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Human T lymphotropic virus type 1 (HTLV-1) causes a range of chronic inflammatory diseases and an
aggressive malignancy of T lymphocytes known as adult T-cell leukaemia/lymphoma (ATLL). A cardinal
feature of HTLV-1 infection is the presence of expanded clones of HTLV-1-infected T cells, which may
ymphoma
ersistent infection
lonality

ntegration
igh-throughput sequencing

persist for decades. A high viral burden (proviral load) is associated with both the inflammatory and
malignant diseases caused by HTLV-1, and it has been believed that the oligoclonal expansion of infected
cells predisposes to these diseases. However, it is not understood what regulates the clonality of HTLV-1
in vivo, that is, the number and abundance of HTLV-1-infected T cell clones. We review recent advances in
the understanding of HTLV-1 infection and disease that have come from high-throughput quantification
and analysis of HTLV-1 clonality in natural infection.
. Introduction

Human T lymphotropic virus type 1 (HTLV-1) is a retrovirus that
s widespread in the tropics and sub-tropics. The total number of
eople infected is at least 5 to 10 million, but the true number is
ery uncertain, owing to incomplete epidemiological studies in the
ndemic regions [1].

HTLV-1 and its congeners HTLV-2, 3 and 4 [2] are retroviruses
hat belong to the Deltaretrovirus genus of the subfamily Orthoretro-
irinae, while the other pathogenic human retroviruses HIV-1 and
are classified in the subfamily Lentivirinae. Unlike HIV-1 and 2,
TLV-1 does not cause disease in the majority (over 90%) of infected

ndividuals. Between 1 and 4% of HTLV-1-infected people develop
chronic inflammatory disease, of which the commonest is HTLV-
-associated myelopathy/tropical spastic paraparesis (HAM/TSP),
hich causes progressive paralysis of the legs [3]. Some 5% of HTLV-

-infected individuals develop adult T cell leukaemia/lymphoma
ATLL), a T cell malignancy with a characteristically poor prognosis
4].

The history [5,6] and epidemiology [1,7,8] of HTLV-1 have been

bly reviewed elsewhere. The purpose of the present review is to
onsider two questions. First, what regulates the clonality of HTLV-
in vivo, that is, the selective outgrowth of certain clones of T cell
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infected with HTLV-1? Second, what is the role of this oligoclonal
proliferation in the pathogenesis of the inflammatory and malig-
nant diseases associated with HTLV-1? A clone of HTLV-1-infected
T cells is identified as a population of cells that carry the HTLV-1
provirus integrated at the same site in the host genome.

2. Adult T cell leukaemia/lymphoma (ATLL)

ATLL is a malignancy of mature, post-thymic T lymphocytes [9].
ATLL cells have a characteristic morphology, with a large, multi-
lobed nucleus, giving rise to the epithet “flower cell”. In the great
majority of cases, the phenotype of the malignant cell is CD4+ CD8−;
about 4% of cases are CD4− CD8+, and a similar proportion CD4+

CD8+ or CD4− CD8− [10]. The cells usually express the markers CD2
and CD5; CD3 and TCRß are frequently downregulated or unde-
tectable at the cell surface. The cells also express several molecules
that are characteristic of regulatory T cells, including the cell sur-
face molecules CD25, CCR4, GITR and the transcription factor FoxP3.
However, these molecules are also expressed by activated T cells,
and it appears that ATLL is not per se a malignancy of regulatory T
cells [11].

ATLL was classified into 4 clinical subtypes by Shimoyama et al.
[12], according to the lymphocyte count, serum calcium concen-
tration, lactate dehydrogenase level, solid organ involvement and
the severity of systemic symptoms. The most common acute form
(about 65% of cases) can present as a medical emergency, with

bulky lymphadenopathy, a florid and rapidly increasing leukocy-
tosis, hypercalcaemia, frequently with destructive bone lesions,
dehydration, and severe systemic symptoms. In the chronic form,
the lymphocytosis can also be very marked (over 50 × 109 cells L−1),
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ut the cell count rises more slowly, and the patient can remain
table with minor or absent symptoms for months or even years. A
roportion of cases (∼20%) present as a lymphoma, with a nor-
al circulating lymphocyte count. This diagnostic classification

emains useful for purposes of standardizing clinical trials, com-
aring disease and treatment outcomes between centres, choosing
ppropriate therapy and for assessing the prognosis. However, the
lassification does not reflect the continuum of presentation in the
linic. For example, a purely cutaneous form of ATL lymphoma
s recognized, which occurs without leukaemic or nodal disease,
nd which carries a substantially better prognosis than nodal lym-
homas.

