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The inhibition of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro)
and papain-like protease (PLpro) prevents viral multiplications; these viral enzymes have been recog-
nized as one of the most favorable targets for drug discovery against SARS-CoV-2. In the present study,
we screened 225 phytocompounds present in 28 different Indian spices to identify compounds as poten-
tial inhibitors of SARS-CoV-2 Mpro and PLpro. Molecular docking, molecular dynamics simulation, molec-
ular mechanics Poisson–Boltzmann surface area (MM-PBSA) binding free energy calculations, and
absorption, distribution, metabolism, excretion and toxicity (ADMET) studies were done. Based on bind-
ing affinity, dynamics behavior, and binding free energies, the present study identifies
pentaoxahexacyclo-dotriacontanonaen-trihydroxybenzoate derivative (PDT), rutin, and dihyroxy-oxan-
phenyl-chromen-4-one derivative (DOC), luteolin-7-glucoside-40-neohesperidoside as promising inhibi-
tors of SARS-CoV-2 Mpro and PLpro, respectively.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Among many disease outbreaks caused by RNA viruses, coron-
avirus disease 2019 (COVID-19) caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) is by far, the deadliest of all
(Rudrapal et al., 2021a; Mohamadian et al., 2021; Khan et al.,
2021). Since its initial in December 2019, COVID-19 has afflicted
human lives worldwide (Liu et al., 2020; Dong et al., 2020;
Rudrapal et al., 2020). Current pharmacotherapies available for
COVID-19 have their share of controversy with some studies
reporting their effectiveness while others are reporting the oppo-
site. The emergence of different new variants, different reports
on vaccine side effects, and the global issue of vaccine hesitancy
are some other serious issues that have put the world in a state
of dilemma as they had crippled our fight against COVID-19 to a
certain degree (Lucia et al., 2021; Riad, 2021). These problems
mandate the urgent need to find an alternative treatment strategy
that will supplement the current treatment regimens of COVID-19.

Viral enzymes such as the main protease (Mpro) and papain-
like protease (PLpro) are significantly responsible for the replica-
tion of SARS-CoV-2 (Rudrapal et al., 2022). As inhibition of Mpro
and PLpro prevents viral multiplication, they have been recognized
as the most favorable targets for anti-SARS-CoV-2 drugs (Dror
et al., 2020; Bhat et al., 2020; Kumar et al., 2021a). Medicinal plants
and their phytoconstituents have been proposed as potential phy-
totherapy for COVID-19 (Prajapati et al., 2021). The polyphenolic-
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rich extract of Vitis vinifera (grapevine) has been reported to act
(in vitro) against SARS-CoV-2 (Zannella et al., 2021). It is safe to
state that medicinal plants hold tremendous potential to be devel-
oped as alternative phytotherapy for COVID-19. Nowadays, com-
putational techniques are being extensively used to investigate
the inhibitory potential of phytocompounds against SARS-CoV-2
(Sachdeva et al., 2020; Shah et al., 2020). Several studies conclude
that phytocompounds can potentially inhibit the Mpro and PLpro
of SARS-CoV-2 (Gowrishankar et al., 2021; Kumar et al., 2020). In
the drug discovery process, computational techniques including
docking and molecular dynamics (MD) simulation offer several
advantages owing to their efficiency, accuracy, robustness, and
eco-friendly approach (Hassan Baig et al., 2016).

Spices are used to enrich the flavor and aroma of our daily diet.
Ginger, rosemary, onion, turmeric, cloves, fennelflower, black pep-
per, garlic, clove, cinnamon, coriander, and basil are a few exam-
ples among many other consumed spices in India. Spices contain
several bioactive compounds that are used for the management
of inflammatory diseases, cardiovascular diseases, cancer, meta-
bolic diseases and viral infections (Srinivasan, 2005; Embuscado,
2019; Opara and Chohan, 2014; Yashin et al., 2017). In the study,
a total of 225 phytocompounds present in 28 Indian spices were
computationally investigated for their inhibitory action against
SARS-CoV-2 by carrying out molecular docking, MD simulation,
and binding free energy calculations against Mpro and PLpro.
2. Materials and methods

2.1. Retrieval of target proteins

The proteins structures of SARS-CoV-2 were retrieved from the
RCSB-PDB website. The Mpro (PDB id: 6 W63, 2.1 Å) and PLpro
(PDB id: 7JIW, 2.3 Å) bear the co-crystal inhibitors of X77 and
VBY, respectively.

