United States). PCR templates were prepared
by diluting an aliquot of each DNA stock in sterile water to
1 ng·µl−1. The bacterial (and archaeal) 16S rRNA gene (V3-
V4 region) was amplified using primers 515f-R806 (Bates et al.,
2010). The fungal 28S rRNA gene (D2 hypervariable region)
was amplified using the LR22R primer (Mueller et al., 2016)
and the reverse LR3 primer (Talbot et al., 2014); this target
sequence is amenable to phylogenetic tree construction and
provides genus-level resolution equivalent to that provided by
internal transcribed spacer sequences (Porras-Alfaro et al., 2014).

A two-step amplification procedure was used based on
Mueller et al. (2015), with Phusion Hot Start II High Fidelity
DNA polymerase (Thermo Fisher Scientific, Vilnius, Lithuania).
In the first PCR, barcoded amplicons were produced over 22
cycles using gene primers flanked by 6 nt barcodes that jointly
provided a unique 12-mer barcode for each sample (Gloor et al.,
2010). Cycling conditions were 30 s at 98◦C, 22 cycles of (98◦C
for 15 s, 60◦C for 30 s, 72◦C for 30 s), and a final extension
step of 72◦C for 5min. The second PCR extended Illumina
adapter sequences on the amplicons over 10 cycles. Cycling
conditions were 30 s at 98◦C, 10 cycles of (98◦C for 15 s, 65◦C
for 30 s, 72◦C for 30 s), and a final extension step of 72◦C
for 5min. Amplicons were cleaned using a MoBio UltraClean
PCR clean-up kit (Carlsbad, CA, United States), quantified using
the same procedure as for the extracted DNA, and then pooled
at a concentration of 10 ng each. The pooled samples were
further cleaned and concentrated using the Mobio UltraClean
PCR clean-up kit. All clean ups were undertaken as per the
manufacturer’s instructions with the following modifications:
binding buffer was reduced from 5X to 3X sample volume and
DNA was eluted in 50 µl Elution Buffer. DNA quality of the
amplicon pool was assessed with a bioanalyzer, concentration
was verified by qPCR, and sequencing was performed on an
Illumina MiSeq with paired-end 250 bp chemistry at Los Alamos
National Laboratory.

Bacterial and fungal sequences were merged with PEAR v 9.6
(Zhang et al., 2014), quality filtered to remove sequences with 1%
or more low-quality (q20) bases, and demultiplexed using QIIME
(Caporaso et al., 2010) allowing no mismatches to the barcode
or primer sequence. Further processing was undertaken with
UPARSE (Edgar, 2013). Sequences with an error rate greater than
0.5 were removed, remaining sequences were dereplicated, OTU
clustering was performed at 97%, and putative chimeras were
identified de novo using UCHIME (Edgar et al., 2011). Bacterial
and fungal OTUs were classified via the Ribosomal Database
Project (RDP) classifier (Wang et al., 2007). OTUs that were not
classified as bacteria or fungi with 100% confidence were removed
from the dataset. Bacterial OTUs with less than 80% classification
confidence at the phylum level were also removed. The omitted

data accounted for less than 5% of the total. Of the 128 source
soil samples that yielded high or low DOC concentrations in
microcosms, 123 of the samples passed sequence quality control
and 1,481,601 and 1,741,698 total sequences were obtained
for bacteria and fungi respectively. The sequences represented
5595 bacterial OTUs (an average of 409 detected per soil)
and 2270 fungal OTUs (an average of 112 detected per soil).
From the day-44 microcosm samples representing the high and
low DOC cohorts, a total of 9,576,525 sequences from 349 of
384 microcosms that passed quality control were obtained for
bacteria and 13,124,107 sequences from 377 microcosms were
obtained for fungi. These represented 2,527 bacterial OTUs (an
average of 275 detected per microcosm) and 753 fungal OTUs (an
average of 47 detected per microcosm).

Sequence data were deposited in the NCBI Sequence Read
Archive (PRJNA515766 for the source soils and PRJNA478595
for the day-44 microcosm samples). All other data including
OTU tables are available upon request.

