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Abstract

The mean square displacement (MSD) is an important statistical measure on a stochastic

process or a trajectory. In this paper we find an approximation to the mean square displace-

ment for a model of cell motion. The model is a discrete-time jump process which approxi-

mates a force-based model for cell motion. In cell motion, the mean square displacement

not only gives a measure of overall drift, but it is also an indicator of mode of transport. The

key to finding the approximation is to find the mean square displacement for a subset of the

state space and use it as an approximation for the entire state space. We give some intuition

as to why this is an unexpectedly good approximation. A lower bound and upper bound for

the mean square displacement are also given. We show that, although the upper bound is

far from the computed mean square displacement, in rare cases the large displacements

are approached.

Introduction

One of the characteristics that distinguishes living things from non-living things is motility.

On the cellular level, the motility or non-motility of different types of cells can be life-building

(e.g., embryogenesis), life-saving (e.g., white blood cells) or life-threatening (e.g., metastasis).

A thorough study of cell motility is needed to help understand the underlying mechanisms

of motion in order to be able to inhibit or promote cell movement [1]. The mean square dis-

placement (MSD) is often used to analyze particle motion and can be a first indicator of the

mechanism of motion in cells. We give a brief introduction to the MSD to give a greater

understanding of its origins and applications, including cell motion. It will later be applied to a

math model of cell motion.

The MSD is a statistical measure of the average distance a particle travels over time. It can

be thought of as a measure of overall drift. For instance, if a particle has a lot of motion within

a small radius, its displacement over time may not be a good measure of overall motion,

whereas the MSD will capture that. Given a stochastic process X(t), the MSD is defined as

MSDðtÞ ¼ E½ðXðtÞ � Xð0ÞÞ2� ð1Þ

(see e.g., [2]). We introduce three common ways to compute the MSD from data. The first two
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can be applied to any function of time whereas the last method is applied to stochastic pro-

cesses. The first two use discretized time data (whether from discrete or continuous data),

which is true for our application to cell motion and is typically the case when tracking particle

motion.

For the first two methods to approximate the MSD we will assume we have particle posi-

tions at evenly spaced time intervals. That is, xi = x(ti) for i = 0, . . .N where ti = t0 + iΔt.
The first of the three methods for computing the MSD is useful if the experimental data

available is a sufficiently long time trajectory for a single particle, then the time averaged

approximation to the MSD (TAMSD), at lag time τ = kΔt is commonly defined and calculated

as follows [3]:

TAMSD1ðtÞ ¼
1

N � kþ 1

XN� k

i¼0

jxiþk � xij
2
; k ¼ 1; 2; . . . ;N � 1;N: ð2Þ

The advantage of Eq (2) is that for small values of k, there are many displacements, and the

data is well averaged. The disadvantage is that when k> 1 there is overlap between the dis-

placements, and successive displacements are usually not independent.

If no overlap is allowed between displacements, then the time averaged approximation to

the MSD is computed as

TAMSD2ðtÞ ¼
1

bðN=kÞc

XbðN=kÞc� 1

i¼0

jxðiþ1Þk � xikj
2
; k ¼ 1; 2; . . . ;N � 1;N ð3Þ

where b c denotes the integer part. This allows displacements to be uncorrelated for calcula-

tions, but if k is large, it is a poor statistical measure due to fewer sample points. Eqs (2) and (3)

are the same when k = 1. In the subsequent sections of this paper, we typically assume k = 1,

and this is the method used when calculating the MSD from simulations (which we refer to as

the experimental MSD), since our calculations assume there is independence between succes-

sive displacements.

If multiple particles of the same type are being tracked over a short period of time, where

each particle is equally weighted, then the ensemble averaged approximation to the MSD

(EAMSD) at time τ is defined as:

EAMSDðtÞ ¼
1

P

XP

j¼1

ðjxjðtÞ � xjð0ÞjÞ
2

where P is the number of particles and xj(τ) is the location of the j-th particle at time τ, and

xj(0) is the referenced position for the j-th particle. When both types of data are available and

the system is ergodic (the time average and ensemble average are equivalent for large time)

[4], then a simultaneous time and ensemble average is sometimes used, where a time average

MSD is computed for each particle and that is then averaged over all the particles. This is

especially helpful when lag times are long and improves the statistics [5]. The EAMSD is

applied to a stochastic process where xj are different realizations of the stochastic process. In

the centroid model which we analyze in this paper, time is discrete so our data takes the form

X(ω)i = X(ω, i) and Δt has no meaning (τ = k). For example if ω is specified then X(i) = xj(i).

In this setting, the EAMSD is easily recognized as an approximation to the definition of the

MSD.

The historical importance of MSD came in the year 1905, when Einstein published his

Annus Mirabilis (“extraordinary year”) papers, the second of which contained his research and

results on Brownian motion [6]. From his work on the diffusion equation in one dimension he
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was able to find a linear, time dependent relationship between the MSD and the diffusion coef-

ficient, D, which is a measure of the rate that a particle can move through a fluid that is in ther-

mal equilibrium. The relationship is given by MSD(τ) = 2Dτ in one dimension and is extended

to MSD(τ) = 2dDτ for a d-dimensional system. It was a landmark paper and established the

value of statistical mechanics in research. (The continuous time stochastic processes in these

applications is approximated by discrete-time processes.) The relationship for MSD was further

extended to the viscosity of a purely viscous fluid at thermal equilibrium by research simulta-

neously developed by both Einstein and Sutherland, although Sutherland’s contributions were

only recognized recently [7]. The relationship between the diffusion coefficient and the viscos-

ity η of a fluid is given by the Stokes-Einstein-Sutherland relation D = kB T/(6πηRp) where kB is

Boltzmann’s constant, T is the absolute temperature, and Rp is the radius of a particle, and the

particle experiences Stokes drag [6, 8]. Thus, MSD(τ) = 2dτkB T/(6πηRp). Experimentalists now

had a way to calculate the diffusion coefficient. (Its extension to cell motion will be discussed in

coming paragraphs.).