2.2. Preparation of proteins

The preparation of proteins was initiated with the removal of
water molecules using the Schrodinger suite Maestro (version
2021–2). The residues involving side chain amino acids were filled,
the missing hydrogen atoms were added, and the H-bonds were
optimized. The OPLS4 force field was applied for minimization of
energy until the root-mean-square deviation (RMSD) value aver-
ages at 0.30 Å (Roos et al., 2019; Kumar et al., 2021b).

2.3. Preparation of ligands

The chemical structures of phytocompounds present in Indian
spices were obtained from an online database, COCONUT
(https://coconut.naturalproducts.net/). The LipPrep module of
Schrodinger was used to prepare the 3-dimensional (3D) coordi-
nates of all the phytocompounds (Chen and Foloppe, 2010). The
Epik module of Schrodinger suite version 2021–2 was used to
achieve an ionization state of pH 7.4, and the tautomer and chiral-
ity were also predicted. Energy minimization was carried out with
OPLS4 force field and the process was allowed to proceed until the
conformation obtained was energetically stable (Roos et al., 2019).

2.4. Molecular docking

A compound library of 225 phytocompounds found to be pre-
sent in Indian spices was studied for their binding affinity towards
Mpro and PLpro by molecular docking study (MDS). The glide
docking module of Schrodinger Maestro which uses the extra pre-
cision (XP) protocol was used for MDS (Friesner et al., 2006; Chen
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and Foloppe, 2010). Considering the position of the co-crystallized
ligand (Kalita et al. 2020), the binding site in the protein was iden-
tified with the application of default settings to the glide-receptor
grid generation module (Halgren et al., 2004).

Following the same protocol as described above, the native
ligands were re-docked into the same binding pocket where they
were originally present. This was done to validate the docking pro-
tocol to examine if the specified methods used in the present MDS
will be able to dock the test compounds into the same binding
pocket where the native ligand was initially present. The RMSD
value between the original docked ligand and the re-docked ligand
was calculated (Hevener et al., 2009).

2.5. Molecular dynamics simulation

Molecular dynamics (MD) simulation was carried out with
GROMACS 2019.2 software (Abraham et al., 2015; Rath et al.,
2021; Ghosh et al., 2021; Pasala et al., 2022). The GROMOS96
54a7 force field was then applied for energy minimization. The
SCP water model was used for salvation of protein–ligand com-
plexes. The ‘gmxgenion’ script was used to electrically neutralize
the solvated model by adding chloride ions and sodium ions. Fol-
lowing this, it was equilibrated with 0.3 ns isothermal-isobaric
(NPT) and 0.3 ns isothermal-isochoric (NVT) ensembles. The simu-
lation period was for 100 ns. The motion equation was integrated
into triplicates with the leapfrog algorithm at 2 fs time step. GRO-
MACS scripts were used to generate the trajectories such as RMSD,
RMSF, and radius of gyration (Rg) (Swargiary et al., 2020; Junejo
et al., 2021). Visual molecular dynamics 1.9.3 was used for visual-
ization and analysis of trajectories (Humphrey et al., 1996).

2.6. Molecular mechanics Poisson–Boltzmann surface area (MM-PBSA)
binding free energy calculations

The MM-PBSA was used to quantify the binding (free) energies
of complexes using the g_mmpbsa script (Kumari et al., 2014;
James et al., 2022). Energies of Van der Waals, polar solvation, elec-
trostatic, and non-polar energy i.e., solvent-accessible surface area
(SASA) were calculated.

2.7. Absorption, distribution, metabolism, excretion and toxicity
(ADMET) prediction studies

Lipinski’s rule of 5, bioavailability score, and synthetic accessi-
bility score were studied with the SwissADME web tool (Daina
et al., 2017). The median lethal dose (LD50) and toxicity class of
the phytocompounds were computed with ProTox-II web tool
(Banerjee et al., 2018). The drug score was obtained using
DataWarrior v.5.2.1 software.
3. Results

3.1. Molecular docking

MDS revealed the binding affinity of the studied phytocom-
pounds for the active sites of the target enzymes. A high binding
affinity indicated by low binding energy involvement is considered
as an important factor for selecting compounds to be further stud-
ied. The XP glide score of 10 phytocompounds that showed the
best binding affinity towards the Mpro and PLpro is given in
Table 1. The glide score of the native ligands originally bound to
the target protein is also given in Table 1. PDT (COCONUT ID:
CNP0412082), and rutin (COCONUT ID: CNP0268715) have the
best docking score for Mpro. The glide score of PDT and rutin are
�15.367 and �12.360, respectively, while that of the native ligand

https://coconut.naturalproducts.net/


Table 1
Glide XP docking results against Mpro and PLpro of SARS-CoV-2 Mpro: main protease;
PLpro: papain-like protease.