Total Biomass, Fungal, and Bacterial
Abundance
The DNA quantity extracted from each sample was used as
a proxy for biomass. Fungal and bacterial abundance were
separately estimated by quantitative PCR (qPCR) using 18S
rRNA gene primers nu-SSU-1196F and nu-SSU-1536R for fungi
(Borneman and Hartin, 2000) and 16S rRNA gene primers EUB
338 (Lane, 1991) and EUB 518 (Muyzer et al., 1993) for bacteria
as described by Castro et al. (2010). Assays were performed with
the Biorad iQ SyBr Green Supermix on a BioRad CFX Connect
Real-Time System (BioRad, Hercules, CA, United States). DNA
templates were normalized to 1.0 ng·µl−1. Six-point calibration
standards were created by serial dilution of linearized plasmid
DNA containing a cloned Phoma 18S rRNA gene fragment (for
fungi) or genomic DNA from Burkholderia thailandensis E264,
ATCC 70038 (for bacteria). Melt curves were generated for every
run to detect potential false positives.

DOC Binding Assay
To assess variation in DOC composition (a.k.a., quality), the
fraction of DOC able to bind to mineral surfaces was measured
for one DOC sample replicate from each of the high DOC
(n= 64) and each of the low DOC (n= 64) day-44 communities.
Aluminum oxide was used as a representative mineral for DOC
binding (Kleber et al., 2015). For each sample, 0.5 ml of DOC
was added to 1 ml of sterile water (3X dilution factor) and 0.3 g
of aluminum oxide (Al2O3). Samples were mixed by inversion
with a Thermolyne rocker (Barnstead/Thermolyne, Dubuque, IA,
United States) for 30 min and then centrifuged at 16,100 × g
for 5 min. Supernatant was transferred to a new tube and
stored at −20◦C until DOC quantification on a TOC analyzer.
The percentage of bound DOC was calculated as 100% × [1-
(DOCpost-binding × dilution factor)/DOCpre-binding].

Statistical Analyses
Community composition analyses were performed with rarefied
data unless otherwise stated using functions in the vegan
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package v 2.4-3 (Oksanen et al., 2013). For original soil samples,
bacterial communities were rarefied to 1095 sequences per
sample, and fungal communities were rarefied to 1385 sequences
per sample. For day-44 microcosms, bacterial communities
were rarefied to 1023 sequences and fungal communities were
rarefied to 2032 sequences. Bacterial and fungal richness [E(S)
from rarefaction] and diversity (Shannon–Wiener index) were
compared between the high and low DOC cohorts for both
original soil and day-44 microcosm samples using one-way
ANOVAs. Bray–Curtis dissimilarity matrices for bacterial and
fungal communities were computed using log-transformed data
to reduce the weight of highly abundant taxa in dissimilarity
scores. Non-metric multi-dimensional scaling was used to
create ordination plots illustrating the community dissimilarity
relationships. A permutational multivariate analysis of variance
(PERMANOVA; Andersen, 2001) was performed to assess
whether the community composition of high and low DOC
cohorts differed. The individual microcosms (day 44) were
treated as independent samples in all statistical analyses
because the replicates diverged substantially in community
composition by the conclusion of the experiment and were
therefore considered biologically distinct. Compositional
analyses were also run on each set of replicates (set A,
set B, set C) independently to confirm that conclusions
were consistent irrespective of how replicates were treated
(Supplementary Table S3).

To further compare community composition between
high and low DOC cohorts, OTU sequences were grouped
phylogenetically at the Family level for bacteria and Order
level for fungi to assess differential abundance of individual
taxa. This analysis was performed for the original soils and
day-44 microcosm samples. Family-level comparisons were
not made for fungi due to low classification confidence levels.
For fungal orders and bacterial families, OTUs were only
used that could be phylogenetically assigned with at least a
70% confidence level from the RDP Classifier. Because taxa
with low abundance values were sporadically detected among
microcosms, further statistical analysis of individual taxa was
restricted to the most abundant bacterial families and fungal
orders that comprised on average at least 1% of the sequences
of either the high or low DOC cohorts. Differences in taxon
abundance in high versus low DOC cohorts were compared
by t-tests.