Further research has shown that the MSD can be used to determine features of the local

rheology of non-Newtonian viscoelastic fluids. The complex shear modulus [5], the dynamic

moduli [9], and the creep compliance [10] for these fluids can be found using the MSD. A

power law tau dependence between the MSD and tau given by MSD(τ) = Aτα is indicative

that a particle is moving by nondiffusive transport when α 6¼ 1. It also describes diffusion

through a viscoelastic medium [11, 12]. The exponent, α, is referred to as the MSD scaling

exponent, and for physical processes 0� α� 2. When α< 1 the process is considered sub-

diffusive, and for α> 1, it is superdiffusive. When the MSD exhibits the relationship MSD(τ)

= 4Dτ + (Vτ)2 with V being velocity, the particle exhibits directed motion with diffusive

behavior. These different relationships indicate that the MSD, along with the diffusion coeffi-

cient, are helpful in revealing the mode of transport, but not all of the mechanisms driving

the transport [13].

For living cells, the Stokes-Einstein-Sutherland relation and other equations derived to

explain diffusive processes cannot immediately be applied, since living cells use thermal energy

and active transport. Under certain conditions, such as active transport inhibition, they are

still relevant and can provide information about transport. The time dependent power law is

also a useful tool in understanding motion in living cells. Single and two-particle tracking of

particles inside a cell have been done on a large number of cell types to find the MSD and

hence the MSD scaling exponent [13]. For living cells, if the scaling exponent is in the subdiffu-

sive range, then it may be indicative of a dense intracellular environment and/or there may be

numerous reactions and obstacles inside the cell [14]. If the scaling exponent is in the superdif-

fusive range, then active transport is present [15]. It was also found when tracking whole cells

that there is an inverse relationship between the MSD and the stiffness of a cell [16]. This rela-

tionship was seen in cancerous cells when the stiffness of the cell decreased as the cell increased

in metastatic potential [17]. In summary, the MSD is not only a useful tool to indicate the

transport type and mechanics in living cells [13], but in some cases can give information on

specific behaviors. Regardless of the application, the MSD is an important statistical measure

on a stochastic process.

In this paper we will first discuss the MSD for a simple random walk. We then discuss cal-

culating the MSD for a mathematical model for cell motion. A good estimate for the MSD is

found as well as an upper and lower bound for the MSD for this model. We then compare and

contrast numerical results found for the simple random walk and our model. Given these

methods for estimating the MSD of cell motion with this model, the historical uses of the MSD

can be applied to further examine and understand the mechanisms of motion.
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Random walks

Some background in simple random walks is needed in order to better understand the model

describing cell motion in the next section, so a brief discussion of random walks and the MSD

for random walks is given here. A random walk or drunkard’s walk was first referred to in

1905 in the journal Nature in a discussion between Pearson and Rayleigh, demonstrating the

theorem, “the most likely place to find a drunken walker is somewhere near his starting point

[18].” Since that time, random walk theory has been studied extensively, impacting many

important fields, such as random processes, random noise, stochastic equations and spectral

analysis. For a more thorough discussion of random walks in biology, see “Random Walk

Models in Biology”, by Codling, et.al. [19].

A simple random walk refers to a stochastic process that is the equivalent of a succession of

random steps in some finite space or grid. One feature of a random walk is that the jumps are

independent. A simple random walk is both time homogeneous (PðXðtÞ ¼ j j Xð0Þ ¼ aÞ ¼
PðXðsþ tÞ ¼ j j XðsÞ ¼ aÞ) and space homogeneous (PðXðtÞ ¼ j jXð0Þ ¼ aÞ ¼ PðXðtÞ ¼ j þ
b j Xð0Þ ¼ aþ bÞÞ [20]. Since the process is space homogeneous, we can assume that X(0) =

0, for our purposes. These properties of simple random walks then give that E½kXðt þ tÞ�
XðtÞk2

� ¼ E½kXðtÞ � Xð0Þk2
� ¼ E½kXðtÞk2

�. Since VarðkXkÞ ¼ E½kXk2
� � kE½X�k2

,

then E½kXðtÞ � Xð0Þk2
� ¼ Var½kXðtÞk� þ kE½XðtÞ�k2

: Each X(t) is the sum of random,

independent, identically distributed variables (iids), so Var[kX(τ)k] = τ Var[kX(1)k] and

E½XðtÞ� ¼ tE½Xð1Þ].
Then using the definition of the MSD as defined in the first section,

MSD tð Þ ¼ E kX tð Þ � X 0ð Þk
2

� �

¼ t �Var kX 1ð Þk½ � þ t2 � kE X 1ð Þ½ �k
2
:

ð4Þ

This relation shows that the MSD for a simple random walk is a quadratic function in τ. In

addition to simple random walks, Eq (4) holds true for any process that is both time and space

invariant with X being the sum of iids.

Eq (4) is the definition for the MSD used in the next section for our calculations to find the

MSD for the model of cell motion. Given the expectation and variance, Eq (4) gives us a way to

compute the MSD as a function of τ. In a later section, we compare Eq (4) with results from

simulations of our model of cell motion (which is not a sum of iids) to see if it has a similar

behaviour.