Target
protein

COCONUT ID Glide model
(kcal/mol)

XP glide score
(kcal/mol)

Mpro CNP0412082 �133.394 �15.367
CNP0268715 �88.446 �12.360
CNP0301186 �93.129 �12.218
CNP0218615 �94.339 �11.566
CNP0152789 �85.227 �10.810
CNP0239834 �119.231 �10.676
CNP0222584 �78.242 �10.162
CNP0008956 �75.654 �9.328
CNP0330206 �53.498 �8.825
CNP0144084 �81.929 �7.972
X77 �85.045 �5.966

PLpro CNP0301186 �81.550 �12.801
CNP0359835 �85.978 �9.226
CNP0152789 �74.222 �9.148
CNP0289609 �49.572 �7.471
CNP0289609 �49.572 �7.471
CNP0245197 �57.849 �7.100
CNP0120486 �64.110 �7.094
CNP0195904 �45.290 �7.081
CNP0239834 �90.872 �6.390
CNP0115940 �56.870 �6.315
VYB �86.452 �6.538
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(X77) is �5.966. DOC (COCONUT ID: CNP0301186), and luteolin-7-
glucoside-40-neohesperidoside (COCONUT ID: CNP0359835) have
the best docking score for PLpro. The glide score of DOC and
luteolin-7-glucoside-40-neohesperidoside are �12.801 and
�9.226, respectively, while that of the native ligand (VYB) is
�6.538.

The re-docking method used for the validation of docking study
was successful. This process was carried out to see the accuracy
and efficiency of the docking method adopted for the study. For
Mpro and PLpro, the computed RMSD values between the original
inhibitor and the re-docked inhibitor were 2.498 Å and 0.385 Å,
respectively.
3.2. Analyses of protein–ligand interactions

3.2.1. SARS-CoV-2 Mpro
The 2D and 3D ligand interactions of X77, PDT, and rutin against

Mpro are given in Fig. 1. The co-crystal inhibitor X77 formed con-
ventional H-bonds with ASN142, GLY143, HIS163, and GLU166;
hydrophobic attractions with HIS41 and LEU27; electrostatic inter-
actions with MET49 and CYS145; and Van der Waals interactions
were shown by different amino acid residues (Fig. 1a, b). PDT
formed conventional H-bonds with THR24, CYS44, GLY143,
CYS145, GLU166, ARG188, and GLN189; hydrophobic attractions
with HIS41, MET49, and MET165; and van der Waals interactions
were shown by different amino acid residues (Fig. 1c, d). Rutin
formed H-bonds with THR26, GLY143, CYS145, GLU166, and
ARG188; hydrophobic interaction with MET165; electrostatic
interaction with MET49; and Van der Waals interactions were
shown by HIS41 along with different amino acid residues
(Fig. 1e, f).
3.2.2. SARS-CoV-2 PLpro
The 2D and 3D ligand interactions of VYB, DOC, and luteolin-7-

Glucoside-40-Neohesperidoside against PLpro are given in Fig. 2.
The co-crystal inhibitor VYB formed conventional H-bonds with
ASP164, GLU167, and GLN269; hydrophobic attractions with
PRO247, PRO248, TYR264, and TYR273; and Van der Waals interac-
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tions were shown by different amino acid residues (Fig. 2a, b). DOC
formed conventional H-bonds with ASP164, GLU167, PRO248,
GLY266, and ASN267; hydrophobic attractions with PRO247; and
van der Waals interactions were shown by different amino acid
residues (Fig. 2c, d). Luteolin-7-Glucoside-40-Neohesperidoside
formed conventional H-bonds with LYS157, GLU161, ASP164,
ARG166, GLU167, and THR301; hydrophobic attractions with
TYR171 and TYR268; and van der Waals interactions were shown
by different amino acid residues (Fig. 2e, f).

3.3. MD simulation

From results of simulation studies, the conformational stability
as well as dynamics complex formation was obtained for 100 ns
period.

