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Abstract

Although previous studies showed that glucose is used to support the metabolic activity of the cartilaginous fish brain, the
distribution and expression levels of glucose transporter (GLUT) isoforms remained undetermined. Optic/ultrastructural
immunohistochemistry approaches were used to determine the expression of GLUT1 in the glial blood-brain barrier (gBBB).
GLUT1 was observed solely in glial cells; it was primarily located in end-feet processes of the gBBB. Western blot analysis
showed a protein with a molecular mass of 50 kDa, and partial sequencing confirmed GLUT1 identity. Similar approaches
were used to demonstrate increased GLUT1 polarization to both apical and basolateral membranes in choroid plexus
epithelial cells. To explore monocarboxylate transporter (MCT) involvement in shark brain metabolism, the expression of
MCTs was analyzed. MCT1, 2 and 4 were expressed in endothelial cells; however, only MCT1 and MCT4 were present in glial
cells. In neurons, MCT2 was localized at the cell membrane whereas MCT1 was detected within mitochondria. Previous
studies demonstrated that hypoxia modified GLUT and MCT expression in mammalian brain cells, which was mediated by
the transcription factor, hypoxia inducible factor-1. Similarly, we observed that hypoxia modified MCT1 cellular distribution
and MCT4 expression in shark telencephalic area and brain stem, confirming the role of these transporters in hypoxia
adaptation. Finally, using three-dimensional ultrastructural microscopy, the interaction between glial end-feet and leaky
blood vessels of shark brain was assessed in the present study. These data suggested that the brains of shark may take up
glucose from blood using a different mechanism than that used by mammalian brains, which may induce astrocyte-neuron
lactate shuttling and metabolic coupling as observed in mammalian brain. Our data suggested that the structural
conditions and expression patterns of GLUT1, MCT1, MCT2 and MCT4 in shark brain may establish the molecular foundation
of metabolic coupling between glia and neurons.
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Introduction

Based on functional studies in a limited number of sub-

mammalian vertebrates (e.g., primarily jawless vertebrates,

cartilaginous fishes, and amphibians), it appears that the

physiological characteristics of the blood-brain-barriers (BBBs)

are similar among the vertebrate classes [1]. However, compar-

ative ultrastructural analyses of the BBB of cartilaginous fishes,

including sharks and skates, demonstrated leaky blood vessels

surrounded by a sheath of glial foot processes, which contain tight

junctions that prevent the diffusion of various molecules

[1,2,3,4,5]. Therefore, it is postulated that if the glial cells (i.e.,

astrocytes) within the BBB of cartilaginous fish participate in the

transcellular transport of glucose, they may overexpress molecules

involved in carrier-mediated transport mechanisms [6] and

metabolic coupling such as glucose transporters (GLUT) and

monocarboxylate transporters (MCT) [7,8,9,10]

In mammals and birds, several GLUT isoforms have been

molecularly identified [11,12,13,14,15,16,17]. GLUT1 is highly

expressed in mammalian endothelial cells that form the BBB and

in epithelial cells of the choroid plexus, which form the

cerebrospinal fluid (CSF) -blood barrier, thereby contributing

greatly to the efficient acquisition of glucose by the brain [18,19].

In contrast, GLUT1 is expressed to a much lesser degree in

neurons and astrocytes of the mammalian brain; rather GLUT3, a

high affinity transporter, is expressed in neurons [20,21,22,23].

The general expression and localization of GLUTs has been

primarily studied in mammalian species; a detailed analysis in

submammalian vertebrates has yet to be performed. In teleost fish,

the existences of at least two proteins that have high homology

with mammalian GLUT1 and GLUT4 have been identified

[24,25]. Although glucose is vital for the metabolic activity of the

cartilaginous and bony fishes brain, no immunohistochemical data
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analyzing the distribution and expression levels of GLUT isoforms

involved in the acquisition of glucose exists. However, glucose

permeability analysis of the BBB in shark (Squalus acanthias)

indicated that the transport of 3-O-methyl-glucose is mediated

by a saturable and stereospecific component, suggesting the

expression of a transporter similar to GLUT1 [6].

The MCTs are a family of proteins, which contain 14 isoforms.

MCT1-MCT4 transport lactate, pyruvate and ketone bodies

[26,27]. Isoforms MCT1, MCT2, MCT3, MCT4, MCT6,

MCT7, MCT8, MCT11 and MCT14 have been detected in

mammalian brain [26,27,28,29,30,31,32]. MCT1 has been

primarily been found in the endothelial cells of capillaries and

astrocytes [29,30,32,33,34,35] while MCT2 is a neuronal

transporter [36]. Ultrastructural studies have demonstrated that

MCT2 is localized in the dendrites of neurons [35,37]. MCT4 is

found in astroglial cells, specifically in Bergmann glia of the

cerebellum and astrocytes of various areas, including the

hippocampus [35] and in rat hypothalamic tanycytes [33]. In

species other than mammals, almost no information concerning

brain MCT localization exists. The presence of the BBB in the

processes of glial cells may promote a metabolic coupling

mechanism in cartilaginous fish; glucose may directly enter into

the glia cell, thereby generating lactate, which may subsequently

be used by neurons. Because the metabolic process may be an

effective mechanism for obtaining glucose in the brain, it is

important to study the expression and distribution of GLUTs and

MCTs.

Previous studies have demonstrated that hypoxia modifies the

expression and distribution of MCTs and GLUTs [38,39,40]. In

addition, expression of GLUT-1 and -3 in mammals is induced by

hypoxic stress and presumably mediated by the transcription

factor, hypoxia inducible factor-1 (HIF-1), via binding to hypoxia-

responsive DNA elements within the promoters [23,41]. In

mammals, the MCT4 gene promoter contains elements responsive

to hypoxia, which is similar to that described for HIF-1a [39,42].

Similarly, in the gills of the teleost fish Danio rerio (zebrafish) [38],

changes in MCT4 mRNA expression levels have been reported in

response to hypoxia. Therefore, changes in the expression and

distribution of GLUT and MCT may represent a pathophysio-

logical condition used by the shark brain for responding to

hypoxia.

In the present study, various experimental methods were used to

analyze the expression and distribution of GLUT1, MCT1,

MCT2, and MCT4 in normal and hypoxic shark brain. Their

distribution and modulation in response to hypoxic conditions,

may suggest a glia-neuronal metabolic coupling in shark brain.

Results

Glia cell distribution and end-feet processes in shark
brain

Several antibodies specific for S100a, vimentin, GFAP, GLAST,

and 3CB2 were used to identify radial glia and astrocytes in S.

chilensis. A positive reaction was seen only with anti-S100a (Fig. 1)

and anti-3CB2 antibodies (data not shown). Specifically, in the

telecenphalic cortex, the ciliated glial cells that cover the ventricle

wall (Fig. 1A–B) present an intense immunoreaction for anti-S100

(Fig. 1C–D). The processes of these cells cross the brain neuropile,

and their branches surround blood vessels (Fig. 1C–D, BV).