Finding an estimate for the MSD for a model of cell motion

In a paper by John Dallon, et.al. [21], they introduce a mathematical model of individual cell

migration. The model specifies discrete focal adhesion (FA) attachment sites with random

switching terms for each site. (A FA is a complex that allows a cell to adhere to the extracellular

matrix and is integral to amoeboid cell motion.) The random switching terms determine if a

FA is attached or detached. The time a FA remains attached or detached is taken from a given

probability distribution. A detached site is reattached at an outreach distance from the present

cell center. The outreach is taken from a given probability distribution that specifies the dis-

tance and location from the centroid where the FA attaches. Forces exerted on the center of

the cell by the different FAs are determined by Hooke’s Law. Using Newton’s second law of

motion, and ignoring the acceleration due to the low Reynolds number, all of these forces

together with the drag force, which involves velocity, are summed to produce a differential

equation model that has the feature of different FAs attaching and detaching randomly and

tracks the movement of the cell over time. See Fig 1.
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The equation of motion for the cell location is given by

mx0 ¼ �
Xn

i¼1

aiðkx � vik � ‘iÞ
x � vi

kx � vik
ciðtÞ;

where x is the location of the center of the cell, αi is the constant for the ith spring with resting

length ℓi, vi is the location of the ith FA, n is the total number of FAs, and ψi(t) is the state of

the ith FA at time t. If ψi(t) = 0, then the ith FA is detached at time t, and if ψi(t) = 1, then the

ith FA is attached at time t.
The equation for the location of the ith FA vi when it is going from detached to attached is

given by

viðtÞ ¼ lim
y%ap;i

xðyÞ þ ηp;i for ap;i � t < apþ1;i:

For each i the sequence {ap,i} of random variables are the times when ψi makes the transition

from 0 to 1. The vectors ηp,i are independent, identically distributed random vectors with

respect to a distribution ν on R2. (The vector ηp,i is the outreach. The two superscripts denote

the time sequence and FA respectively.) Although the equations of motion are independent of

the location of the FA when it is detached, for convenience we assume the location does not

change until it reattaches.

In a further paper [22], the differential equation model is approximated heuristically by a

problem that tracks the centroid of the cell, cj. This new problem is motivated by informally

considering the limit of the differential equation model as the cell spring constants become

very large. In this limit, the cell nucleus jumps from centroid to centroid. This model is a dis-

crete-time jump process and is the model for which we estimate the MSD.

It is described in the following manner. Let j denote the number of binding events (attach

or detach events) that have occurred and n the number of FAs. The equation describing cj is

0 ¼
Xn

i¼1

aiðc
j � vj

iÞc
j
i

where vj
i is the location of the ith attachment site at stage j, αi is the spring constant for the ith

attachment and c
j
i is either 1 if the ith attachment site is attached at event j or 0 if the ith

Fig 1. Cell model. This figure from Dallon, et.al. [21] depicts the way the cell is being modeled mathematically. The

cell is a center location (nucleus) with attached springs. The other ends of the springs correspond to the different FAs

that are attached to the extracellular matrix at “x”.

https://doi.org/10.1371/journal.pone.0261021.g001
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attachment site is detached at event j. If the jth event is the attachment of vi, then its location is

governed by

vj
i ¼ cj� 1 þ ηj:

The vectors ηj are independent, identically distributed random vectors with respect to a distri-

bution ν on R2. (For our simulations, the outreach is specified by a length and an angle.).

Each attached FA has a certain probability p of changing status, and each detached FA has a

probability rp of changing status, where r> 0. If k is the number of attached FAs, then kp + (n
− k)rp = 1. Thus for given k, the probability of going from k to k + 1 attachments is given by

rpk with

pk ¼
1

kþ ðn � kÞr
ð5Þ

as found in [22]. The probability pk is the probability of going from k to k − 1 attachments.

The behavior of the system can be quite complex unless we restrict the initial conditions to

be compatible with a steady state distribution of the number of attached FAs. It was previously

shown that this distribution is a globally attracting steady state, so if the process is run long

enough this is not very restrictive.

More precisely, we restrict the initial conditions to come from a distribution ρ, which is a

distribution on the Borel sets of the possible cell states, BðXÞ, where

X ≔ fððc1; . . . ;cnÞ; ðv1; . . . ; vnÞ; cÞ 2 f0; 1g
n
� ðR2

Þ
n
� R2

:
Xn

i¼1

ciðvi � cÞ ¼ 0g:

(We give X the product topology with the discrete topology on {0, 1} and the standard topology

on R.) We put a further restriction on ρ, such that the probabilities of a projection of X onto

the number of attachments |ψ| associated with any given configuration is consistent with the

steady state distribution. This is given by the equation

rðððc1; . . . ;cnÞ � ðR
2
Þ
n
� R2

Þ \ XÞ ¼ pjcj

for every (ψ1, . . ., ψn) 2 {0, 1}n with π|ψ| being the probability of the projected steady state. This

steady state was computed in Dallon, et al. [22] and is given by

pk ¼

rk� 1
n � 1

k � 1

� �

2ð1þ rÞn� 1k
kþ n � kð Þr½ �;

ð6Þ

the probability of being in the projected state of k attachments for any configuration with 0<

k� n and π0 = 1/(2(1 + r)n−1).

Analysis of the centroid model by the authors in [22] produced an explicit formula for the

first moment, given by

Er½cjþ1 � cj� ¼ 1þ
Xn

k¼1

rk� 1ð1 � rÞ
n � 1

k � 1

� �

þ rk
n
k

� �� �

rðn � kÞ

ðkþ rðn � kÞÞðkþ 1Þ

0

B
B
@

1

C
C
A

En½η�
2ð1þ rÞn� 1

ð7Þ

where ρ is a probability measure on the Borel sets of the state space as defined above [22].
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It is noted that the MSD of the centroid in this setting changes the meaning of τ from a

time shift to an event shift. We work to determine a similar formula for the MSD of one event

shift (τ = 1), i.e. Er½kcjþ1 � cjk2
� for any j� 0.

Case: n = 1

Consider n = 1 with |ψj| = 0 where |ψj| is the number of attached sites at time j, and compute

cj+1 − cj. Since the process is space invariant, then we can assume that cj = 0. In this case, the

difference cj+ 1 − cj would be the outreach from the centroid on the next step, ηj+1. For |ψj| = 1,

the only possibility for the next event would be going from one attachment to no attachments.