3.3.1. SARS-CoV-2 Mpro
The RMSD, RMSF, and Rg of the co-crystal inhibitor (X77), and

the two ligand (PDT and rutin) complexes were plotted as graphs
in Fig. 3. The RMSD trajectory of the Mpro-X77 complex showed
signs of stability as it fluctuates between 0.1 nm and � 0.3 nm,
and the majority of the fluctuations occurred at � 0.2 nm
(Fig. 3a). The majority of the RMSD trajectory of the Mpro-rutin
complex seemed to fluctuate between 0.2 nm and 0.3 nm and
the observed data was indicative of a stable protein–ligand com-
plex (Fig. 3a). After 20 ns, the RMSD trajectory of the Mpro-PDT
complex fluctuates around 0.3 nm and ends at 0.4 nm which was
suggestive of a stable conformation for the ligand on the binding
site of Mpro (Fig. 3a).

The RMSF data of each amino acid residue of SARS-CoV-2 Mpro
is plotted in Fig. 3b. During the 100 ns MD simulation, the fluctu-
ation of each amino acid of Mpro-rutin and Mpro-PDT were similar
to Mpro-X77. As homogeneity of RMSF was maintained in all com-
plexes, the results obtained from this parameter support and cor-
relate with the RMSD trajectory of the complexes.

The compactness of protein molecule during the simulation
period was determined by the Rg. The observed Rg data is given
in Fig. 3c. The Rg trajectory of Mpro-X77 fluctuates between 2.15
and 2.25 nm. The Mpro-rutin Rg trajectory fluctuated between
2.20 nm and 2.30 nm for about 50 ns and then stabilized at around
2.25 nm for the rest of the simulation. The majority of the Rg tra-
jectory of Mpro-PDT fluctuated between 2.20 nm and 2.25 nm. The
Rg trajectory of rutin and PDT fluctuated within a small unit simi-
lar to X77.

3.3.2. SARS-CoV-2 PLpro
The RMSD, RMSF, and Rg of the co-crystal inhibitor (VBY) and

the two (luteolin-7-glucoside-40-neohesperidoside and DOC) com-
plexes were plotted as graphs in Fig. 4. The PLpro-VBY complex
RMSD trajectory showed fluctuation between the range of 0.2 nm
and 0.4 nm; while the majority of the fluctuations occurred at � 0.
3 nm (Fig. 4a). The RMSD trajectory of the PLpro-luteolin-7-gluco
side-40-neohesperidoside complex fluctuates from 0.2 nm up to
0.4 nm for 20 ns and then stabilized between 0.3 nm and 0.4 nm
for the rest of the period (Fig. 4a). After 20 ns, the majority of the
RMSD fluctuations of the PLpro-DOC complex occurred between
0.2 5 nm and 0.35 nm, which suggested optimal stability confor-
mation of the ligand while complex formation with PLpro (Fig. 4a).

The RMSF data of PLpro are plotted in Fig. 4b. During the simu-
lation, the fluctuation of each amino acid of PLpro-luteolin-7-gluco
side-40-neohesperidoside and PLpro-DOC were similar to PLpro-
VBY. As the homogeneity of RMSF was maintained in all studied
complexes, the findings of the RMSF supports and correlate with
the RMSD trajectory of all the complexes (Khan et al., 2021).



Fig. 1. 2D and 3D ligand interactions of X77, PDT, and rutin against SARS-COV-2 Mpro.
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The observed Rg data for PLpro and its ligand complexes is
given in Fig. 4c. The Mpro-VBY Rg trajectory fluctuates between
2.20 nm and 2.30 nm for up to 95 ns of MD simulation and fluctu-
ates between 2.15 nm and 2.25 for the last 5 ns. The Rg trajectory
of Mpro-luteolin-7-glucoside-40-neohesperidoside fluctuated
between 2.15 nm and 2.30 nm for up to 60 ns and stabilized at
around 2.25 nm till end of simulation. A majority of the Rg trajec-
tory of Mpro-DOC fluctuated between 2.20 nm and 2.30 nm for up
to 40 ns, stabilized between 2.20 nm and 2.25 nm for up to 95 ns,
then ends between 2.25 nm and 2.35 for the last 5 ns. The Rg tra-
jectory of luteolin-7-glucoside-40-neohesperidoside and DOC fluc-
tuated within a limited unit like VBY.
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3.4. MM-PBSA binding free energies

The binding free energy represents the amount of energy gener-
ated as a result of protein–ligand interaction (Othman et al., 2021).
A more negative binding free energy suggests more effective pro-
tein–ligand binding.