. Treatment

ATLL carries a poor prognosis because of intrinsic chemother-
py resistance and severe immunosuppression. Despite advances
n medical management and supportive care, chemotherapy tri-
ls report a median survival of the aggressive subtypes between 7
nd 13 months [13–15]. Clinical trials of combination chemother-
py in acute ATLL have achieved improved response rates but
ave not prolonged survival. Patients with indolent forms of ATLL
ave a better prognosis (median overall survival 4.1 years [16])
ut the long-term survival remains poor when managed with
ither watchful waiting or conventional chemotherapy. A recent
eta-analysis of non-Japanese patients treated with zidovudine

nd IFN� revealed this to be a highly effective treatment for
eukaemic subtypes of ATLL [17]. Lymphoma subtypes may still
enefit from chemotherapy, with either concurrent or sequential
idovudine + IFN� treatment to prevent relapse [18]. The risk of
elapse with all ATLL subtypes remains high and the role of con-
olidation treatment with immunomodulatory therapies such as
idovudine + IFN�, arsenic trioxide or with monoclonal antibodies
uch as basiliximab or mogamulizumab is yet to be established.
llogeneic bone marrow transplantation remains the only curative
ption but is only possible in those individuals who achieve a com-
lete response to treatment, have an HLA-matched donor and are
hysically fit for the procedure.

. HTLV-1 molecular virology

The genome of HTLV-1 and the major transcripts are shown
n Fig. 1. In addition to the gag, pol and env gene products found
n other exogenous replication-competent retroviruses, HTLV-

encodes at least 7 regulatory gene products which control
he proviral transcription, mRNA splicing and transport, and the
xpression of certain host genes. The functions of these regulatory
enes of HTLV-1 have been reviewed elsewhere [19,20]. Among
hese genes, two, tax and HBZ, appear to play a particularly impor-
ant role in regulating the expression of viral and host genes and the
ctivation and proliferation of the host cell [20,21]. The transcrip-
ional transactivator Tax recruits host cell transcription factors,
otably CBP/p300, and activates transcription of the virus itself,

rom the promoter/enhancer in the 5′ long-terminal repeat (LTR)
Fig. 1), creating a strong positive feedback loop. In addition, Tax
ctivates the NF-�B and AKT pathways, thereby upregulating many
ost genes [22]. This widespread gene activation results in activa-
ion and proliferation of the host cell [20,23] and transmission of
TLV-1 to other host cells via the virological synapse [24,25].

HTLV-1 Tax protein has a remarkable range of actions on the
ost cell, promoting DNA replication and cell-cycle progression,

tructural damage to the host cell DNA, inhibition of DNA repair
nd cell-cycle and DNA damage checkpoints, and centrosome over-
uplication. Understandably, Tax has therefore been believed to
e necessary and sufficient to cause ATLL. Tax is indeed sufficient
ancer Biology 26 (2014) 89–98

to immortalize rat fibroblasts in culture, and Tax-transgenic mice
develop a variety of tumours [26–28]. However, mouse cells appear
to be transformed more readily than human cells [29], and attempts
to transform human cells in vitro with Tax have failed.

A second paradox concerning the putative oncogenic role of Tax
is the fact that some 60% of ATLL clones do not express Tax, although
the transformed cell typically retains the phenotype (CD25+ FoxP3+

GITR+, etc.) of the Tax-expressing cell. The loss of Tax results from
one of 3 mechanisms: deletion or methylation of the 5′ LTR, or
mutation of the provirus [20,21]. It is thought that the pressure
to lose Tax expression is exerted by the strong host cytotoxic T
lymphocyte (CTL) response to the Tax protein [30].

In 2002 a new gene was discovered in HTLV-1 [31]. The HTLV-
1 bZIP factor, HBZ, is expressed from the negative strand of the
provirus (Fig. 1), driven by the transcription factor Sp1 from a
promoter in the 3′ LTR. In contrast with Tax, HBZ appears to be
expressed at a constant (albeit low) level in most if not all HTLV-1-
infected cells, both non-transformed and malignantly transformed
[32].

HBZ has important actions at both the protein and mRNA lev-
els [20]. HBZ protein can reduce Tax-mediated viral transcription
by heterodimerizing with Jun and CREB2 [33]. HBZ also selectively
inhibits activation of the classical NF-�B pathway [34]; since Tax
activates both the classical and alternative pathways of NF-�B, it is
possible that chronic activation of the alternative NF-�B pathway
by persistent HBZ expression plays a part in the proliferation of
HTLV-1-infected cells in vivo [20]. This interpretation is favoured
by the observation that an efficient CD8+ T-cell response to HBZ
is associated with a lower proviral load and a lower risk of the
inflammatory disease HAM/TSP [35,36]. HBZ mRNA, rather than the
protein, promotes expression of the transcription factor E2F1, sup-
ports proliferation of ATLL cells in vitro [32], increases the proviral
load of HTLV-1 in the rabbit [37], and increases the activity of the
telomerase hTERT [38].