(We assume that if all the FAs detach, then the location of the centroid does not move.) In this

case, the centroid does not move, so cj+1 − cj = 0. Those two cases then give the only possible

values for the random variables, cj+1 − cj, in the stochastic process when n = 1. Thus for n = 1,

Er½kcjþ1 � cjk2
� ¼ p0rp0En½kηk

2
� þ p1p1En½0� ¼ 1

2
r 1

r

� �
En½kηk

2
� ¼

En½kηk
2 �

2

Case: n = 2

For n = 2, cj+1 − cj (for any j� 1) can be computed for all scenarios of FA attachments/

detachments. See Table 1. A visualization for n = 2 can be found in Fig 2. Note that the open

dots indicate a detached adhesion site and a black dot represents an attached adhesion site. An

“x” indicates the centroid.

For n = 2, the MSD can be computed by substituting the values of the random variables and

associated probabilities found in [22] into Eq (1) with τ = 1 and is
En ½kηk

2 �

2ð1þrÞ 1þ r
2

� �
.

Case: n> 2

For n> 2, the initial condition is a cell that has not yet formed attachments to the substrate,

i.e., initially no FAs are attached. In order to find a good estimate for the theoretical MSD, we

considered two features of the model: (1) Only one event happens at a time. and (2)The proba-

bility that a single FA (focal adhesion) remains attached for a long period of time is small.

Table 1. Centroid model (n = 2) for j� 1. This table shows the probabilities of being in certain states, the probabilities of changing to different states with the number of

possibilities for those changes, and the centroid location change.

Probability of State |ψj| |ψj+1| Possibilities cj+1 − cj Probability of Attach/Detach

p0 ¼
1

2ð1þrÞ 0 1 2

1

� �
ηj+1 rp0 ¼

1

2

p1 ¼
1

2
1 2 1

1

� �
ηjþ1

2
rp1 ¼

r
1þr

1 0 1

1

� �
0 p1 ¼

1

1þr

p2 ¼
r

2ð1þrÞ 2 1 2

1

� �
� ηj

2
p2 ¼

1

2

https://doi.org/10.1371/journal.pone.0261021.t001

Fig 2. Visualization of the centroid model (n = 2). The left column shows the three possible initial conditions: No attached FAs, one attached FA and 2

attached FAs (in any configuration). The arrows point to possible transitions. Distance is measured vertically. The open dots indicate a detached adhesion

site and a black dot represents an attached adhesion site. An “x” indicates the centroid. When the centroid is in the same position as a dot, then it is

indicated to the right of the dot.

https://doi.org/10.1371/journal.pone.0261021.g002
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These two features imply that probabilistically, the FAs will be close together throughout

the process. To find a computable estimate for the MSD, we introduce the concept of sequen-

tial attachments. By sequential attachments, we mean that for any k� n, the k attachments

are sequential if they are in a configuration that can be arrived at by starting with a centroid

and no attachments and then attaching one FA at a random outreach (ν-distributed) from

the centroid. Then the new centroid location is computed and another FA attaches at a ran-

dom outreach from the centroid. Each new FA attaches in this same way until k are attached.

The FAs are also considered sequential if they are in the configuration described above

whether or not they arrived in that manner. In other words, FAs are in a sequential configu-

ration if they have a sequential creation story. See Fig 3. (Not all attachments are in a sequen-

tial configuration. For example, in panel (b) of Fig 3, if at Event 4, FA2 detaches, then the

configuration is no longer sequential.) Assuming sequential attachments assures that the

FAs are close together and makes it possible to compute the displacement of the centroid

when a detach event occurs.

The values for cj+1 − cj are computed for n = 5 as shown in Table 2. The values for an attach

event are valid for any configuration in the state space, but the ones for a detach event are only

valid if the configuration is a sequential attachment. For the purposes of finding an estimate

for the MSD, we assign the full probabilities of the state space to both attach and detach events,

even though the random variable for the detach events is only for a sequential configuration.

Since the FAs in general are close together, and a sequential configuration achieves this prox-

imity, then assigning the full probability to this case is reasonable.

In general, for n total FAs

cjþ1 � cj ¼
ηjþ1

k

k
ð8Þ

when going from |ψj| = k − 1 to |ψj+1| = k attached sites (an attach event) with 1� k� n, where

the superscripts are an event counter, and the subscript on η for an attach event is the outreach

to the kth FA. When going from |ψj| = k to |ψj+1| = k − 1 attached sites (a detach event) with 2

� k� n then the subscript on η is the outreach order in the creation story of the sequential

configuration. In this case, there are k
1

� �
possibilities for cj+1 − cj. For ℓ = 0 to k − 2, the ℓth

Fig 3. Visualization of sequential attachment configuration with two different histories. For simplicity, the visualization is in one dimension. In

panel (a), the first FA (FA1) attaches, denoted by the blue circle. The location of the centroid c1 is denoted by the star. The next FA (FA2) attaches at

distance η1 from the centroid. The new centroid is calculated, c2. The third FA (FA3) attaches at a distance η2 from the centroid. A new centroid is

calculated, c3. Panel (b) shows a different history that still has the same sequential configuration as panel (a) because they share a common sequential

creation story. The sequential creation story for event 5 has the sequential attachments happening at Event 2 and Event 5.

https://doi.org/10.1371/journal.pone.0261021.g003
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possibility is

1

k � 1

Xk� ð‘þ2Þ

i¼0

ηj
k� i

k � i
�

‘ηj
‘þ1

ð‘þ 1Þ
: ð9Þ

The last possibility is

�
ηj

k

k
: ð10Þ

Table 2. Centroid model (n = 5).