Furthermore, S100-positive glial cells cross the brain neuropile

and contact the meninges (data not shown). In the cerebellar

cortex, auricula cerebelli (Fig. 1E–F and G–H), mesencephalic

tectum and brain stem, the distribution of the radial glia was

similar to that observed in the telecephalon.

The relationship between the processes and branches of the

radial glia and blood vessels was further studied by ultrastructural

analysis; glial cells of shark brain possessed a distribution similar to

radial glia in mammalian brain (Fig. 1I). The processes of the

radial glia with electron-lucent expansion (similar to astrocyte end-

feet) contact the basal membrane of blood vessels (Fig. 1J–K). Most

of the blood vessels have perivascular spaces with folded basal

membranes (Fig. 1J–K, arrows).

Ultrastructural microscopy was also employed to analyze the

shark brain neuropile (S. chilensis) with low magnification and

reconstruct the glial end-feet processes by analyzing forty ultrathin

sections (Fig. 2A–B). Three-dimensional reconstruction of den-

dritic (blue) and glial end-feet (green) around the blood vessel

(gray) (Fig. 2C) demonstrated that the blood vessels are surrounded

by glial end-feet that form an irregular but continuous BBB

between the neuropile and endothelial cells (Fig. 2D).

GLUT1 distribution in shark brain
Two different primer sets were used to demonstrate by RT-

PCR the expression of GLUT1 mRNA in the brain of S. chilensis

(Fig. 3A, B). The first set of primers was designed for the EST

sequence of GLUT1 in Squalus acanthias (CX197025), which

amplifies a 281 bp fragment (Fig. 3A, lane 3) similar to the

fragment obtained using mRNA isolated from rat brain (Fig. 3A,

lane 2). The sequence of this fragment (data not shown) contains a

74% identity with rat GLUT1 mRNA. The second set of primers

generated a 350 bp fragment (Fig. 3B, lane 2), whose sequence

presented 80% identity with rat GLUT1 mRNA. Both fragments

generated a theoretical sequence of 127 amino acids, which

contains 76% identity with the GLUT1 sequence for rat.

To determinate GLUT1 expression in rat, bony fish and shark

brains, polyclonal antibodies and Western blot analysis were

employed. Two bands of 55 kDa and 45 kDa were detected in rat

brain (Fig. 3C–D, lane 1); similar bands were also observed in

bony fish brain extracts (Fig. 3C, lane 3). As has been previously

demonstrated, the two GLUT1 isoforms represent the forms

present in endothelial and brain cells [43]. In shark brain of S.

chilensis, only one GLUT1 isoform of 50 kDa was detected in total

brain extracts (Fig. 3C and lane 2) from the telencephalic cortex

(Fig. 3D, lane 3), diencephalum (lane 4), mesencephalic tectum

(lane 5), cerebellum (lane 6) and brain stem (lane 7). Thus, in shark

brain only one GLUT1 isoform is expressed, which may suggest a

preferential GLUT1 expression in endothelial or glial cells.

To analyze GLUT1 distribution and localization in the brain of

different species, immunoperoxidase analysis was initially under-

taken (Fig. 3E–H). In rat and bony fish brain, GLUT1 was highly

detected in the endothelial cells that form the BBB (Fig. 3E, F);

however, in shark brain (S. chilensis and S. canicula), GLUT1 was

mainly detected in perivascular structures (Fig. 3G–H).

To conduct a detailed analysis of the pericapillary localization of

GLUT1 in S. chilensis shark brain, endothelial cells and neurons

were identified with propidium iodide (Fig. 3I) and the radial glia

processes were identified with an anti-GLUT1 antibody (Fig. 3J).

GLUT1-positive perivascular structures formed a linear reaction

in some vessels (Fig. 2K, arrows) or spherical structures in others

(Fig. 3L and inset). Similar results were seen in other regions of the

brains, such as the brain stem (Fig. 3M, arrow and inset).

Furthermore, quantitative analysis of perivascular GLUT1

reactivity was conducted. In a total of four S. chilensis shark brains,

9098 blood vessels were quantified; 3548 vessels were observed in

the telencephalic cortex, 1209 in the diencephalon, 1705 in the

mesencephalon, and 2699 in the cerebellum. In each of the areas

analyzed, approximately 80% of the blood vessels were positive for

GLUT1 within perivascular regions (Fig. 3N).

GLUT1 and MCTs Expression in Shark Brain
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Figure 1. Cellular characteristics and distribution of glial cells in the shark brain. A–B, Scanning electron microscopy of glial cells
contacting the CSF (arrow). C–H, Shark (S. chilensis) sagittal brain sections using anti-S100 antibody in the telencephalic area (C–D), cerebellar cortex
(E–F) and auricula cerebelli (G–H). I, Schematic representation of radial glial cells, neurons and endothelial cells present in the shark brain. Glial end-
feet are in contact with blood vessel endothelial cells. J–K, Ultrastructural analysis of blood vessels and radial glia end-feet. The basal membrane of

GLUT1 and MCTs Expression in Shark Brain
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GLUT1 is localized in the vascular end-feet of glial cells
but not in brain endothelial cells

Ultrastructural immunohistochemistry was used to define the

localization of GLUT1 in endothelial and/or glial cells of S.

chilensis. In blood vessels, the endothelial cells overlap, forming a

continuous layer without tight junctions (Fig. 4A and B, arrows).

GLUT1 was not observed in the endothelial cells of blood vessels

by immunohistochemical analysis (Fig. 4B–C); however, it was

observed in electron-lucent glial end-feet processes that contact

perivascular blood vessels. The positive reaction for GLUT1 was

concentrated in the cellular membrane, where gold particles of

10 nm in width were seen in the end-feet processes (Fig. 4D–E,

asterisk).