5. Cellular tropism and propagation of HTLV-1

HTLV-1 can infect virtually all nucleated mammalian cells
in vitro [39], but in vivo it is almost confined to T lymphocytes and
dendritic cells (DCs) [25,40]. Typically about 95% of the proviral load
– the proportion of circulating mononuclear leukocytes infected
– is carried in CD4+ (helper/regulatory) T cells, and 5% in CD8+

T cells [40] (AM, unpublished data). DCs constitute a very small
fraction of the load, but it is possible that they play a dispropor-
tionate role in propagating the virus within one host, particularly
in the early stages of infection, because of their high mobility and
their propensity to form intimate contacts with other cells [41,42].
HTLV-1 releases almost no cell-free virus particles in vivo. Instead,
when an infected cell makes contact with another cell, a syner-
gistic interaction between extracellular and intracellular signals
leads to cytoskeletal polarization in the infected cell and causes
directed assembly and budding of the virus at the cell-to-cell con-
tact, resulting in efficient transfer of the virus to the “target” cell
[24]. This specialized, virus-induced cell-to-cell contact is known
as a virological synapse [24]. Thus, the virus exploits the mobility
of the host cell instead of releasing mobile extracellular particles.
As a result, cell-free blood products from HTLV-1-infected people
are not infectious; HTLV-1 is transmitted between individuals by
transfer of infected leukocytes in breast milk, semen or blood [7].

5.1. What determines the equilibrium proviral load in an

individual with HTLV-1 infection?

Early studies found no systematic association between HTLV-
1 genotype and disease manifestation [43–45]. In 2000, Furukawa
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Fig. 1. Structure and coding potential of plus- and minus-
eproduced with permission from Figure 1a in Rende et al. [95].

nd his colleagues reported [46] a higher prevalence of HAM/TSP
mong people in southern Japan infected with the cosmopolitan
ubtype A of HTLV-1. However, the strongest correlate of disease
isk [47,48] and progression [49] is the proviral load, i.e. the frac-
ion of peripheral blood mononuclear cells (PBMCs) that carry the
TLV-1 provirus. The proviral load can reach remarkably high lev-
ls, frequently over 10% of PBMCs, i.e. over 20% of CD4+ T cells, the
ain host cell. Within each host the proviral load remains stable

ver time [49], but varies by more than 1000-fold among hosts.
he question arises: what determines the proviral load set point in
given host?

Like other exogenous, replication-competent retroviruses,
TLV-1 can propagate both by proliferation of the provirus-
arrying cell (“mitotic spread”) and by de novo virion production
“infectious spread”) [50]. As described above, cell-free virions are
ndetectable in vivo. In the chronic phase of infection HTLV-1 per-
ists chiefly by mitotic spread, i.e. by proliferation of T cells that
arry an integrated provirus of HTLV-1. The evidence for this comes
rom two main observations. First, the peripheral blood contains
xpanded T cell clones that carry HTLV-1 in the same genomic inte-
ration site [51–54]: such clones can persist for years in the host

53–55]. Second, HTLV-1 varies little in sequence both within and
etween hosts [43–45], in sharp contrast with HIV-1, and the rate
f evolution of HTLV-1 is low compared with other retroviruses
56,57]: these observations suggest that the error-prone enzyme
d HTLV-1 mRNAs. ©The American Society of Hematology.

reverse transcriptase [58] contributes relatively little to the repli-
cation of HTLV-1 during chronic infection [59,60].

Oligoclonal expansion of HTLV-1-infected lymphocytes in vivo
is frequently easier to detect in patients with HAM/TSP than in
asymptomatic HTLV-1 carriers (ACs) [54], and monoclonal expan-
sion is a defining feature of ATLL [61]. It has therefore been
presumed that oligoclonal proliferation plays a causative role in
both the inflammatory and malignant diseases caused by HTLV-
1. However, it has not been clear whether the apparently greater
oligoclonality observed in HAM/TSP was an artefact of the relatively
insensitive methods used to detect and quantify the clones: both
linker-mediated and inverse PCR and genomic Southern blotting
can reproducibly identify only relatively abundant clones.