Probability of State |ψj| |ψj+1| Possibilities cj+1 − cj Probability of Attach/Detach

p0 ¼
1

2ð1þrÞ4
0 1 5

1

� �
ηjþ1

1
rp0 ¼

1

5

p1 ¼
1þ4r

2ð1þrÞ4
1 2 4

1

� �
ηjþ1

2

2

rp1 ¼
r

1þ4r

1 0 1

1

� �
0 p1 ¼

1

1þ4r

p2 ¼
2rð3rþ2Þ

2ð1þrÞ4
2 3 3

1

� �
ηjþ1

3

3

rp2 ¼
r

2þ3r

2 1 2

1

� �

�
ηj

2

2

p2 ¼
1

2þ3r

p3 ¼
2r2ð2rþ3Þ

2ð1þrÞ4
3 4 2

1

� �
ηjþ1

4

4

rp3 ¼
r

3þ2r

3 2 3

1

� �

1

2

ηj
2

2
þ
ηj

3

3

� �
�

p3 ¼
1

3þ2r

1

2
ð
� ηj

2

2
þ
ηj

3

3
Þ �

� ηj
3

3
�

p4 ¼
r3ðrþ4Þ

2ð1þrÞ4
4 5 1

1

� �
ηjþ1

5

5

rp4 ¼
r

4þr

4 3 4

1

� �

1

3
ð
ηj

2

2
þ
ηj

3

3
þ
ηj

4

4
Þ �

p4 ¼
1

4þr

1

3
ð�

ηj
2

2
þ
ηj

3

3
þ
ηj

4

4
Þ �

1

3
ð�

2ηj
3

3
þ
ηj

4

4
Þ �

�
ηj

4

4
�

p5 ¼
r4

2ð1þrÞ4
5 4 5

1

� �

1

4

ηj
2

2
þ
ηj

3

3
þ
ηj

4

4
þ
ηj

5

5

� �
�

p5 ¼
1

5

1

4
�
ηj

2

2
þ
ηj

3

3
þ
ηj

4

4
þ
ηj

5

5

� �
�

1

4
�

2ηj
3

3
þ
ηj

4

4
þ
ηj

5

5

� �
�

1

4
ð�

3ηj
4

4
þ
ηj

5

5
Þ �

�
ηj

5

5
�

The superscripts are an event counter, and the subscript on η for an attach event is the outreach to the kth FA and for a detach event is the outreach order in the creation

story of the sequential configuration.

�The starred values are only valid for sequential attachments. (For the purposes of finding an estimate for the MSD, the probabilities on the table are for the entire state

space even though the random variables for a detach event are only valid for a sequential configuration.).

https://doi.org/10.1371/journal.pone.0261021.t002
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Each of these possibilities, corresponds to a particular site in the creation story detaching on

event j + 1.

If we consider each configuration of cj+1 − cj, where the number of attachments is known as

is the nature of the next event (attach or detach), and consider the possible values of that differ-

ence as random variables which depend only on the distribution ν, then we can determine

expectations. By using Eqs (8), (9) and (10), we can determine expectations with respect to ν
that contribute to an MSD estimate of the full state space.

Configuration attach:

We find En½kcjþ1 � cjk2
� for any number of attachments, k, with the next event being an

attachment by using Eq (8). Thus, for |ψj| = k − 1 and |ψj+1| = k and 1� k� n − 1 then

En kcjþ1 � cjk2
� �

¼
En½kηjþ1k

2
�

k2
¼
En½kηk

2
�

k2
ð11Þ

where the norm is defined in terms of the inner product.

Configuration detach (assuming sequential configuration):

Similarly, we find En½kcjþ1 � cjk2
� for any number of attachments k with the next event

being a detachment using Eqs (9) and (10). Thus, for |ψj| = k and |ψj+1| = k − 1, with 2� k� n
(cj+1 − cj = 0 when k = 1), then

En kcjþ1 � cjk2
� �

¼
1

ðk � 1Þ
2

Xk� 1

i¼1

iEn½kηk
2
�

iþ 1
: ð12Þ

Using the expectations found in Eqs (11) and (12), we derive an estimate for the MSD. For

n> 1 adhesion sites the estimated theoretical MSD with respect to the initial distribution, ρ,

that is compatible with the projected steady state found in [22], assuming only a sequential

configuration for a detach event with a full state space probability for all events, is given by

MSDð1Þ ¼ Er½kcjþ1 � cjk2
� �

En½kηk
2
�

2ð1þ rÞn� 1
1þ

Xn� 1

k¼1

n � 1

k

� �
rk

ðkþ 1Þ
2
þ

n � 1

k

� �
rk

ðkþ 1Þðk2Þ

Xk

i¼1

i
iþ 1

 !

:
ð13Þ

To find this estimate for the MSD, which we will refer to as AMSD (approximate MSD), we

first find the contribution to the expectation due to the attachment events. Eq (11) is multi-

plied by πk and by rpk (the probability of going from k to k + 1 attachments) and by the num-

ber of possibilities n − k, for 1� k� n − 1, given by pkrpkðn � kÞ En½kηk
2 �

k2 . Summing these

products over k gives the first summation, or second term, in Eq (13) with
En½kηk

2 �

2ð1þrÞn� 1 being fac-

tored out from all terms. The first term (“1”) is when k = 0. In order to find an estimate

for the detach events, we multiply Eq (12), the equation for sequential attachments, by πk

and pk (the full probability of going from k to k − 1 attachments) with 1� k� n, given by

pkpk
1

ðk� 1Þ2

Pk� 1

i¼1

iEn ½kηk
2 �

iþ1
. Summing over all k, with an appropriate change of indices yields the

third term in Eq (13). In summary, the first term is for the attachment event when k = 0, the

second term is the sum over all other attachment events and the third term is the sum over

detachment events.

Some numerical simulations were conducted to see how closely this formula compares to

the experimental MSD (for the full state space—not just sequential attachments), where we

assume that τ = 1. For 10,000,000 iterations and fixed r, the MSD was computed and compared

to the number of FAs.
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The numerical simulation to determine the experimental MSD begins with the location of

the FAs in a circle equally spaced around the origin at a random distance from 0 to 10 with all

FAs attached. It proceeds as follows:

1. Generate a number from the standard uniform distribution.

2. If this number is less than r � p � (number of detached FAs) where p = 1/(|ψ| + (n − |ψ|)r),
then the event is an attachment. Using MATLAB’s random number generator, a random

detached FA is selected and its length and angle of outreach is chosen from a random distri-

bution, and it is attached at the chosen length and angle from the present centroid.