Apical and basolateral GLUT1 polarization in the choroid
plexus cells at the CSF-brain-barrier

Scanning electron microscopy of S. chilensis demonstrated that

the shark has a highly developed choroid plexus structure, with

folds throughout the cerebral ventricles (Fig. 5A). The apical

membrane of the choroid plexus cells contains cilia and small

microvilli (Fig. 5A–C). In addition, blood vessels were observed in

the proximity of the basolateral membranes of epithelial cells

(Fig. 5B, arrow). To analyze if choroid plexus cells are actively

involved in glucose uptake, their uptake of 3H-2-deoxy-D-glucose

was analyzed. The positive signal observed after pseudocolor

analysis represents the specific label after 1 or 8 days (Fig. 5D, E)

emulsion exposure of 1 mm thick consecutive sections. As shown in

Fig. 5E, the radioactively-labeled glucose was concentrated (red

signal) in the choroid plexus cells, demonstrating that glucose is

actively incorporated in the epithelial cells. The high glucose

uptake is suggestive of increased GLUT expression in shark

choroid. In multiple species, GLUT1 was primarily located at the

basolateral membrane of choroid plexus cells. Furthermore,

functional studies have suggested apical polarization; however, it

has not been detected in mammals or other species. In the present

study, immunoperoxidase analysis was used to analyze GLUT1

distribution and localization in the choroid plexus of S. chilensis.

GLUT1 was primarily concentrated in the basolateral membrane

(Fig. 5F); however, the transporter was also widely located in the

apical membrane (Fig. 5F–G). Further quantitative analysis of the

apical and basolateral distribution of GLUT1 in the brain of two

species of sharks was undertaken. In a total of four S. chilensis shark

brains, approximately 60% of the cells showed only basolateral

polarization; however, 40% of the cells that form the choroid

plexus in the lateral and fourth ventricle showed basolateral and

apical polarization of GLUT1 (Fig. 5H). The bipolar localization

the blood vessel is shown with arrows. BV: blood vessel, N: neuron, RG: radial glia processes, V: ventricle. Scale bar: A and B, 10 mm; C–H, 20 am; J–K,
2 am.
doi:10.1371/journal.pone.0032409.g001

Figure 2. Three-dimensional reconstruction of glial end-feet in the brain cortex. A, Ultrastructural images from shark brain (S. chilensis)
using low magnification. The telencephalic neurophil showed neural processes and glial cell end-feet contacting the blood vessel. B–C, Forty ultrathin
sections (50 nm) were used to create a three-dimensional reconstruction of dendritic (blue) and glial end-feet (green) around a blood vessel (gray). D,
Most of the blood vessel is surrounded by glial end-feet that form an irregular barrier. Scale bar: A–C, 15 mm.
doi:10.1371/journal.pone.0032409.g002

GLUT1 and MCTs Expression in Shark Brain
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Figure 3. GLUT1 expression and localization in shark brain. A–B, RT-PCR analysis of GLUT1 expression using primer sets 1 (A) and 2 (B) and
total RNA isolated from the following tissues and treatments: Lane 2, shark brain (S. chilensis); Lane 3, rat brain; Lane 4, shark brain (-RT). Lane 1
contains the DNA ladder. C–D, Western blot analysis of GLUT1. C, Total protein extracts were prepared from rat brain (lane 1), shark brain (S. chilensis,
lane 2) and bony fish brain (lane 3). D, Total protein extracts were prepared from rat brain (lane 1) and the following regions of the shark brain (S.
chilensis): total brain (lane 2), telencephalic cortex (lane 3), diencephalon (lane 4), mesencephalic tectum (lane 5), cerebellar cortex (lane 6), and brain
stem (lane 7). E–H, Immunohistochemistry analysis of GLUT1 expression in the telencephalic area. GLUT1 is localized in the endothelial cells of rat and
bony fish brain (E, F). The insets show a cross-section of the blood vessels. In shark brain from S. chilensis and S. canicula (G, H), GLUT1 is expressed in
the perivascular zone (arrows). The inset (G) shows a cross -section of the blood vessel with a positive reaction in the perivascular region (arrows). I–M,
Immunofluorescence and confocal microscopy using anti-GLUT1 antibodies in the telencephalic area of S. chilensis. Tissue was also stained with
propidium iodide to identify cells of the brain and the endothelial cells of the blood vessels (I). GLUT1 is localized in perivascular structures (arrows; K–
M), with little co-localization with propidium iodide (inset in L and M). N, Percentage of number of vessels in S. chilensis brain with perivascular GLUT1
reactivity. Data represent the means 6 SD from four independent experiments, telencephalic cortex (a), diencephalon (b), mesencephalic area (c) and
cerebellum (d). BV: blood vessel, N: neuron, NP: neuropile. Scale bar: E–H, 30 mm; I–J, 50 mm; K–M, 20 mm.
doi:10.1371/journal.pone.0032409.g003

GLUT1 and MCTs Expression in Shark Brain
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of GLUT1 was even further evident in S. canicula shark brain; 90%

showed GLUT1 basolateral and apical polarization in the choroid

plexus cells of both ventricles (Fig. 5I). Finally, ultrastructural

immunohistochemistry was used to define the specific localization

of GLUT1 in the choroid plexus cells (Fig. 6). In the basal area, the

cells have labyrinth-adapted cellular membranes, which concen-

trate the localization of GLUT1 (Fig. 6A–D, arrows). The

undulating lateral membrane and microvilli also showed a positive

reaction for GLUT1 (Fig. 5E and F), which was almost absent

inside the epithelial cells (Fig. 6G).

MCT1 expression in shark brain
Due to the GLUT1 expression pattern in S. chilensis brain, we

postulated that this organ might generate lactate within glial cells

to then be transferred to neuronal cells [9,10,35]. The glucose may

enter into the glia across the BBB and may be actively transported

from the CSF. In both cases, glucose preferentially enters glial cells

and not neurons. Thus, shark brain may express functional MCTs

to transfer these molecules from glia cells to neurons.

MCT1 expression in shark brain (S. chilensis) cellular extract was

assessed by Western blot analysis; one band was identified at

52 kDa (Fig. 7A, lane 2), which was similar to that detected in rat

brain (Fig. 7A, lane 1). MCT1 was amply localized in the brain

within radial glia, choroid plexus, blood vessels and neurons. In

neurons, MCT1 was localized in the cytoplasm with tubulin bIII

in the soma (Fig. 7, C–F). Decreased MCT1 expression was also

observed in dendritic projections (tubulin bIII-positive) (Fig. 7E)

and axons (Fig. 7F, inset). Thus, MCT1 might be a transporter

expressed in neurons that is preferentially expressed intracellularly.

Indeed, in the large neurons present in the periventricular regions

(mesencephalic roof) of the shark brain, MCT1 was localized

intracellularly in structures that were similar to mitochondria and/

or cytosolic storage vesicle (Fig. 7G–J, inset). In the radial glia from

the S. chilensis brain, MCT1 was observed in their extensions,

which co-localized with the S100 protein (Fig. 7K–N). In the

cerebellum, the MCT1 signal was detected in the end-feet of the

radial glia (Fig. 7O); a partial colocalization with S100 was

detected (Fig. 7O–R).