6. A strong cytotoxic T-cell response limits HTLV-1 proviral
load and the risk of HAM/TSP

Since HTLV-1 varies little in sequence, and the same viral
sequence can occur in asymptomatic HTLV-1 carriers (ACs) and
patients with HAM/TSP or ATLL, the observed variation in the
outcome of infection among individuals must be chiefly due to

variation in the host. There is strong evidence that the principal
determinant of an individual’s proviral load and risk of HAM/TSP
is the HLA Class 1-associated CD8+ cytotoxic T lymphocyte (CTL)
response to HTLV-1. This evidence comes from experiments in
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ost genetics [62–64], viral genetics [65], lymphocyte gene expres-
ion [66], assays of lymphocyte function [67,68], and mathematical
nalysis [23,59,69]. Consistent with this notion, the protective host
ene HLA-A*02 was found to give less protection against HAM/TSP
n individuals infected with the Cosmopolitan subtype A of HTLV-1

hich, as noted above, was associated with a higher prevalence of
AM/TSP in Japan [46].

The HTLV-1 transactivator protein, Tax, is highly immunodom-
nant in the CTL response to HTLV-1 [70,71]. However, we recently
ound that the proviral load and the risk of HAM/TSP are determined
y the CTL response to a subdominant antigen, HBZ, and not by the
esponse to Tax [35,36]. The picture is emerging that the regulation
f tax and HBZ expression from the provirus plays a central role in
he persistence and pathogenesis of HTLV-1 infection [20].

To summarize: since both tax and HBZ gene products promote
roliferation of the infected cell, both have been suggested as neces-
ary and sufficient causes of both the oligoclonal T cell proliferation
een in HTLV-1 infection and the pathogenesis of inflammatory
nd malignant diseases associated with HTLV-1. The potential
athogenic role of these viral gene products must be understood

n the context of their normal physiological function in the life his-
ory of HTLV-1, since the primary function of these viral genes is
ot to cause disease in the host but rather to promote survival and
ropagation of the virus. The central question therefore becomes
his: what regulates the expression of the tax and HBZ genes in
ivo, and so controls the number, abundance and pathogenicity of
TLV-1-infected T cell clones in vivo?

To answer this question, we must consider what differs between
wo clones of T cells naturally infected with HTLV-1. There are three
rincipal attributes that distinguish one infected T cell clone from
nother: antigen (TCR) specificity, epigenetic modifications, and
he genomic site of integration of the HTLV-1 provirus. In addi-
ion, as a consequence of the epigenetic modifications, there may
e differences among clones in the expression of certain cell surface
arkers. We have hypothesized that the chief factor that regulates

he expression of the HTLV-1 provirus is the integration site of the
rovirus in the host genome. To test this hypothesis, we recently
eveloped [72] a sensitive, high-throughput technique for the map-
ing and – crucially – quantification of HTLV-1-infected T cell clones

n fresh uncultured peripheral blood mononuclear cells (PBMCs).
e have used this protocol to address the following questions:

How many proviruses are present in each cell?
How many distinct HTLV-1+ clones are present in a single host?
What regulates the abundance of a given clone in vivo?
What regulates expression of the provirus by a given clone?
Does oligoclonal proliferation contribute to the pathogenesis of
HTLV-1-induced diseases?

. High-throughput mapping and quantification of
etroviral integration sites

The high-throughput integration site protocol [72] consists of
CR amplification of genomic DNA fragments to which a partially
ouble-stranded DNA linker has been ligated. The protocol differs

n a critical respect from preceding high-throughput retroviral
apping techniques. Instead of using restriction enzymes to digest

he genomic DNA before linker ligation, the DNA is fragmented
y sonication. The resulting quasi-random distribution of DNA
ragment lengths confers two crucial advantages. First, it abrogates
he biased detection – due to preferential amplification of short

ragments – of proviruses integrated close to a given restriction
nzyme site. Second, since the DNA shear sites are virtually
andom, each sister cell of a given HTLV-1-infected T-cell clone
an be identified by the unique length of the amplicon. In this way,
ancer Biology 26 (2014) 89–98

the sister cells belonging to each clone can be enumerated and the
clonal abundance can be accurately estimated [73].

7.1. How many proviruses are present in one cell?

We isolated 28 clones of naturally infected T cells by limiting
dilution from the peripheral blood of patients with non-malignant
cases of HTLV-1 infection [74]. The clones were expanded in vitro
in the presence of the integrase inhibitor raltegravir, to minimize
secondary spread of the virus. We then used the high-throughput
protocol to quantify the number of HTLV-1 provirus integration
sites present in each clone. The results showed that every clone
examined carried a single integrated provirus. These results do
not exclude the possibility that some clones carry more than one
integrated provirus in vivo, but suggest that such clones are in
the minority in non-transformed cells. However, the incidence of
multiple integration sites may be higher in ATLL clones than in
non-transformed clones [75–77].