3. If #2 is not true, then the event is a detachment. A random attached FA is selected and

detached.

4. The new location of the centroid is computed.

5. The location of the centroid is not recorded until a preset amount of events have happened,

the burn-in period. (This is done to“wash out” the initial conditions.)

6. The simulation continues until the specified number of events has happened.

7. The data file of the centroid locations at each event is then used to compute the MSD(1).

The graph of the AMSD from Eq (13) was also computed for fixed r and number of FAs

and was juxtaposed on the same graph, (see Fig 4). As seen from the graph, Eq (13), is a good

estimate for the MSD.

Lower bound

We now find a lower bound for the MSD. The results will help us understand why the AMSD

is such a good approximation. We discuss the insights gained in the section entitled “Discus-

sion on the MSD Estimate”.

In order to find a lower bound for the MSD, given n total FAs, we used the random vari-

able values found in Eqs (8), (9) and (10), and for values that are unknown we used 0. For

Fig 4. Comparison between the experimental MSD and the estimated theoretical MSD. For the left panel, the experimental

MSD (TAMSD2) is computed from a simulated trajectory of 10,000,000 points and is marked with a black “x” for different values of

FAs. It is compared to the AMSD found in Eq (13), given by the solid lines. The right panel shows the relative error between

TAMSD2 and AMSD for different values of r. For this simulation and all reported simulations the angle of η (the outreach vector) is

from -30 to 30 degrees, and the length of η is from 0 to 10. The centroid model is a space and time homogeneous process, thus

TAMSD2�MSD.

https://doi.org/10.1371/journal.pone.0261021.g004
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random variable values from Eqs (9) and (10) (a detach event) we used the probability of

being in a sequential configuration when the creation story and the actual history coincide.

The probability of starting with no attachments is π0. The probability of attaching one FA is

rp0 multiplied by the number of possibilities of FAs to attach, which is n. The probability of

attaching another FA is rp1 multiplied by the number of possibilities, n − 1. We continue

until we attach the kth FA, which has probability rpk−1(k − 1). Multiplying all of these proba-

bilities together and then multiplying by pk(k) (the probability of being in the state of k
attachments and detaching one of them) gives the probability of being in this particular

sequential configuration of k attachments and then detaching one of the FAs. Thus, given n
FAs, the probability of being in this particular sequential state of k attachments and then

detaching one of them is

Pd
kðrÞ ¼ p0ðrp0nÞðrp1ðn � 1ÞÞ . . . ðrpk� 1ðn � ðk � 1ÞÞÞðpkkÞ

¼ p0krkp0p1 . . . pk
n!

ðn � kÞ!

� �

¼
1

2ð1þ rÞn� 1

r
nr

� � r
1þ ðn � 1ÞrÞ

� �

. . .

r
ðk � 1Þ þ ðn � ðk � 1ÞÞr

� �
k

kþ ðn � kÞr

� �
n!

ðn � kÞ!

� �

ð14Þ

where 1� k� n. Using these adjusted probabilities for the detach event random variables,

we can obtain a lower bound (LB) for the MSD, and it is given by

LB ¼
En½kηk

2
�

2ð1þ rÞn� 1

�

1þ
Xn� 1

k¼1

�
n � 1

k

� �
rk

ðkþ 1Þ
2
þ

rkðkþ 1Þ
Ykþ1

i¼1

1

iþ ðn � iÞr

 !
n
k

� �
k!

1

k2

Xk

j¼1

j
jþ 1

��

:

ð15Þ

The first two terms are the same as in Eq (13). The third term is found by using the expecta-

tions for a detachment event (assuming sequential configuration) computed in Eq (14), but

using the probabilities from Eq (14). A graph of how it compares to the experimental MSD

and estimated theoretical MSD can be seen in Fig 5.

Upper bound

In this section, we seek to find an upper bound for the MSD. In order to find a tight upper

bound, it would require an extensive partitioning of the state space, and the possibilities are

too numerous to be practicable. Instead, we find a worst-case scenario for the centroid dis-

placement and show that it can be attained, but is highly improbable. Although our upper

bound is not ideal, the methods to obtain it are instructive, and at least the existence of an

upper bound is proved.

To postulate on the maximum value for kcj+1 − cjk, when event j + 1 is a detachment, we

describe a “worst-case scenario” event. We start with our initial condition assumption of the

centroid at the origin with no attachments. Assume the first FA, v1, attaches at the origin. For

simplicity and to obtain a maximum combined outreach, we assume all incremental out-

reaches occur in one dimension in the positive direction. The next FA, v2, attaches at a maxi-

mum outreach, ηmax, from the origin. Let each subsequent outreach be at a maximum

outreach from the previously attached FA until all n FAs are attached, the location of the ith
FA given by vi, with v1 = 0 and vn = ηmax(n − 1). (This is a maximum outreach scenario that
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is more than the actual model, since the outreach in the model for each new attaching FA

is from the centroid.) By fixing v1 at 0 for all events up through j, and allowing vd to detach

(vd 2 {vi|1� i� n}) for the event j + 1 (j> n) we can find an upper bound for any kcj+1 − cjk.

kcjþ1 � cjk ¼
Pn

i¼1
vi � vd

n � 1
�

Pn
i¼1

vi

n
¼

Pn
i¼2

vi � nvd

nðn � 1Þ

�
Zmaxðn � 1Þðn � 1Þ

nðn � 1Þ
¼
Zmaxðn � 1Þ

n
:

ð16Þ

where the values after the inequality come from taking the max value for all vi and taking the

minimum value of 0 for vd.