The distribution of MCT1 at the vascular level was next

assessed. MCT1 was detected in the endothelial cells and radial

glial cell end-feet, which were also GLUT1-positive (Fig. 7S–V,

arrows). Similar results were observed in the major and minor

Figure 4. Ultrastructural immunocytochemistry of GLUT1 in shark brain. Immunohistochemical analysis using anti-GLUT1 antibody and
anti-IgG labeled with 10-nm gold particles. A, Blood vessel of shark brain showing endothelial cells (E1–E4) and the perivascular space. B–C, High-
power view of endothelial cells without immunoreaction. A junction complex is depicted (B, arrows). D–E, Perivascular space and glial end-feet
processes (asterisks). The immunoreaction is mainly observed in the cellular membranes of the glial end-feet processes (asterisk). The schematic
drawing shows radial glial cells and processes contacting the blood vessels. Scale bars: A–E, 1 mm.
doi:10.1371/journal.pone.0032409.g004

GLUT1 and MCTs Expression in Shark Brain
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Figure 5. GLUT1 expression and function in the shark choroid plexus cells. A–C, Scanning electron microscopy of choroid plexus cells. The
epithelial cells of the plexus show a close relationship with the blood vessel (B, arrow). Microvilli and cilia are observed in the apical membranes (C).
D–E, Choroid plexus from lateral ventricle. Autoradiograph analysis 1 h after intravenous injection using 3H-2-deoxy-D-glucose (500 mCi)(D). The
images show pseudocolor representation of consecutive sections (blue, negative signal; yellow, low signal; and red, high signal) after 1 (D) or 8 days
(E) at 4uC (E) of consecutive 1 m thick sections. F–G, Immunohistochemistry of GLUT1. GLUT1 is localized in the apical and/or basolateral membrane of
choroid plexus epithelial cells. H–I, Quantitative analysis of choroid plexus cells with apical and basolateral GLUT1 polarization in S. chilensis and S.
canicula. Data represent the means 6 SD of % of GLUT1 positive cells in apical and basolateral membranes of choroid plexus cells (lateral and fourth
ventricles) from four independent experiments. AM: apical membrane, BV: blood vessel, CSF: cerebrospinal fluid. Scale bars: A, 50 mm, B–C, F–G,
10 mm; D–E, 80 mm.
doi:10.1371/journal.pone.0032409.g005

GLUT1 and MCTs Expression in Shark Brain
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Figure 6. Ultrastructural immunohistochemistry of GLUT1 in shark brain choroid plexus cells. Immunohistochemical analysis using anti-
GLUT1 antibody and anti-IgG labeled with 10-nm gold particles. A–B, Low magnification analysis of the epithelial cells and blood vessel. C–D, Basal
region of the cell showing immunoreaction mainly in the cellular membranes (arrows). E, Apical region of the cells and microvilli. A junction complex
is depicted (arrows) and observed with high magnification in F. G, Cytoplasm of the cell and mitochondria. The positive reaction was not detected in
these structures. BM: basal membrane, BV: blood vessel, LM: lateral membrane, M: mitochondria, MV: microvilli, N: nucleus. Scale bars: A, 1 mm, B,
3 mm; C–G, 5 mm.
doi:10.1371/journal.pone.0032409.g006

GLUT1 and MCTs Expression in Shark Brain
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Figure 7. MCT1 is expressed in neurons, radial glia and endothelial cells. A, Western blot analysis of MCT1 expression from total protein
extracts prepared from rat brain (lane 1) and shark brain (lane 2). B, Schematic representation of shark brain S. chilensis. C–Z, Immunohistochemistry
and confocal microscopy analysis. MCT1 is observed in neurons of brain cortex (C–F), neuron of periventricular area (G–J), radial glia cells (K–N), glial

GLUT1 and MCTs Expression in Shark Brain
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vessels in all of the brain. In the choroid plexus cells, MCT1 was

localized in the apical and basolateral membrane of the epithelial

cells (Fig. 7W–Z). In both membranes, MCT1 co-localized with

GLUT1 (Fig. 7Y–Z). Thus, MCT1 is amply expressed in the shark

brain.

Differential expression and localization of MCT2 and
MCT4 in shark brain

MCT2 was weakly detected in S. chilensis shark brain (Fig. 8 and

9). In rat brain, the transporter had a molecular weight of 52 kDa

(Fig. 8A, lane 1), which was almost undetectable in shark brain

(Fig. 8A, lane 2). Additionally, a protein of 120 kDa was detected,

similar to previously reports in rat brain (Fig. 8A, lane 1). MCT2

was weakly detected in the telencephalic cortex and the brain stem

(Fig. 9), while it was clearly expressed by endothelial cells and

neurons (Fig. 8C). Immunohistochemical analysis showed low

MCT2 and GLUT1 co-localization (Fig. 8C–E and inset) in the

glial end-feet-endothelial cell junction alone.

Western blot analysis revealed MCT4 expression with a

molecular weight of 46 kDa, which was the same size observed

in rat muscle (Fig. 8B, lanes 3 and 4). MCT4 was highly expressed

in endothelial cells (Fig. 8F–H and 9), and a clear co-localization of

MCT1 and MCT4 was observed (Fig. 8F–H and inset). In the

external region of the telencephalic cortex of S.chilensis shark,

end-feet of cerebellum (O–R), endothelial cells (S–V) and choroid plexus cells (W–Z). In glial end-feet (S–V, arrows) and choroid plexus (W–Z), MCT1 co-
localized with GLUT1. BV: blood vessel, AM: apical membrane, BL, basolateral membrane M: meninges, N: neurons, RG: radial glia, V: ventricle. Scale
bar: A–Q, 20 mm.
doi:10.1371/journal.pone.0032409.g007

Figure 8. MCT2 and MCT4 are also expressed in shark brain cells. A–B, Western blot analysis of MCT2 and MCT4 expression in total protein
extracts prepared from rat brain (A, lane 1), S. chilensis shark brain (A, B; lanes 2 and 4) and rat muscle (B, lane 3). C–K, Immunohistochemistry of MCT1,
2, 4, and GLUT1 in the telencephalic area. MCT2 is observed in endothelial cells and neurons (C) without co-localization with GLUT1 (C–E). MCT4 is
observed in endothelial cells (F) and perivascular structures in telencephalic cortex vessels (I). MCT4 co-localized with MCT1 (H, K). BV: blood vessel, N:
neurons. Scale bar: C–H, 15 mm; I–K, 50 mm.
doi:10.1371/journal.pone.0032409.g008

GLUT1 and MCTs Expression in Shark Brain
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MCT4 was mainly observed in ‘‘rosette-like’’ structures, surround-

ing the blood vessels (Figs. 8I–K and 9A, arrows). These structures

were not observed with anti-MCT1 or anti-MCT2 antibodies

(Fig. 9, D–F, arrows). Similar structures were also observed in the

telencephalic cortex and brain stem of S. canicula (Fig. 10). We

hypothesized that these ‘‘rosette-like’’ structures represent a high

concentration of glial end-feet surrounding the blood vessels,

which were MCT1-negative.