Correlations between various community features versus
DOC concentrations were measured with Pearson’s (univariate)
or Mantel (multivariate) tests. For Mantel tests with the original
soils, the average day-44 DOC concentrations among each
set of three replicate microcosms were used to generate a
Euclidean distance matrix for comparison with bacterial and
fungal community Bray-Curtis matrices (ecodist package; Goslee
and Urban, 2007). For day-44 microcosm community samples,
DOC concentrations from all microcosms were used to create the
distance matrix. Univariate features included fungal abundance
(qPCR), bacterial abundance (qPCR), fungal:bacterial ratios, total
biomass (measured as total extracted DNA), OTU richness, and
Shannon diversity. All statistical analyses were performed using
R v3.3.3 (R Core Team, 2017).

Prediction Models for DOC
Concentration
To predict DOC concentration at day-44, logistic regression
models were developed using emergent community features
measured at day-0 or day-44. Because logistic models use a
sigmoid function to generate binary predictions, they are highly
appropriate for our experimental design focused on DOC cohorts
(low/high). However, we also showed comparable results are
obtained when using simple linear regression models with DOC
as a continuous variable (Supplementary Tables S5, S6).

The logistic model with day-0 (original soil) community
features used seven community features as variables: total
biomass, fungal richness, bacterial richness, fungal diversity,
bacterial diversity, fungal abundance, and bacterial abundance.
To show the predictive power of the logistic regression model,
the total data set was partitioned into 1000 unique permutations
of training and testing data with 30% of samples reserved for
testing. Training data and testing data were partitioned such
that the balance of high DOC and low DOC labels in each
set was equivalent. For day-44 community data, replicates were
included as an informative source of feature variation, but each
set of replicates was kept together in either training or testing
sets to maintain independence of the two sets. Variables in
the training data were standardized to be zero mean with unit
variance, and variables in the testing data were similarly scaled
using training data statistics. Scikit-learn’s (Fabian Pedregosa
et al., 2011) Logistic Regression model was used to fit to
the training data using an ‘L2’ penalty, which penalizes the
squared magnitude of each regression coefficient. After fitting
the model to training data, feature selection was applied using
Scikit-learn’s SelectFromModel function to reject features with
regression coefficients less than a threshold value of 1e-5. For
each set of training data, the Wald statistic (defined as the
regression coefficient divided by the standard error of the
regression coefficient) was computed to provide a measure of the
significance of model variables (Wasserman, 2011). This process
was performed for every permutation of training and testing data,
with the Wald statistics and prediction accuracy stored after each
permutation. The average regression coefficient, Wald statistic
and p-value for each feature over 1000 permutations of training
and testing are reported in Supplementary Table S4.

Based on the Wald statistics (Supplementary Table S4),
three features (biomass, fungal richness, and bacterial richness)
were down-selected as the most important variables to predict
DOC concentration (see Supplementary Tables S5, S6 and
Supplementary Figures S5, S6). A second logistic regression
model with the reduced set of features measured at day-
44 was applied to 1000 permutations of training and testing
data as described above (Supplementary Table S4). Statistical
significance of model performance on testing data was computed
using a z-test for the equality of two proportions to compare
the proportion of correctly labeled samples using the logistic
regression model to the proportion of correctly labeled samples
using the null model. Code for data pre-processing, logistic
regression and statistical analysis is available online at https://
github.com/MunskyGroup/Albright_et_al_2019.
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RESULTS

Microbial-Driven Variation in Respiration,
DOC Quantity, and DOC Quality Was
Large
Over the 6-week decomposition period, cumulative respired CO2
varied approximately two-fold between 160 and 345 mg·g−1

of litter, and DOC concentration varied five-fold between 3
and 18 mg·g−1 litter (Figure 1). The CO2 and DOC from
decomposition were negatively and weakly correlated (r2

= 0.16,
P < 0.001), showing that cumulative CO2 is a poor proxy for
DOC. The distribution of mean DOC concentrations among
the 206 sets of replicate microcosms was used to delineate two
contrasting functional cohorts representing high versus low DOC
concentrations (Supplementary Figure S2). The cohorts differed
two-fold in mean DOC concentration. DOC concentrations
ranged from 3.5 to 6.6 mg g−1 litter in the low cohort and
from 8.3 to 14.9 mg g−1 litter in the high cohort. Although
the arbitrarily wide boundaries for each cohort created a risk
of impeding discovery of common characteristics within a
cohort, the approach was considered a suitable compromise
for exploratory analysis, the need for a larger number of
samples to support machine learning algorithms, and cost
constraints the precluded processing all samples. The cohorts
were balanced by requiring each to contain 192 samples (i.e.,
all three replicate communities derived from 64 source soils).
The high and low DOC cohorts varied not only in DOC