Josefsson et al. [78] recently reported evidence, using a differ-
ent approach, that single integrated proviruses also predominate in
HIV-1 infection. The finding that the majority of naturally-infected
clones carry a single provirus in both HIV-1 and HTLV-1 infection is
surprising. Since both HIV-1 and HTLV-1 are transmitted more effi-
ciently by cell-to-cell contact than by free virions, and indeed this
appears to be virtually the exclusive route in HTLV-1 infection, one
might expect that several virions would enter the newly-infected
cell and result in several proviral integrations, each in a differ-
ent genomic location. These observations therefore suggest that
specific mechanisms exist to limit the number of proviruses that
integrate in one cell. This phenomenon of superinfection resistance
in retroviruses is well described [79], but the molecular mecha-
nisms are not fully explained.

7.2. How many distinct HTLV-1-infected clones are present in one
host?

In ATLL, a single HTLV-1-infected clone typically dominates the
viral population. In non-malignant cases of HTLV-1 infection, the
disproportionate expansion of certain infected T cell clones was
first detected by Southern blotting of genomic DNA and by linker-
mediated PCR (LM-PCR) [53]. These early experiments led to the
estimate that a typical host with HTLV-1, without ATLL, carries
about 100 clones of HTLV-1-positive lymphocytes in the circula-
tion [52]. However, these techniques are at best semi-quantitative
and, more importantly, have a limited dynamic range. That is, a
single clone must be present at high frequency to be reproducibly
detected by these methods, but a highly abundant clone is difficult
to distinguish from a merely detectable clone. As a result, neither
the number nor the absolute or relative abundance of clones could
be reliably estimated by such techniques. The new high-throughput
protocol has changed the understanding of HTLV-1 clonality in vivo.
Typically, thousands of distinct integration sites are detected in
10 �g of genomic DNA from peripheral blood mononuclear cells
[72,80]. We are now developing a curve-fitting technique to extrap-
olate the observed frequency distribution of clones in a given
individual, in order to estimate the total number of clones present
in the circulation of that individual. The results (Laydon et al., sub-
mitted for publication) indicate that the median number of distinct
HTLV-1-positive clones in the circulation lies between 20,000 and
50,000. The lymphocytes in the circulation represent only 2% of
the number in the whole body, but the relationship between the
clone frequency distribution in the blood and in solid lymphoid

tissues remains unknown. If we assume that the frequency distri-
bution in the blood represents the frequency distribution in the
solid lymphoid tissues, the estimated number of HTLV-1+ clones
rises to >60,000.
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How long does each HTLV-1+ T cell clone live in vivo? It was
lready clear from the pioneering work of Wattel and colleagues
52,53] that individual clones could persist for many years. Data
rom the high-throughput protocol corroborate this finding [72].
urther work is now in progress, to estimate the longevity of the
reviously undetectable, low-abundance clones, in order to answer
he question: what is the contribution of de novo infection to
he maintenance of the proviral load during persistent infection?
hat is, what is the ratio of mitotic spread to infectious spread
50]? The answer to this question will determine the potential
o limit viral propagation in the host by using either anti-mitotic
rugs, to inhibit proliferation of HTLV-1-infected cells, or anti-
etroviral drugs, to inhibit the production of new infected T cell
lones.

.3. What determines the site of proviral integration?

Retroviral integration into the host genome is not random
81], but is biased at 3 distinct levels. First, the chromatin
tructure is critical: integration is biased towards euchromatin
72,82], whose open conformation allows the retroviral preinte-
ration complex access to the DNA. Second, at the primary DNA
equence level, integration is biased towards a short nucleotide
otif [83,84], whose palindromic nature is consistent with the

wo-fold symmetry of the retroviral integrase [85,86]; the length
nd sequence of the motif are specific to each retrovirus. Third,
etroviral integration is not equally frequent in all euchromatic
ites that possess this palindromic motif, but is biased by an
nteraction between the preintegration complex and specific host
actors. The best characterized of these host factors is LEDGF
87], which strongly biases the integration of HIV-1 into genes
nd away from intergenic regions. Certain other host factors also
nfluence integration site selection in HIV-1 infection, includ-
ng HRP-2 [88], and Transportin-3 and RanBP2, which appear
o link integration to transport of the pre-integration complex
nto the nucleus [89]. The transcription factor YY1 similarly plays

role in guiding the integration of murine leukaemia virus
90], but in most retroviral infections, including HTLV-1, the
utative integrase-interacting host factors have not been identi-
ed.