Modified MCT1 and MCT4 expression and distribution in
shark brain under hypoxic conditions

Under hypoxic conditions, no changes in GLUT1 immunohis-

tochemical staining in the shark brain were observed (data not

shown). Quantification of the apical and basolateral distribution of

GLUT1 in 2078 (n = 3) choroid plexus cells of the lateral ventricle

and in 1803 (n = 3) choroid plexus cells of the fourth ventricle

revealed that over 90% of the cells maintained GLUT1 bi-

polarization and the same intensity in the immunoreaction.

The effects of hypoxia on MCT1 and MCT4 expression were

analyzed in S. canicula shark brain, detecting proteins with

molecular weights of 52 and 46 kDa, respectively (Fig. 10A). In

normoxic animals, MCT4 was detected in telencephalic rosette-

like structures (Fig. 10B–E, arrows) and in the brain stem

perivascular regions (Fig. 10J–M, arrows). These structures were

MCT1-negative (Fig. 10C and K). Increased MCT4 immuno-

staining in the telencephalic cortex and the brain stem was

observed in hypoxic animals (Fig. 10F and N). Higher MCT1

immunoreaction in the brain cortex was also observed along with

a clear MCT1 and MCT4 co-localization (Fig. 9G–H). No

changes were observed in the brain stem (Fig. 10P–Q).

The effect produced by hypoxia was measured semi-quantita-

tively by applying the pseudocolor function of the Nis-Element

software and analyzing the image in three-dimensional projection

(Fig. 10E and I; M and Q). In hypoxic animals, MCT4 was

increased 3fold in the telencephalic cortex (intensity value,

24.461.2 and control 8.760.3, p,0.01, n = 3) and brain stem

(intensity value, 74.262.6 and control 27.261.4, p,0.01, n = 3)

(Fig. 9R). Similarly, MCT1 increased 4-fold in the telencephalic

cortex (Fig. 10S); however, no changes were detected in the brain

stem (Fig. 10S).

To determine if MCT1 and MCT4 immunoreaction changes in

response to hypoxia were produced by a differential distribution of

the transporters in the brain tissue or induced expression, Western

blot analysis using protein extracts isolated from telencephalic

cortex or brain stem of normoxic or hypoxic S. canicula was

performed. In hypoxic animals, changes in MCT1 expression in

telencephalic cortex (Fig. 11A, lanes 1, 2 and B) or brainstem

(Fig. 11A, lanes 3, 4 and C) were not observed, suggesting that

hypoxia influences MCT1 distribution rather than expression

level. Changes in MCT4 expression in the telencephalic cortex

were not detected (Fig. 11D, lanes 1, 2 and E); however, MCT4

expression increased 3-fold in the brain stem of hypoxic animals

(Fig. 11D, lanes 3, 4 and F).

Discussion

In this study, the expression and distribution of the glucose

transporter, GLUT1, at both the optical and ultrastructural levels

was characterized in the radial glial cells that make up the BBB

and the epithelial cells that form the blood-CSF barrier in shark

brain. Glucose uptake was also analyzed using radioactive glucose

and autoradiography. Finally, the localization of MCT1, MCT2,

and MCT4 was assessed in shark brain and the changes produced

under hypoxic conditions were defined.

Early studies of shark brain determined that changes in vascular

glucose concentrations generated higher glucose concentrations in

the CSF [44]. The choroid plexus, which constitutes 2.4% of the

brain weight (a higher percentage than is described for mammals),

may play a very important role in the incorporation of glucose to

shark brain [5,45,46]. Autoradiography analysis indicated that the

epithelial cells of the plexus are capable of incorporating 3H-2-

deoxy-D-glucose, confirming previous observations [44]. At both

the optical and ultrastructural levels, immunohistochemical

analyses demonstrated that shark choroid plexus presents a

labyrinth of basolateral membranes containing the glucose

transporter, GLUT1 [19,20,22] (Fig. 12). Surprisingly, GLUT1

was also detected in the apical membrane of choroid plexus

epithelial cells, which represents the first evidence of GLUT1 at

this cellular region. This apical localization of GLUT1 allows a

rapid vectorial flow of glucose between the basolateral and apical

membranes, transporting the glucose from the blood to the CSF. It

also indicates that the transfer of glucose to the CSF may be

through a finely regulated mechanism relying on the differential

sorting of GLUT1 to the apical membrane. Once the glucose has

entered the CSF, it is captured by the periventricular glial cells,

which also express GLUT1. This represents an efficient mecha-

nism of glucose entry into shark cerebral parenchyma.

Radial glial cells and astrocytes are found in the brain of all

vertebrate groups [47,48]. During pre-natal development, radial

glial cells function like stem cells of the CNS and also provide

metabolic support to differentiating neurons [49,50,51]. In the

post-natal brain, astrocytes replace the radial glia. However, in

some species (e.g., sharks and several lizards), these cells remain in

Figure 9. Comparative expression analysis of MCT1, 2 and 4. A,
MCT4 detection in brain cortex of S. chilensis by immunohistochemistry.
The reaction is observed in blood vessels and rosette-like structures
(arrows). B, MCT1 detection in the brain cortex of S. chilensis. The
reaction is detected in blood vessels and glial cells. C, MCT2 analysis in
the brain cortex of S. chilensis. The positive reaction is weakly detected
in blood vessels. D–F, High-power view images of telecephalic area and
meningeal surface. BV: Blood vessel. GC: glial cells. M: meningeal
surface. V: lateral ventricle. Scale bar: A–C, 100 mm; D–F, 30 mm.
doi:10.1371/journal.pone.0032409.g009
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the adult brain [52,53]. The radial glia of the shark brain has been

identified using different markers like S100, GFAP and GS [54,55]

The BBB is formed by the endothelium in all vertebrates except

sharks and rays, in which it is formed at the glial level [1,2,3,5]

(Fig. 12). The BBB of the shark, Squalus acanthias, is known to

transport 3-O-methyl-D-glucose in a saturable, stereospecific

manner [6]. These data allow us to propose that a GLUT-type

transporter mediates the transfer of glucose to shark brain.

GLUT1 is highly expressed in the endothelial cells of the cerebral

capillaries of mammals, reptiles, and bony fishes [19,56,57,58,59].

Nonetheless, the present study shows that in sharks, GLUT1 is

expressed in the perivascular region, specifically in the processes of

the radial glial cells that contact the blood capillaries (Fig. 12), as

observed through fluorescence microscopy and ultrastructural

immunocytochemistry. Because shark glial processes possess tight

junctions, glucose enters the radial glia directly [60,61] and not the

cerebral parenchyma as occurs in mammals and bony fishes.