concentration but also in DOC composition, as indicated by
a binding assay with aluminum oxide, a common soil mineral
that binds organic carbon (Kleber et al., 2015). The fraction of
DOC binding to aluminum oxide ranged from 16.9 to 55.8%
among the subset of DOC samples tested. Communities with high
concentrations of DOC had, on average, DOC with significantly
greater potential for mineral-binding (Figure 2; two-tailed t-test,
P = 0.006).

Microbial Communities With Contrasting
Function Were Geographically
Intermingled
The original soils were obtained from eight ecosystem types
defined broadly by dominant and minor plant types or by
agricultural land-use (Table 1). Ecosystem type significantly
influenced the frequency of obtaining a soil community that
yielded a high or low DOC concentration in the microcosm
experiment (chi-squared test, P < 0.001; additional supplemental
analyses are available in Albright et al., 2020). However,
every ecosystem type except one included soil communities
representing both functional cohorts (Table 1), fulfilling the
primary objective of acquiring diverse source communities for
each DOC cohort. Source soil samples yielding high versus
low DOC concentrations in our microcosm study were also
geographically intermingled (Supplementary Figure S1) and co-
occurred less than 30 m apart at 14% of 49 geographic locations
where two or more soil samples were collected from the same site.

FIGURE 1 | Dissolved organic carbon (DOC) concentrations among 611 microcosms after 44 days of pine litter decomposition. Inset panel - inverse correlation
between CO2 and DOC.
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FIGURE 2 | Proportion of dissolved organic carbon (DOC) that binds to
aluminum oxide. DOC was obtained from microcosms after 44 days of pine
litter decomposition. A greater proportion of DOC binds from high DOC than
low DOC samples (P = 0.006, n = 128).

The seven pairs of co-occurring samples had an average 1.7-fold
difference in DOC per pair.

Community Features Were Linked to
DOC Concentration
Community composition, specific taxa, and several emergent
community features (biomass abundance, OTU richness, and
diversity) were significantly linked to DOC concentration. The
links were assessed by comparison of means between the cohorts
and/or by correlation with DOC as a continuous variable. Each
factor is described in a subsection below.

Community Composition
The composition of microbial communities in the low versus
high DOC cohorts differed significantly, both for the original
soil communities and for the day-44 microcosm communities
(Figure 3). For the original soil communities and the day-
44 microcosm communities, DOC concentration was more
strongly correlated with bacterial rather than fungal community
composition (Table 2; Mantel test, bacteria r = 0.26 or 0.28,
P= 0.001; fungi r= 0.19 or 0.12, P= 0.001). Microcosm bacterial
communities at day-44 were slightly more correlated with DOC
than original communities, while fungal communities showed
the opposite trend.

Specific Taxa
In the original soil samples and in the day-44 microcosms
respectively, 17 of 31 bacterial families and 13 of 23 bacterial
families comprising on average at least 1% of the sequences were
significantly different in relative abundance between high and low
DOC cohorts (Figures 4A,C). Among these families, only four
(Methylobacteriaceae, Nocardioidaceae, Hyphomicrobiaceae, and
Caulobacteraceae) showed consistent differences between DOC
cohorts in both the original soils and the day-44 communities
(Figures 4A,C). Among the fungal orders comprising on
average at least 1% of sequences, 6 of 18 orders in the
original soils and 4 of 7 orders in day-44 microcosms were
significantly different in relative abundance between high and
low DOC cohorts (Figures 4B,D). Eurotiales was the only
fungal order that was significantly different (higher in the low
DOC cohort) between DOC cohorts in both original and day-
44 communities.