To identify the factors associated with targeting of HTLV-1 inte-
ration, we investigated the characteristics of the host genome
anking the integrated provirus, using the high-throughput quan-
itative protocol [72,80]. To distinguish between the integration
ites favoured in initial targeting and the sites that survive
election during persistent infection in vivo, we studied the
ntegration sites after short-term in vitro infection of human
ymphocytes and in PBMCs from people with different man-
festations of HTLV-1 infection. The results demonstrated the
xpected predominance of integration sites in transcriptionally
ctive euchromatin, as indicated by the frequency of epigenetic
arks associated with transcriptional activity [72]. In addition,

here was a remarkably strong bias towards integration within
00 base-pairs of certain transcription factor binding sites, espe-
ially binding sites for the tumour suppressor P53 and the
ranscriptional regulator of interferons, STAT1: in each case, an
ntegrated HTLV-1 provirus was between 100-fold and 350-fold

ore likely to lie within 100 base-pairs of the respective bind-
ng site than expected by chance [80]. Integration targeting of
TLV-1 was also significantly (but less strongly) associated with
everal other sites that bind specific transcription factors or
hromatin-modifying factors, such as SWI/SNF. The mechanism
f specific targeting of these sites is unexplained, and requires
dentification of the host factors that interact with HTLV-1 inte-
rase.
ancer Biology 26 (2014) 89–98 93

7.4. What determines spontaneous proviral expression?

The selective oligoclonal expansion of certain HTLV-1-infected
T cell clones is a cardinal feature of both non-malignant HTLV-1
infection and, by definition, the malignant disease ATLL. We pos-
tulated that the proviral integration site determines the pattern –
i.e. the frequency and intensity – of spontaneous proviral expres-
sion, which in turn determines the selective expansion of particular
HTLV-1+ clones.

Fresh unstimulated PBMCs taken from an HTLV-1-infected per-
son usually do not express detectable levels of HTLV-1 antigens,
but strong Tax protein expression becomes detectable after about
6 hours’ incubation in vitro [91]. We previously showed that
these spontaneously Tax-expressing cells belong to clones that
proliferate more frequently than non-Tax-expressing cells in vivo
[23]. To identify the characteristics of the proviral integration
site associated with spontaneous Tax expression, we isolated the
Tax-expressing cells by flow cytometry and compared the inte-
gration sites between the Tax-positive and Tax-negative cells
[80].

The results [80] showed that proviral integration within 100
nucleotides of genomic binding sites for certain transcription
factors or chromatin-modifying factors was strongly associated
with spontaneous Tax expression; some of these factors (e.g.
STAT1) were also associated with integration targeting (see above).
However, there was a critical difference between the pattern of
association with targeting and that associated with Tax expression:
whereas the binding sites associated with integration targeting
were distributed symmetrically about the integration site, the
binding sites associated with the spontaneous expression were
frequently asymmetrical. For example, a STAT1 binding site lying
10 or 100 base-pairs upstream of the HTLV-1 provirus was asso-
ciated with spontaneous Tax expression, but a STAT1 site lying
a similar distance downstream had no effect. The strongest and
most unexpected effect was that of BRG1, an ATPase that pow-
ers the chromatin remodelling complex SWI/SNF. Whereas the
presence of a BRG1 site (identified by ChIP) 10–100 base-pairs
upstream was associated with silencing of Tax expression, a BRG1
site 10–100 base-pairs downstream of the provirus was associ-
ated with spontaneous Tax expression. The asymmetry of these
effects strongly implies that these DNA binding sites are not
associated with proviral expression simply by virtue of lying in
open-conformation chromatin. Rather, the asymmetry implies a
mechanistic interaction between transcription of the provirus and
transcription of the flanking host genome. This conclusion was
reinforced by the observation [80] that the transcriptional ori-
entation of the provirus relative to the nearest host gene was
also associated with the frequency of spontaneous expression
of the provirus. We expected that a provirus lying downstream
of the host transcriptional start site and in the same tran-
scriptional sense would be more likely to express Tax than a
provirus lying in the opposite transcriptional orientation. But
the results showed exactly the opposite effect: a same-sense
host transcriptional start site upstream appeared to suppress Tax
expression, whereas a same-sense transcriptional start site down-
stream of the provirus was associated with spontaneous Tax
expression.

The observation that Tax expression is suppressed by the pres-
ence upstream of either chromatin remodelling factors or an active
host transcriptional start site strongly suggests that the dominant
interaction between the flanking host genome and the provirus is
transcriptional interference: that is, the inhibition of transcription

of the provirus from the 5′ LTR by the presence of an active nearby
host promoter upstream of the provirus. It is probable that tran-
scriptional interference contributes to silencing of other integrated
proviruses, and it may therefore help to maintain the reservoir of
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Fig. 2. The fraction of cells in each HTLV-1-infected T-cell clone that spontaneously
expresses the Tax protein is negatively correlated with the abundance of the clone
in vivo (P < 10−16, chi-squared test for trend).
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atent HIV-1 [92]. The mechanisms of transcriptional interference
re not fully understood; one possible mechanism is occlusion of
he downstream promoter by an active transcription complex, a
henomenon called promoter occlusion.

.5. What determines HTLV-1 clonal abundance in vivo?