Although little is known about many aspects of glucose metabolism

in radial glial cells, it is possible that these cells store glycogen, a

molecule that is metabolized upon neuronal activation [62,63].

Furthermore, the expression of enzymes related to the glycogen

metabolism has been found in the brain of rays [47,64,65].

The central question about the metabolism within the shark

brain is how glucose or some of its metabolites reach the neuron.

We propose that the shark brain develops a metabolic glia-neuron

coupling; this model involves the incorporation of glucose into the

glial cells and the transfer of metabolic derivatives, such as lactate

or ketone bodies, to the neuron. Because this model has been

postulated for mammalian brain [8,9,61,66], attempts to test this

hypothesis require analysis of MCT (responsible for the influx

and/or efflux of lactate) distribution in shark brain.

Studies of shark brain suggest that it metabolizes ketone bodies

[64]. Prior to the present study, MCT expression in the brain had

not been analyzed in non-mammalian vertebrates. Here, Western

blot analysis using antibodies specific for MCT1, MCT2, and

MCT4 detected proteins similar to those observed in the positive

controls. In addition, the presence of MCT1 in the apical and

basolateral membranes of the choroid plexus was observed

(Fig. 12), indicating that MCT1 may be involved in the movement

of ketone bodies at the blood-CSF barrier. If lactate was generated

by radial glial cells, the gradient of this metabolite would be

oriented from the CSF to the blood such that the plexus would be

involved in the depuration of the excess lactate generated by the

cerebral parenchyma. MCT1 has also been described in

mammalian endothelial cells involved in the transport of ketone

bodies through the BBB [29,30,32]. In this study, the expression of

MCT1 and MCT2 in the endothelial cells of shark brain was

observed. Whereas MCT1 and MCT4 could be related to the

influx or efflux of lactate [35], MCT2 could strengthen the influx

of lactate, particularly given the low concentrations of ketone

Figure 10. Hypoxia increases MCT1 and MCT4 in shark brain. A, Western blot analysis of MCT1 and MCT4 expression in total protein extracts
prepared from shark brain. MCT1 (lane 1), MCT4 (lane 3). Negative controls were performed with primary antibodies preabsorbed with inductor
peptides (lanes 2 and 4). B–Q, Immunofluorescence and confocal analysis of MCT1 and MCT4 in telencephalic cortex (B–I) and brain stem (J–Q) in
normoxic or hypoxic conditions. Pseudocolor analysis and three-dimensional projection images are also included (blue color, low reaction; green-
yellow color, high reaction; E, I and M, Q). R, S, Quantitative analysis of the MCT4 and MCT1 immunoreaction in normoxia and hypoxia. **p,0.001,
one tailed t-test. Data represent the means 6 SD from four independent determinations. BV: blood vessel, GR: radial glia, N, neuron. Scale bar: A–Q,
50 mm.
doi:10.1371/journal.pone.0032409.g010
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bodies at the vascular level [26,27,67]. Because the BBB is not

present within endothelial cells, we propose that these cells have

high- and low-affinity MCTs involved in the influx of mono-

carboxylates to the vascular endothelium and not to the cerebral

parenchyma (Fig. 12).

The localization of MCT1 and MCT4 in the astrocytes of

mammalian brain has been described [7,26,35,68]. Likewise,

expression of these transporters was observed in shark radial glial

cells, which was associated mainly with the glial processes that

contact the blood vessels. MCT1 is involved in the influx or efflux

of ketone bodies by glial cells, a function that was previously

reported for astrocytes [7,30,69]. Furthermore, immunofluores-

cence analysis showed that MCT1 is localized in glial processes

that contact the blood vessels or in perivascular processes that

form rosette-type structures [70]. Thus, it is feasible to propose that

radial glial cells deliver ketone bodies or lactate to the cerebral

parenchyma considering the involvement of MCT4 in the efflux of

lactate [27,35,71,72] (Fig. 12).

The metabolic characteristics of shark radial glia have not been

described to date. However, efflux of lactate from the brain has

been reported under starvation conditions [64], suggesting that

radial glia may generate important concentrations of lactate that

can reach the neuron or be eliminated by the blood [64]. MCT2

is a high-affinity transporter involved in the influx of lactate

through the cellular membrane whose expression has been

described in mammalian neurons [36,37]. Moreover, the

expression of MCT1 has been shown in the hypothalamic

nucleus [33,35]. Both transporters are expressed in shark

neurons. Specifically, the reactivity pattern of MCT1 suggests

strongly that it is located in the mitochondria, as has been shown

in skeletal muscle and in neurons of the thalamus of rats [73,74].

MCT2, in turn, is located in the plasma membrane, which

Figure 11. Hypoxia changes MCT1 distribution in brain cortex and increases MCT4 expression in brain stem. A and D, Western blot
analysis of MCT1 and MCT4 expression in total protein extracts from telencephalic cortex (Tel, lanes 1, 2) and brain stem (BS, lanes 3, 4) in normoxic
and hypoxic conditions. B–C and E–F. Quantitative analysis of the MCT1 and MCT4 reaction in normoxic and hypoxic condition. The hypoxic condition
increased MCT4 expression in the brain stem. *p,0.05, one tailed t-test. Data represent the means 6 SD from three independent determinations.
doi:10.1371/journal.pone.0032409.g011
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permits the incorporation of lactate or ketone bodies (from blood)

to the neurons.

Different data indicate an increased MCTs expression, mainly

MCT4, in hypoxic conditions of mammals and fishes tissues

[38,39,40]. In mammals, the MCT4 gene promoter contains

elements responsive to hypoxia, which is similar to that described

for HIF-1a [39,42]. Similar results have been showed for GLUT1

in mammals [75,76], however, there are not information in shark

brain about MCTs and GLUTs expression in hypoxic condition.