Biomass
The average copy number of bacterial and fungal rrn genes
determined by qPCR was 108 (bacteria) and 107 (fungi) in the
original soil samples as well as in day-44 microcosm samples
(Supplementary Table S2). The correlation between total
biomass (extracted DNA) and bacterial abundance was similar for
soils and microcosms (r = 0.69 and 0.66, respectively), whereas
the correlation with fungal abundance was weak in microcosm
samples (r = 0.52 and 0.28, respectively; Supplementary
Table S2). Original soil communities in the high DOC cohort
had, on average, 36% less biomass than those in the low DOC
cohort (Table 2, Supplementary Figure S3; t-test P < 0.001).
Similarly, day-44 microcosm communities in the high DOC
cohort had 18% less biomass than those in the low DOC cohort
(Table 2, Supplementary Figure S3; t-test P < 0.001). Even
so, DOC was only weakly correlated with biomass (Table 2;
r =−0.28 or−0.22, P ≤ 0.001).

Community Richness and Diversity
Microbial community richness [calculated by rarefaction as E(S)]
and Shannon diversity were the most significant features linked
to DOC concentration (Table 2). Bacterial richness and diversity
of the original soil and day-44 microcosm communities were
significantly lower in the high compared to the low DOC
cohorts (Supplementary Figure S4; t-test, richness P < 0.002
and diversity P ≤ 0.02; also Supplementary Table S3). In
both original soils and day-44 microcosms bacterial richness
was negatively correlated with DOC concentration and was the
community level trait most strongly linked to DOC in day-
44 communities (Table 2; Pearson correlation, original soils
r =−0.39, P < 0.001; day-44 microcosms r =−0.64, P < 0.001).
In the original soils fungal richness was also significantly
lower in the high DOC cohort (Supplementary Figure S4;
two-tailed t-test P = 0.0001) and negatively correlated with
DOC concentration (Table 2; Pearson correlation; r = −0.45,
P < 0.001). No differences in fungal richness were observed
in the day-44 microcosms (Supplementary Figure S4; two-
tailed t-test P = 0.187). Fungal diversity did not differ between
high and low DOC cohorts in either original soil or day-44
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FIGURE 3 | Relationship between microbial community composition and dissolved organic carbon (DOC) concentration. Non-metric multidimensional scaling
ordinations performed on rarefied data for (A) bacterial communities in original soils, (B) fungal communities is original soils, (C) bacterial communities in day-44
microcosms (D) fungal communities in day-44 microcosms. Points are shaded by DOC cohorts: high (black) and low (gray). The stress value is derived from six
dimensions.

microcosm samples (Supplementary Figure S4; two-tailed t-test
P > 0.05).

A Classifier Using Community Features
Predicted High or Low DOC With
Significant Accuracy
Logistic regression models predicted DOC concentrations
(“high” or “low”) in the 44-day microcosms significantly better
than chance (Figure 5; z-test for a proportion, P < 0.05
using day-0 community features and P < 0.001 using day-
44 community features). The average DOC prediction accuracy
of the logistic model from 1000 permutations of training
and test data was 0.72 and 0.80, when using feature values
from the original soil communities and the final microcosm
communities, respectively. In every permutation of training
and testing data, the logistic regression model achieved greater
prediction accuracy than the null model. In models using original
soil community data, the feature importance (Wald statistic)
of total biomass, fungal richness, and bacterial richness was
−2.5, −1.5, and −1.0, respectively (Supplementary Table S4).
In contrast, the importance scores in models using day-
44 microcosm community data were −4.5, −0.7, and −6.6
(Supplementary Table S4).

DISCUSSION

Discovering microbial community features that drive
large variation in soil carbon abundance independent of
environmental conditions may improve soil carbon modeling
and management. Up to 70-fold variation in CO2 flux or
litter mass loss has been observed in year-long field studies
of litter decomposition, and abiotic variables failed to explain
the majority of variance (Bradford et al., 2014, 2017). Given
the magnitude of unexplained variation in field decomposition
studies and in model predictions of soil organic carbon
abundance (Wang et al., 2017; Wieder et al., 2018), deciphering
the role of microbial community composition is a priority.
In our study, we made two important findings: (1) we
identified specific community-level features linked to DOC
concentration, and (2) we showed the features have strong
predictive power when measured before community succession
and decomposition begin.

Holding the environment constant within laboratory
microcosms while varying microbial community composition
reveals an indisputable link between microbial community
composition and decomposition outcomes. We built upon
valuable prior work by reducing geochemistry as a confounding
factor (Strickland et al., 2009) and by using natural microbial
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TABLE 2 | Correlations between DOC concentration and community features.