In general, for k attachments (1� k� n) we find an upper bound for the displacement by

using the upper bound configuration found in Eq (16), i.e. all nonzero FAs are ηmax(n − 1)

units away from the origin. So for j> n

kcjþ1 � cjk �
Zmaxðn � 1Þðk � 1Þ

k � 1
�
Zmaxðn � 1Þðk � 1Þ

k
¼
Zmaxðn � 1Þ

k
: ð17Þ

We now show analytically that the maximum displacement bound found in Eq (16) can be

achieved in the limit. Given n FAs, there is a linear recurrence relation for the location of the

next FA, given the location of the previous n − 1 FAs, where each xi is the location of a FA and

t� n.

xt ¼
ðxt� 1 þ xt� 2 þ . . .þ xt� nþ2 þ x1Þ

n � 1
þ Zmax

Fig 5. Lower bound for the MSD. Experimental MSD (red x’s) compared against the lower bound for the MSD (blue

line) found in Eq (15). For this graph, a trajectory of 10,000 data points was used for the experimental MSD with r = 1.

https://doi.org/10.1371/journal.pone.0261021.g005
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or

xt ¼
ðxt� 1 þ xt� 2 þ . . .þ xt� nþ2Þ

n � 1
þ Zmax ð18Þ

since x1 = 0.

The steady state of this equation is found by setting all values of x to x� and solving for x�.
The steady state is then x� = ηmax(n − 1). In order to find if this is an attracting steady state, let

yt = xt − x�, and Eq (18) becomes

yt ¼
ðyt� 1 þ yt� 2 þ . . .þ yt� nþ2Þ

n � 1
: ð19Þ

The characteristic equation for this recurrence relation is

ðn � 1Þl
n� 2
¼ l

n� 3
þ . . .þ lþ 1: ð20Þ

For ease of computation consider the equivalent system

ðkþ 1Þl
k
¼ l

k� 1
þ . . . lþ 1

where k + 1 = n − 1. Thus the characteristic polynomial is l
k
� lk� 1

kþ1
� . . . � l

kþ1
� 1

kþ1
.

By Descartes rule of signs, we know that the polynomial has exactly one positive real root.

Since one and negative one are not roots of the polynomial, the upper and lower bound theo-

rem for real roots of polynomials says that all of the real roots lie between negative one and one.

In particular, the unique positive root, call it z, must be between 0 and 1, i.e. 0< z< 1. Further

analysis shows that xk � xk� 1

kþ1
� . . . � x

kþ1
� 1

kþ1
< 0 or xk � xk� 1

kþ1
þ . . .þ x

kþ1
þ 1

kþ1
for all values

of 0� x< z and xk � xk� 1

kþ1
� . . . � x

kþ1
� 1

kþ1
� 0 for x� z. Let z0 be a complex root of the

characteristic polynomial, then zk
0
�

zk� 1
0

kþ1
� . . . �

z0

kþ1
� 1

kþ1
¼ 0. Using the triangle inequality,

then jz0j
k
�
jz0 j

k� 1

kþ1
þ . . .þ

jz0 j

kþ1
þ 1

kþ1
. This implies that 0 < |z0|<z< 1. Since z0 was arbitrary,

then all of the complex roots of the characteristic polynomial have modulus less than one.

Therefore, all roots of the characteristic polynomial lie within the unit circle in the complex

plane, showing that the steady state, x� = ηmax(n − 1) is attracting, and the system will con-

verge to it, since it is the only steady state. As the system approaches the steady state, then

the displacement is maximal, and by extending to higher dimensions is given by,

kcjþ1 � cjk
limj!1

¼
Zmaxðn � 1Þðn � 1Þ

n � 1
�
Zmaxðn � 1Þðn � 1Þ

n
¼
Zmaxðn � 1Þ

n ð21Þ

for n total FAs, which is the value seen in Eq (16).

Since the upper bound of the displacement found in Eq (16) can be obtained in the limit

(Eq (21)), we now use the results found in Eqs (16) and (17) to find an upper bound for the

MSD. We partition the state space into three parts: {Fa
kg, {~Fd

k} and {Fd
kg. Each Fa

k , 0� k� n − 1,

represents arriving to a state of k attachments from any configuration and then attaching. Each

~Fd
k , 1� k� n represents arriving to the state of k attachments from a sequential configuration

and then detaching. Each Fd
k , 1� k� n, represents arriving to a state of k attachments from a

non-sequential configuration and then detaching. We use the known values and associated

probabilities for Fa
k , and we use the RV values in Eqs (9) and (10) with probabilities from (14)

for ~Fd
k in the computation of the MSD upper bound. We use the results from Eq (17), as a RV

upper bound for the event of arriving at k attachments from a non-sequential configuration.

For the upper bound for the probabilities in this case, we use kpkpk � p0krkp0p1 . . . pk
n!

ðn� kÞ!

� �

(sequential probability from (14) subtracted from the probability of being in a state of k
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attachments and then detaching). The resultant upper bound can be seen in Fig 6. For {Fd
kg,

since we use a rare event for the upper bound of the displacement (one FA staying attached for

a long time), and multiply it by a large probability, then this is the best estimate for an upper

bound that can be found without partitioning the space into the many, many ways that the FAs

can arrive at a state of k attachments and then have one FA detach.

MSD as a function of τ
Thus far we have considered MSD(1) for the centroid model. We now turn our attention to

MSD(τ) where τ is an integer and represents the number of binding events between the cen-

troid locations being considered. As mentioned earlier, for a random walk, the shape of the

MSD curve can reveal if the process is purely diffusive (linear) or has a directed component

(quadratic) as can be seen in Eq (4). Eq (4) is valid for more than random walks. It is valid for

any process that is both time and space invariant and is the sum of iids. The centroid process

we are modeling is both time and space invariant, but as Table 1 indicates, the location of the

centroid is not a sum of iids. Since the state space is the location of the centroid and does not

include the number of attached FAs, the random variables, cj+1 − cj, for different values of j,
are not independent. For example, if there are 2 FAs and given some nonzero value for the

random variable, cj+1 − cj, within an interval that would satisfy the state of going from none

attached to one attached, or from two attached to one attached, or from one attached to two

attached, then that probability would be greater than if it was conditioned on the previous ran-

dom variable being 0.