In our study, different variations were found for MCT1 and

Figure 12. Model for glucose and monocarboxylate movement within shark brain. At the level of the BBB: 1. The endothelial cells of
shark brain do not express GLUT1 as do those of bony fishes and mammals. 2. The endothelial cells of shark brain express MCT1, 2 and 4, thereby
incorporating monocarboxylates from the blood. 3. The endothelial cells do not have tight junctions; the glucose diffuses to the pericapillary space. 4.
The glucose of the blood enters the radial glial cells through the GLUT1, a polarized transporter in the perivascular processes. 5. Within the radial glia,
the glucose is metabolized to pyruvate and/or lactate. 6. Lactate could exit the radial glia using MCT4/MCT1 and be incorporated by the neurons
using MCT2. MCT1 is responsible for the entrance of both substrates to the interior of the mitochondria. Dotted lines, alternative mechanisms. At the
level of the blood-CSF barrier: 7. Shark brain is able to capture glucose from the blood through the choroid plexus (blood-CSF barrier). 8. The
glucose is transferred vectorially to the CSF due to the basolateral and apical polarization of GLUT1. 9. The glucose present in the CSF enters the glia
through GLUT1 localized in the periventricular bodies of the radial glia. 10. The glucose could diffuse to the extracellular space through the
ventricular wall and reach neurons present in the brain tissue. 11. The choroid plexus shows MCT1 at the basolateral and apical levels, allowing
entrance and exit flows of monocarboxylates, depending on the relative concentrations of these compounds. 12. MCT1 is localized at the ventricular
level in the radial glia, allowing the capture or efflux of lactate from the CSF.
doi:10.1371/journal.pone.0032409.g012
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MCT4 in response to hypoxia, however, we were not able to

observe GLUT1 modification. Although we did not study

expression levels of mRNA for MCT1 in response to hypoxia,

Western blot and immunohistochemical analysis led us to suggest

that MCT1 protein levels do not change, only their distribution is

modified in the telencephalon. These results suggest that MCT1

may modulate its cellular localization dynamically, adapting

lactate influx and/or efflux of shark brain cells under anaerobic

metabolism. Recently, it has been postulated that MCT1 increases

mRNA expression in cultured rat astrocytes during hypoxia [77],

and also in hypoxic training [78], however in zebrafish brain it has

not been observed (Ngan et al. 2009). These results indicate that

fishes and mammals may regulate differentially the expression and

distribution of MCT1 under hypoxia in brain cells.

In mammals, MCT4 is a low-affinity transporter involved

mainly in lactate efflux from astrocytes. In the gills of the teleost

fish, Danio rerio (zebrafish) [38], changes in MCT4 mRNA

expression levels have been reported in response to hypoxia.

Similar results were observed in our study, specifically in brain

stem of shark after hypoxia. These results and the presence of the

five LDH isoenzymes in elasmobranchs [79] is suggestive that

lactate production could increase under hypoxia and the cells use

MCT4 to remove lactate from the glia.

In conclusion, our data allow us to propose a novel coupled

metabolic model in shark brain. The distribution of GLUT1 and

MCT1, 2 and 4 in the shark brain strongly support that glial cells

may incorporate glucose and release lactate to be used by the

neuron. This metabolic coupling mechanism would be an efficient

way to feed a brain that has the BBB in the glial cells.

Materials and Methods

Animals
In this study, all animals were handled in strict accordance with

the Animal Welfare Assurance and all animal work was approved

by the appropriate Ethics and Animal Care and Use Committee of

the University of Concepcion, Chile (permit number 2010101A).

Male adult Sprague-Dawley rats were used for the experiments.

Animals were kept in a 12-h light/dark cycle with food and water

ad libitum. Twenty specimens of Schroedericthys chilensis (Pacific sea

shark) were captured in the harbor of Concepción, Chile. Thirty

two specimens of Scyliorhinus canicula (Mediterranean sea shark)

were captured in the harbor of Malaga, Spain. Three specimens of

Oncorhynchus mykiss (salmon) were donated from the Camanchaca

Company, Tome, Chile. The animals were anesthetized with

Ethyl-p-aminobenzoate (Sigma-Aldrich, St. Louis, MO, USA)

dissolved in seawater. To induce hypoxia, ten S. canicula sharks

were kept in seawater after capture from which the oxygen was

eliminated [80].

Immunocytochemistry
The brain of different species were fixed in Bouin solution

(750 mL of saturated picric acid, 250 mL of formaldehyde 37%,

and 50 mL of glacial acetic acid), and the samples were dissected

and post-fixed by immersion for 12 h. After post-fixation, the

samples were dehydrated in graded alcohol solutions and

embedded in paraffin. The sections (7 mm) were obtained and

mounted on poly-L-lysine-coated glass slides. Before immuno-

staining, the sections undergoing peroxidase immunohistochemis-

try were treated with 3% hydrogen peroxide in absolute methanol

to inactivate endogenous peroxidase activity.

For immunohistochemical analyses, the following antibodies

and dilutions were used: rabbit anti-GLUT1 (1:100, Alpha

Diagnostic International, INC., San Antonio, TX, USA), rabbit

anti-S100a (1:500, DAKO, Campintene, CA, USA), rabbit anti-

glial fibrillary acidic protein (GFAP; 1:200, DAKO), mouse anti-

vimentin (1:200, DAKO), mouse 3CB2 (1:100, this antibody was

developed by Francisco A. Prada, and was obtained from the

Developmental Studies Hybridoma Bank maintained by the

Department of Biological Sciences, University of Iowa, Iowa City,

IA, USA), chicken anti-MCT1 (1:100, Millipore, Temecula, CA,

USA), chicken anti-MCT2 (1:50, Millipore), and rabbit anti-

MCT4 (1:20, Millipore). The antibodies were diluted in a Tris-

HCl buffer (pH 7.8) containing 8.4 mM sodium phosphate,

3.5 mM potassium phosphate, 120 mM sodium chloride, and

1% bovine serum albumin (BSA). Sections were incubated with

the antibodies overnight at room temperature in a humid

chamber. After extensive washing, the sections were incubated

for 2 h at room temperature with the appropriate peroxidase-

labeled secondary antibody (1:500; Jackson ImmunoResearch

Laboratories, INC., Pennsylvania, USA). The peroxidase activity

was developed using a DAB substrate kit (ImmunoPure; PIERCE

Biotechnology, Rockford, IL, USA). For immunofluorescence and

colocalization analyses, the tissues were incubated with the

primary antibodies overnight and subsequently with Cy2-, Cy3-

or Cy5-labeled secondary antibodies (1:200; Jackson ImmunoR-

esearch Laboratories). Some samples were counter-stained with

propidium iodide (1:1000). The slides were analyzed using

confocal laser microscopy (D-Eclipse C1 Nikon, Tokyo, Japan).

Reverse transcription-polymerase chain reaction
Total RNA from the telencephalic cortex and control tissues (rat

brain), were isolated using Trizol (Invitrogen, Rockville, MD,

USA). For RT-PCR, 2 mg RNA was incubated in a 20 mL reaction

volume containing 56 buffer for M-MulV reverse transcriptase,

20 U RNAse inhibitor, 1 mM dNTPs, 2.5 mM oligo(dt)18 primer,

and 10 U revertAidTM H minus M-MuLV reverse transcriptase

(Fermentas International INC., Burlington, Ontario, Canada) for

5 min at 37uC followed by 60 min at 42uC and 10 min at 70uC.