Day 0 Day 44

Feature DOC correlation (r)a Pb % Diff of means P DOC correlation (r) P % Diff of means P

Bacteria

Composition 0.26 ** 0.28 **

Biomass −0.19 * 36 * −0.10 NS 19 NS

Diversity −0.27 ** 34 * −0.55 *** 130 ***

Richness −0.37 *** 52 ** −0.64 *** 143 ***

Fungi

Composition 0.19 ** 0.12 **

Biomass −0.14 NS 23 NS −0.14 NS 36 NS

Diversity −0.30 *** 33 NS −0.02 NS 3 NS

Richness −0.46 *** 69 *** −0.08 NS 14 NS

Total

Biomassc
−0.28 ** 60 *** −0.22 *** 47 ***

F:B 0.03 NS −8 NS 0.03 NS −7 NS

aThe correlation value is Pearson’s rho. The correlation between DOC and community composition was determined with a Mantel test. The highest correlation value at
each time point is in bold.
bP-value from significance test. NS, not significant, *<0.5, **<0.01, ***<0.001.
cTotal biomass was measured as total extracted DNA, and therefore, results differ from bacterial and fungal biomass, which were each measured by qPCR assays.

FIGURE 4 | Microbial community composition in high and low dissolved organic carbon (DOC) microcosms. The mean proportion of sequences obtained (±SEM)
for each phylogenetic group in the high and low DOC cohorts is shown. (A) Bacterial families and (B) fungal orders in original soils. (C,D) Bacterial families and fungal
orders in 44-day microcosms. Only families and orders with a minimum mean relative abundance of 1% in at least one of the DOC cohorts are shown. Statistically
significant differences were determined by two tailed t-tests (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). Arrows indicate taxa with consistent significant
differences between the high and low DOC cohorts with both the original soil data and the 44-day microcosm data.
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FIGURE 5 | Logistic regression models for DOC. The prediction models used emergent community features from the original soil communities (panel A) or the
day-44 microcosm communities (panel B). The null model consisted of automatic assignment of samples to the most prevalent DOC cohort that occurred in the
test data set. The distributions for the logistic regression models show the prediction accuracy for held-out test data in 1000 permuations of training and test data.

source communities instead of isolate mixtures (Matulich and
Martiny, 2015). Moreover, we focused on community features
driving DOC variation—a priority which has previously been
neglected (de Graaff et al., 2015). In our study, high versus low
DOC cohorts differed significantly in microbial community
composition (Figures 3, 4). The significant difference occurred
among the native soil communities as well as among the
decomposer communities that arose in the microcosms,
demonstrating ecological succession and carbon flow in the
laboratory microcosms were constrained by the historical state
of the communities in soil. DOC concentration correlated
more strongly with the initial (original soil) fungal community
composition than the final fungal community composition
(day-44 microcosms) while bacterial community composition
showed the opposite trend. Fungi are generally considered
the main microbial drivers of plant litter decomposition due
to their production of powerful enzymes for deconstruction
of plant lignocellulose (Baldrian, 2017). However, bacterial
communities also contribute to decomposition outcomes
(Glassman et al., 2018). Our results are consistent with the
view that fungi are critical in launching major deconstruction
of litter and driving the overall rate, while bacteria play an
increasing role over time as secondary consumers shaping
the quantity and quality of DOC that remains available for
transport into soil.

The large range of variation in CO2 and DOC in our study
combined with the general magnitude (c.a. 75 Pg globally) of
natural CO2 flux from soil microbial respiration (Schlesinger

and Andrews, 2000; Ryan and Law, 2005) supports the concept
of steering soil microbial respiration to offset anthropogenic
CO2 emissions for climate change mitigation (Gao et al., 2017).
The true range in CO2 or DOC flux that can arise from
manipulating microbial community variation within a natural
ecosystem remains unknown. Variation in surface litter carbon
flow may be counter-balanced in nature by compensatory
processes over longer time-scales (Glassman et al., 2018) or in
other components of the carbon cycle, such that an ecosystem
will exhibit a fairly stable mean CO2 flux. Nonetheless, our
findings motivate further investigation of the potential to alter
carbon flow over long time scales by manipulating microbial
community composition.