Numerical simulations were conducted to see how Eq (4) compares with the experimental

MSD as a function of τ. The x’s in Fig 7 are calculated using Eqs (4), (13) and (7) in the follow-

ing way. Since our process is space and time homogeneous we assume j = 0 and c0 = (0, 0) to

give

Er½cjþ1 � cj� ¼ Er½c1 � c0� ¼ Er½c1�:

Fig 6. Upper bound for the MSD. An upper bound for the MSD is found using the values for the centroid

displacement found in Eq (17). A trajectory of 100,000 data points with r = 1 was used to approximate the MSD.

https://doi.org/10.1371/journal.pone.0261021.g006
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This relates Eq (7) to the expectation term in Eq (4). Furthermore,

MSDð1Þ ¼ Er½kc1 � c0k
2
� ¼ Varr½kc

1k� þ kEr½c1�k
2
:

Thus using AMSD from Eq (13) and the expectation found in Eq (7) to compute the variance

and expectation,

t �Varr½kc1k� þ t2 � kEr½c1�k
2

� tðAMSDð1Þ � kEr½c1�k
2
Þ þ t2kEr½c1�k

2

¼
tEn½kηk

2
�

2ð1þ rÞn� 1
1þ

Xn� 1

k¼1

n � 1

k

� �
rk

ðkþ 1Þ
2
þ

n � 1

k

� �
rk

ðkþ 1Þðk2Þ

Xk

i¼1

i
iþ 1

 !

þ
ðt2 � tÞkEn½η�k

2

4ð1þ rÞ2ðn� 1Þ
1þ

Xn

k¼1

rk� 1ð1 � rÞ
n � 1

k � 1

� �

þ rk
n
k

� �� �

rðn � kÞ

ðkþ rðn � kÞÞðkþ 1Þ

0

B
B
@

1

C
C
A

2

:

This gives an estimate of the MSD as a function of τ as indicated by Eq (4) with c being the ran-

dom variable. In Fig 7 panel (a) the different curves represent different values of n the total

number of FAs and panel (b) shows curves where r, the propensity to attach, varies.

The graphs reveal that adhesiveness of the cell may be inferred by examining how quickly

the MSD increases with respect to τ. As the number of FAs increase (or the adhesive ability of

the cell), the MSD curve flattens. The same is true for the propensity of FAs to attach. As the

value of r increases the MSD curve flattens. This work shows that additional information

about the cell and its motility can be gained by examining the MSD.

Discussion on the MSD estimate

In this section we give an explanation as to why our estimate for the MSD is so close to the

MSD calculated from simulations. In the section on the lower bound, we found the probability

for being in a sequential configuration of k attachments when the history and the creation

Fig 7. MSD as a function of tau. Panel (a) visualizes the numerical (TAMSD2) and theoretical (AMSD) results of the MSD

versus tau for different values of n (2–10), the total number of FAs, and r = 10. Panel (b) shows simulations where r varies from

0.25, 0.5, 1, 10, 50, and 100 with n = 5. The lines represent the relationship between tau and TAMSD2. The “x” uses the AMSD

(Eq (13)) and expectation (Eq (7)) to compute the MSD in Eq (4) for different values of tau. There were 1,000,000 iterations.

https://doi.org/10.1371/journal.pone.0261021.g007
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story coincide denoted by Pd
kðrÞ and given in Eq (14). For each k, 1� k� n, lim

r!1
Pd

kðrÞ ¼ 0.

The total probability of being in this particular sequential configuration for any number of

attachments and then detaching is the sum over all k of Pd
k , so as r increases sufficiently, the

probability,
Pn

k¼1

Pd
k decreases (approaching 0). For k = 1, lim

r!0
Pd

kðrÞ ¼ :5, but for 2� k� n,

lim
r!0

Pd
kðrÞ ¼ 0. Again, the total probability of being in this particular sequential configuration

for any number of attachments and then detaching is the sum over all k of Pd
k , so as r decreases

sufficiently, the probability
Pn

k¼1

Pd
k increases (approaching .5). Because of the bounds on the

number of FAs, over a long enough simulation, on average, the probability of being in a state

of any number of attachments and then detaching and the probability of being in a state of any

number of attachments and then attaching is equal, and is .5. This helped us better understand

why Eq (13) is such a good estimate for the MSD. Heuristically, as r decreases sufficiently, the

number of attachments decreases, and the sequential probability increases, implying that the

random variable (RV) values, cj+1 − cj, being used for a detachment event (Eqs (9) and (10))

are closer to the actual values of the RVs. As r increases sufficiently, the number of attachments

on average approaches the total number of FAs. Because of the initial condition of starting the

simulation with no attachments, FAs quickly attach (r is large) until most are attached and the

system stays in a highly attached state. Because the majority of attachments happened quickly

they will be close to a sequential configuration. Thus the RVs being used for a detachment

event (Eqs (9) and (11)) are still a good estimate for the MSD. For the “middle” values of r, the

estimate is not as good, but is still adequate.

Conclusion

MSD is a measure of the overall drift of a particle and can be a useful tool for understanding

cell motion because it also indicates mode of transport. We introduced a mathematical model

for cell motion and discussed it in the context of a a centroid model (a discrete-time jump pro-

cess). We were able to find a good estimate for the theoretical MSD of the centroid model by

introducing the concept of a sequential configuration. We found the displacement after an

attach event and the displacement after a detach event when in a sequential configuration.

Using the displacement for sequential configurations to approximate all detach events we

found a good approximation for the MSD with a delay of one event. To further quantify the

MSD, we found a lower and upper bound for the MSD. We surmised that the estimate for the

MSD had a small relative error because the FA configuration frequently is in a sequential con-

figuration or close to it.
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