Parallel reactions were performed in the absence of reverse

transcriptase to control for the presence of contaminant DNA. For

amplification, 1aL cDNA aliquot in a total volume of 12.5 mL

containing 106 PCR buffer without MgCl2, 10 mM dNTPs,

25 mM MgCl2, 0.3125 U Taq DNA pol (Fermentas International),

and 10 mM of each primer was incubated at 95uC for 5 min

followed by 35 cycles of 30 s at 95uC, 30 s at 55uC, and 30 s at

72uC and a final extension of 7 min at 72uC. PCR products were

separated by 1.2% agarose gel electrophoresis and visualized by

staining with ethidium bromide. The following sets of primers

were used: GLUT1a, sense 59- GTGTCATCAATGCCCCA-

CAG -39 and antisense 59- GCCAATAATAAACCGTCCCA - 39

(expected product of 281 bp); GLUT1b, sense 59- GCGGAATT-

CAATGCTGATGAT -39 and antisense 59- AGGGCA-

GAAGGGCAACAGGAT -39 (expected product of 350 bp).

Immunoblotting
Total protein extracts were obtained from rat brain, different

regions of shark brain, as well as salmon brains. Tissues were

homogenized in buffer A (0.3 mM sucrose, 3 mM DTT, 1 mM

EDTA, 100 mg/mL PMSF, 2 mg/mL pepstatin A, 2 mg/mL

leucopeptin, and 2 mg/mL aprotinin), sonicated three times on ice

at 300 W (Sonics & Material INC, VCF1, Connecticut, USA) for

10 s, and separated by centrifugation at 40006g for 10 min.

Supernatant was centrifuged at 180,0006 g for 45 min at 4uC.

Proteins were resolved by SDS-PAGE (50 mg/lane) in a 5–15%

(w/v) polyacrylamide gel, transferred to PVDF membranes

(0.45 mm pore, Amersham Pharmacia Biotech., Piscataway, NJ,

USA), and probed for 8 h at 4uC with rabbit anti-GLUT1 (1:500),
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chicken anti-MCT1 (1:1000), chicken anti-MCT2 (1:500) or rabbit

anti-MCT4 (1:500) antibodies. After extensive washing, the PVDF

membranes were incubated for 1 h at 4uC with peroxidase-labeled

anti-chicken IgY (1:1000; Jackson Immuno Research) or perox-

idase-labeled anti-rabbit IgG (1:5000; Jackson Immuno Research).

The reaction was developed using the enhanced chemilumines-

cence (ECL) Western blot analysis system (Amersham Biosciences,

Pittsburgh, PA, USA). Negative controls consisted of incubating

the membrane with a pre-absorbed antibody (anti-GLUT1 1:500,

anti-MCT1 1:100 or MCT4 1:500) with 100 mg/mL inductor

peptide (Millipore) incubated at 4uC overnight.

Radioautography
Ten S. chilensis shark were anesthetized and injected with

different activities (60–500 aCi) of [3H] 2-deoxy-D-glucose

(specific activity 29.7 Ci/mmol) in the caudal peduncule. The

label time was between 10–90 min. The brain was removed

quickly and fixed in 4% paraformaldehyde and 2% glutaraldehyde

in elasmobranch buffer [81] overnight at 4uC. After washing the

choroid plexus in 0.1 M phosphate buffer, pH 7.4 containing 10%

sucrose and 0.005% CaCl2, the tissues were incubated in 2%

OsO4 for 2 h and then rinsed in 0.1 M phosphate buffer, pH 7.4.

Following dehydration, the tissues were embedded in Epon-

Araldite. Light microscope autoradiographs were prepared with

serial semi-thin cuts (1am) [82] coated with Hypercoat EM1

(Amersham) emulsion, according the manufacturer’s instructions,

and exposed for 1 days–4 weeks at 4uC. The films were developed

with D19 developer (Kodak) for 7 min, stopped with 0.5% acetic

acid, and fixed with fixer solution (Kodak). Some sections were

stained with basic toluidine blue.

Ultrastructural Immunohistochemistry
Brain tissues were immersed for 2 h in fixative containing 2%

paraformaldehyde and 0.5% glutaraldehyde in elasmobranch

buffer [81], containing 150 mM phosphate buffer, pH 7.4,

360 mM urea and 70 mM sodium chloride.

The samples were dehydrated in dimethylformamide and

embedded in London Resin Gold (Electron Microscopy Science,

Washington, DC). Ultrathin sections were mounted on uncoated

nickel grids and processed for immunocytochemistry [83]. For

immunostaining, the anti-GLUT1 antibody (1:100) was diluted in

incubation buffer consisting of Tris-HCl (pH 7.8) containing

8.4 mM sodium phosphate, 3.5 mM potassium phosphate,

120 mM NaCl and 1% BSA. After extensive washing, the

ultrathin sections were incubated for 2 h at room temperature

with 10-nm colloidal gold-labeled anti-rabbit IgG (1:20). Uranyl

acetate/lead citrate was used as contrast, and samples were

analyzed using a Hitachi H-700 electron microscope (Hitachi,

Tokyo, Japan) with 125–200-kV accelerating voltage. For

scanning electron microscopy, the brain tissues were immersed

for 2 h in fixative containing 4% paraformaldehyde and analyzed

using a Etec Autoscan SEM (Etec Corp., Hayword, CA, USA).

Generation of 3D ultrastructural data
Briefly, brain tissue from shark (Schroedericthys chilensis) was fixed

by immersion using a mixture of 2% glutaraldehyde and 2% p-

formaldehyde in elasmobranch buffer. After washing several times

in PBS, 100 mm tissue sections were obtained using a Leica

vibratome. These sections were then incubated with osmium (1%,

1 hr) to improve ultrastructure and contrast. After washing

abundantly with distilled water, the brain sections were dehydrat-

ed with ascending concentrations of alcohol and incubated with

propylene oxide to allow plastic infiltration (Epon). Once

plasticized, the sections were cured at 60uC for 2–3 days.

Ultrathin serial sections were cut at 49 nm and collected

automatically using an automated tape collection ultramicrotome

(ATUM, Hayworth et al., 2007). Ultrathin sections were then

post-stained with lead citrate, carbon coated using Edward carbon

evaporator, placed on a silicon wafer and inserted into an Electron

Microscope (FE-SEM, Zeiss, Germany). Once the region of

interest (ROI) was identified, it was imaged (beam parameters:

9 kV, 400 pA) automatically using backscattered electron detec-

tion. Serial images (600066000 pixels at 10 nm pixel size) were

handled offline to generate a 3D image stack; affine transformation

was used to align all serial images. Finally, the 3D image stack was

segmented manually using Reconstruct version 1.1.0 [84].
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