The five-fold range we observed in DOC concentration
suggests a potential for microbial community control over soil
carbon abundance. In natural systems, DOC from surface litter
contributes substantially to soil carbon stocks (Kalbitz and
Kaiser, 2008). When DOC from decomposing surface litter is
transported to deeper layers, some of the carbon adsorbs to
mineral surfaces (Kaiser and Kalbitz, 2012; Newcomb et al.,
2017) enabling carbon stabilization over millennial timescales
(Schoning and Kogel-Knabner, 2006; Rumpel and Kogel-
Knabner, 2011). Because the amount of carbon stored is related
to the magnitude of DOC flux (Kalbitz and Kaiser, 2008),
microbial communities that yield larger quantities of DOC create
a possibility for greater soil carbon storage.

Our results show that microbial community composition
also alters DOC quality, which plays a role in soil carbon
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accumulation. Communities with high concentrations of DOC
had, on average, DOC with higher mineral binding potential.
Enrichment of DOC with compounds that have greater affinity
for mineral surfaces can increase carbon stabilization in
soil (Kleber et al., 2015). Enrichment of DOC may occur
through different mechanisms including (a) variable depletion of
compounds released from plant litter, (b) production of taxon-
specific microbial by-products (e.g., polyphenolics produced
by Actinobacteria) (Trigo and Ball, 1994) and (c) release
of taxon-specific residues from dead microbial cells such as
melanin, chitin, B-glucans, or glycoproteins (e.g., glomalin)
from fungi (Kogel-Knabner, 2002; Fenandez and Koide, 2012;
Siletti et al., 2017). Combining the effects of DOC quantity and
quality (i.e., mineral binding capacity), we observed a seven-fold
range in the quantity of carbon that could be readily stabilized
in soils. In a natural ecosystem, the realized quantity of carbon
stored would depend on additional factors such as the magnitude
of precipitation events for DOC transport to deep mineral layers
(Neff and Asner, 2001), soil porosity (Bailey et al., 2017), soil
mineralogy and chemistry (Doetterl et al., 2015), and variation
in the composition of subsurface microbial communities that
control the extent of DOC decomposition during DOC transport
through the soil (Dong et al., 2017).

Identifying specific community features that drive
decomposition outcomes is a crucial advance beyond
demonstrating a basic link between community composition
and outcomes. Eurotiales, Nocardioidaceae, Hyphomicrobiaceae,
Caulobacteraceae, and Methylobacteriaceae were strongly linked
to the DOC cohorts based on their consistent, significant
differences in relative abundance between cohorts in samples
from the original soils and day 44 microcosms (Figure 4).
Members of these taxonomic groups are early to mid-stage
decomposers of plant litter as well as fungal necromass (Baldrian
et al., 2012; Matulich et al., 2015; Brabcová et al., 2016; Kielak
et al., 2016; Purahong et al., 2016; Bonanomi et al., 2018; Bani
et al., 2019; Sauvadet et al., 2019; Wilhelm et al., 2019; Kong et al.,
2020). The groups represent a mix of generalists (Eurotiales,
Nocardioidaceae) and specialists with noteworthy physiological
characteristics (Hyphomicrobiaceae, Caulobacteraceae, and
Methylobacteriaceae). Methylobacteriaceae is a family of obligate
aerobes that consume C1 to C4 compounds (Eberspächer,
2015). This family was more abundant in the high DOC
cohort. The most prominent genus in our study was Microvirga
(Supplementary Table S1). Given the narrow substrate
range of Methylobacteriaceae, their importance in shaping
DOC concentrations is puzzling. Hyphomicrobiaceae and
Caulobacteraceae are known for oligotrophy. The most relevant
genera in our study were Devosia, Hyphomicrobium, Caulobacter,
and Phenylobacterium (Supplementary Table S1). The elevated
abundance of Hyphomicrobiaceae and Caulobacteraceae in the
low DOC cohort suggests they may reduce the concentration
of some DOC compounds to growth-limiting levels. When
substrates are growth-limiting, the average carbon use efficiency
of a community may decline as more taxa invest in production
of extracellular enzymes to acquire resources (Malik et al., 2019;
Ramin and Allison, 2019), and the range of variation among taxa
in carbon use efficiency decreases (Saifuddin et al., 2019). If such

a shift occurs, communities in the low DOC cohort may have
lower carbon storage potential owing to a decreased efficiency
of biomass production (Six et al., 2006), in addition to having
a lower quantity and quality of DOC for mineral stabilization.
Based on these observations, the use of an oligotroph–copiotroph
trait axis for soil carbon modeling (Wieder et al., 2015b) merits
further consideration. However, other distinctive physiological
characteristics such as predation and antibiotic antagonism have
also been linked to the DOC cohorts and may be of equal or
greater importance (Albright et al., 2020).