It has been widely believed that oligoclonal expansion of HTLV-
-infected T cells is not only responsible for persistence of the

nfection in vivo but also maintains the high proviral load and pre-
isposes to both inflammatory and malignant diseases associated
ith HTLV-1. A strong advantage of the recently developed high-

hroughput proviral sequencing protocol is the ability to quantify
ccurately the abundance of each HTLV-1-infected T cell clone. This
n turn makes it possible to identify the factors associated with the
elective expansion of certain clones in vivo. We found that the chief
eterminants of clonal abundance were the transcriptional orien-
ation of the provirus and its position (upstream or downstream),
elative to the nearest host transcriptional start site. Proviruses
ntegrated within a host gene were significantly more frequent in
lones of high abundance in vivo than in those with low abundance,
ut only when integrated in the same transcriptional sense as the
ost gene.

Because of the known mitogenic properties of Tax, we pos-
ulated that Tax-expressing clones would reach a higher mean
bundance than non-expressing clones in the circulation. But again
he results confounded expectation: the frequency of Tax expres-
ion was significantly greater in low-abundance clones (Fig. 2) [80].
lthough it was unexpected, this result is consistent with the obser-

ations noted above that orientation of the provirus in the same
ranscriptional sense as the flanking host gene is associated with
ilencing of Tax expression [80] and with high clone abundance
72,80].

ig. 3. Clone frequency distribution of HTLV-1-infected T cells in a representative subject
) of ATLL. Upper panels depict the number of cells detected in each clone in a sample
lone abundance. In the inset pie charts, the size of each sector depicts the relative abu
ow-abundance clones. Lower panels show the cumulative fraction of the proviral load co
s OCI = A/(A + B).
Reproduced from Figure 6 in Melamed et al. [80].

7.6. Is oligoclonal expansion associated with inflammatory
diseases such as HAM/TSP?

Since the proviral load is higher in HAM/TSP patients than
in asymptomatic HTLV-1 carriers, and oligoclonal proliferation is
frequently detected more easily in samples from patients with
HAM/TSP [54], it was natural to infer that oligoclonal proliferation
was stronger in HAM/TSP and therefore that it might contribute to

the pathogenesis of the inflammatory disease. However, this infer-
ence could not be formally tested in the absence of an objective
measure of oligoclonality. What is required is a measure of the
non-uniformity or entropy of the clone frequency distribution.

(Patient 1) with non-malignant HTLV-1 infection and a representative case (Patient
of genomic DNA from peripheral blood mononuclear cells, in descending order of
ndance of the respective clone; the solid black sector denotes a large number of
nstituted by the infected T-cell clones. The oligoclonality index, OCI, is defined [72]
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Fig. 4. Rapid emergence of ATLL. In February 2009, one clone (shaded blue) dom-
inated the infected cell population present in the peripheral blood of an infected
person. However, the clone that underwent malignant transformation to cause ATLL
18 months later was a minor clone, occupying only 0.04% of the proviral load at this
date. Such cases suggest that clonal expansion per se of HTLV-1+ cells does not
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A widely used entropic index, the Shannon index, is of very
imited usefulness here because this index is correlated with the
ample size, which can be very large in high-throughput sequenc-
ng. We therefore defined [72] the oligoclonality index (OCI), an
pplication of the Gini index (Fig. 3). An OCI of 1 indicates perfect
onoclonality, whereas an index of 0 indicates that each clone has

he same frequency. This index allows a rigorous quantitative com-
arison of the degree of oligoclonality between disease states. We
ound that, contrary to expectation, there is no significant differ-
nce in oligoclonality (as measured by OCI) between patients with
AM/TSP and asymptomatic carriers [72]; The OCI in patients with
alignant disease, ATLL, is significantly higher, as expected. Fur-

her, the degree of oligoclonality (OCI) does not correlate with the
roviral load in patients with non-malignant infection [72]. Rather,
he proviral load correlated with the total number of distinct clones,
nd this number is significantly greater in patients with HAM/TSP
han in asymptomatic carriers.

These observations lead to the general conclusion that oligo-
lonal proliferation is not a major contributor to the pathogenesis of
he associated diseases: clonal expansion is a feature of established
TLL but the expansion per se is not responsible for the malignant

ransformation. Rather, the proviral load and the risk of inflamma-
ory or malignant disease are determined by the large number of
ow-abundance clones: these are the clones that frequently express
ax [80] and turn over rapidly in vivo [23]. The principal factor
hat limits the abundance and the number of these cells in vivo is
he genetically-determined efficiency or ‘quality’ of the host CTL
esponse to the virus [30], particularly to the HBZ protein [36].