Since regional and global carbon models cannot account
for thousands of different microbial species’ abundances, we
focused on emergent community properties as features that
may predict DOC. Among the seven features we examined,
total biomass, fungal richness, and bacterial richness were
the most important features linked to DOC concentration
(Table 2 and Supplementary Tables S3, S4). Although DNA
is a crude biomass proxy affected by variation within and
among fungal species in the ratio of genome-mass-to-cell-size
and in extraction efficiency, it is the most economical proxy
for widespread use when other community composition features
will also be measured by DNA sequencing. The predictive
power of biomass, fungal richness, and bacterial richness was
robust, as indicated by the nearly equal performance of the set
of features measured before or after 6 weeks of community
succession. The reversal in the importance of fungal versus
bacterial richness as DOC predictive features at the beginning
versus end of the microcosm incubation again points to time-
dependent roles of fungi and bacteria in the decomposition
process that merit further investigation. The importance of
initial fungal taxon richness suggests fungi may create early
priority effects that constrain the trajectory of decomposition
and shape the assembly of bacterial communities that ultimately
control DOC concentration and composition. The capacity
to use easily measured community features to forecast the
functional patterns of soil communities can simplify mapping
the geographic distribution of a functional pattern that is driven
by microbes, not the environment. To be climate relevant, an
unexpected microbial functional pattern must be geographically
prevalent to cause the mean behavior of an ecosystem to deviate
from conventional soil carbon models. Our predictive DOC
model is an encouraging first step toward a capability to assess
geographic prevalence. However, considerable validation of the
predictive model is needed, including confirmation of prediction
performance when applied to new soils and when applied to
other litter types.

The strong correlation between lower bacterial richness and
higher DOC concentration is a priority for further analysis.
If bacterial richness proves to be a robust factor to predict
DOC concentration among natural ecosystems, understanding
the factors that control richness may reveal mechanisms
that can be used to improve prediction or management
of soil carbon dynamics. Bacterial richness is known to
vary at the landscape scale, declining with greater aridity
(Maestre et al., 2013; Tu et al., 2017) and with lower pH
(Bahram et al., 2018). However, richness that is strongly
driven by environmental factors may be uninformative in soil
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carbon models because the empirically calibrated environmental
variables in conventional models are likely to capture the linked
functional consequences. Biotic interactions that affect species
richness independent of the environment are more likely to create
unexplained variance in soil carbon models. Biotic interactions
that reduce richness and suppress function may include antibiotic
production (Frey-Klett et al., 2011), predation (Sockett, 2009),
or bacteriophage activity (Williamson et al., 2017). Evidence
for these phenomena in our microcosm study are described
in Albright et al. (2020).

CONCLUSION

To improve climate predictions by including microbial
processes in soil carbon models, climate-relevant microbial
processes and simple features that represent them must
first be identified, as has been achieved with plant traits
(Laughlin, 2014; Wieder et al., 2015b). Our study showed a
strong influence of microbial community composition over
decomposition outcomes in a constant environment, resulting
in large differences in carbon flow from litter decomposition.
It is reasonable to expect that microbial composition drives
variation in every component of soil carbon cycling (e.g., surface
litter decomposition, subsurface litter decomposition, plant
productivity and carbon allocation). Our findings motivate
investigation of this phenomenon in natural systems to assess
its importance to climate feedbacks within and among existing
ecosystems and its implications for managing soil carbon. We
identified a high-level feature—bacterial richness—linked to
DOC concentration and known to be geographically patterned.
Bacterial richness has also been linked to carbon fate in
mammals where lower richness correlates with increased
carbon storage in the host (Le Chatelier et al., 2013; Shabat
et al., 2016). Our findings raise the tantalizing possibility
of discovering robust principles that underpin functional
patterns in extremely diverse systems ranging from soils to
animal guts.
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