.7. HTLV-1 clonality in ATLL
The understanding of clonality in ATLL is less advanced than in
on-malignant HTLV-1 infection, and further work is required. It

s widely assumed that ATLL is a monoclonal disease, and indeed
n a typical case of acute ATLL a single clone usually dominates.

ig. 5. Model of the development of ATLL. HTLV-1 infection constitutes the first hit that
given clone undergoes transformation depends principally on the balance of two oppo
ersistent or repeated expression of two regulatory genes of HTLV-1, tax and HBZ, who
ccumulation of further genetic or epigenetic hits. These further hits may cause constit
xpression confers a survival advantage on the clone by escape from the strong anti-Tax C
ppears to persist [32]; an effective CTL response to HBZ reduces the proviral load and th
predispose to malignant transformation.

However, there are indications that clonality in ATLL is not always
simple. First, there are often many HTLV-1-infected T cell clones
underlying the largest, putatively malignant clone [72] (LBC,
unpublished data); not infrequently, more than one clone appears
to be abnormally abundant and is presumed to be malignant.
Second, the malignant clone does not necessarily develop from
the largest pre-existing infected T cell clone, but can develop
rapidly from a clone of previously very low abundance (Fig. 4).
Third, there are well-described instances of “clonal succession”,
in which a putatively malignant clone spontaneously regresses

and another clone takes its place [77]. Subclonal diversification
of cells from a single common ancestor is well described in solid
tumours (reviewed by Vogelstein et al. [93]). In contradistinction,

predisposes each infected T-cell to malignant transformation. The probability that
sing forces: negative selection by the host CTL response to HTLV-1 antigens, and

se products prolong the lifespan of the T-cell clone and so increase the chance of
utive activation of the pathways initially activated by Tax, after which loss of Tax
TL response. In contrast to the frequent silencing of Tax expression, HBZ expression
e risk of HAM/TSP, and may reduce the risk of ATLL.
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he evidence suggests that ATLL can be a polyclonal tumour, i.e.
ith more than one independently transformed cell of origin.

We postulate that HTLV-1 constitutes the first ‘hit’ of the
–8 hits – usually an alteration in a driver gene – that are
hought to cause malignant transformation [94]. Consequently,
very HTLV-1-infected T cell lies on a spectrum of risk of undergo-
ng transformation. Perhaps the simplest hypothesis is that the risk
f malignant transformation of an HTLV-1-infected T cell depends
hiefly on the longevity of that clone and, in particular, the total
umber of cell divisions the clone has undergone. The longevity
f the clone in turn depends on the pattern of proviral expression,
hich in ideal circumstances maintains the cell in cycle while min-

mizing its exposure to host CTL surveillance. A simplified scheme
f the proposed sequence of events in the pathogenesis of ATLL
s shown in Fig. 5. The consequences of HTLV-1 gene products
hat promote malignant transformation, such as DNA damage, are
resumably merely side-effects of mechanisms that favour clone
urvival in vivo.

The intense current effort in cancer genomics has led to the
dentification of a relatively small number of mutations that drive

alignant transformation, as distinct from the adventitious and
assively propagated “passenger” mutations. These “driver” muta-
ions have recently been classified by Vogelstein et al. [93] into
mut-driver” and “epi-driver” mutations, i.e. mutations to the pri-
ary DNA sequence and epigenetic modifications respectively. We

ropose that a third category of driver should be added to this clas-
ification: the exogenous drivers provided by oncogenic viruses,
hich could be called ‘vir-drivers’. This term denotes tumour
rivers derived from viral sequences integrated in the host genome,
uch as the promoter-enhancer in a retroviral LTR or a gene prod-
ct encoded by the viral nucleic acid (e.g. HTLV-1 Tax protein or
BZ mRNA, or HPV E6 and E7 proteins). The presence in cases of
TLL of genetic deletions and point mutations of the provirus that
ccurred before integration suggests that a solitary 3′ LTR of HTLV-1
s sufficient to act as a vir-driver.

In this review we have defined HTLV-1-infected T-cell clones on
he basis of their proviral integration site, which indicates a com-

on cell of origin. There is emerging evidence of the importance of
ubclones in cancer. Recent single-cell sequencing analysis of renal
ell carcinomas and myeloproliferative disorders has identified
inor subclones carrying rare genetic changes that may contribute

o tumour progression. Aggressive ATLL is characterized by rapid
elapse following chemotherapy; however, it remains unknown
hether such relapse is more commonly due to the emergence

f subclones of the same malignant clone that carry additional
enetic changes (tumour drivers) or rather to clonal succession
77]. Whichever mechanism operates, it may be necessary to tar-
et more than one molecular pathway simultaneously, to reduce
he chances that the disease becomes refractory to treatment, as
n the treatment of solid tumours and persistent infections such as
uberculosis. Repeated and multiple site sampling for genetic anal-
sis may become routine in monitoring the response to treatment
n both solid and haematological malignancies.
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