3.4.1. SARS-CoV-2 Mpro
The binding energies of complexes with Mpro are given in

Table 2. Among the selected complexes, Mpro-PDT (-280.170 ± 18.
945 kJ/mol) showed more negative binding energy followed by
Mpro-X77 (-160.625 ± 15.840 kJ/mol), and Mpro-rutin complex



Fig. 2. 2D and 3D ligand interactions of VYB, DOC, and luteolin-7-Glucoside-40-Neohesperidoside against SARS-CoV-2 PLpro.
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(-146.820 ± 15.448 kJ/mol). In terms of binding free energy, PDT
outperforms X77, while rutin failed to outperform X77.

3.4.2. SARS-CoV-2 PLpro
The binding free energies of complexes with PLpro are given in

Table 3. The binding energy of PLpro-DOC (-148.323 ± 15.338 kJ/
mol) is more negative followed by PLpro-luteolin-7-glucoside-40-
neohesperidoside (-142.425 ± 22.452 kJ/mol), and PLpro-VBY (-1
41.573 ± 13.971 kJ/mol). Both DOC and luteolin-7-glucoside-40-neo
hesperidoside outperform the native ligand of the protein.

3.5. ADMET properties

The ADMET parameters of the studied compounds are given in
Table 4. All of the selected compounds violated 3 rules of Lipinski’s
rule of 5 (molecular weight > 500, hydrogen acceptor > 10, hydro-
3460
gen donor > 5), and each has a bioavailability score of 0.17. A low
synthetic accessibility score means the compound will be easy to
synthesize. Rutin (6.52) has the lowest synthetic accessibility score
followed by DOC (6.54), luteolin-7-glucoside-40-neohesperidoside
(7.48), and PDT (8.43). The LD50 of PDT was 2250 mg/kg body
weight and 5000 mg/kg was the LD50 for rutin, DOC, and
luteolin-7-glucoside-40-neohesperidoside. All compounds
belonged to toxicity class 5 that suggests their safety for oral con-
sumption. Rutin (0.546604) has the highest drug score followed by
PDT (0.2016708), DOC (0.1766791), and luteolin-7-glucoside-40-n
eohesperidoside (0.1573803).

4. Discussion

In an attempt to find out molecules that could control the mul-
tiplication of SARS-CoV-2, several computational studies have been



Fig. 3. RMSD, RMSF, and Rg of co-crystal inhibitor (X77)-Mpro, PDT-Mpro and rutin-Mprocomplexes.
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carried out by different researchers to active molecules against
Mpro and PLpro (Choudhary et al., 2020; Ghosh et al., 2020;
Jamalan et al., 2020; Mirza et al., 2020; Nogara et al., 2021). Medic-
inal plants are proposed as a favorable antiviral therapy for COVID-
19 as they are reported to contain bioactive molecules that can be
effective against COVID-19 (Adhikari et al., 2021; Benarba &
Pandiella, 2020). Previous literature have highlighted the potential
impact of medicinal plants and their phytocompounds against
SARS-CoV-2 (Zannella et al., 2021; Rudrapal et al., 2021a;
Rudrapal et al., 2021b). Therefore, the present study investigates
a total of 225 phytocompounds present in 28 different Indian
spices for their inhibitory potential against Mpro and PLpro of
SARS-CoV-2 through computational investigations.

The catalytic sites of Mpro and Plpro are essential for active
residues of protein molecule and and chemical groups of ligands
(Ismail et al., 2021; Osipiuk et al., 2021; Kneller, Phillips, O’Neill,
et al., 2020; Kneller et al., 2020). Studies reported that thioflavo-
noids, epicatechin-3-O-gallate, dobutamine and masoprocol inter-
acted with (binding sites) Mpro and PLpro, and were considered as
SARS-CoV-2 inhibitors (Kneller, Phillips, Weiss, et al., 2020; Liu
et al., 2020; Ismail et al., 2021). Thus, bioactive molecules bind to
or interact with the active residues which are present at the bind-
ing cavity of Mpro and PLpro.

From the present computational investigations, we found that
PDT showed the best binding affinity (XP glide score: �15.367)
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for the binding cavity of Mpro. PDT interacted with the binding site
of Mpro as it produced a conventional H-bond with CYS145 and
hydrophobic interaction with HIS41. Among the residues present
at the active site cavity, PDT also bonded through H-bonds with
GLU166, and GLN189, while Van der Waals interactions were
shown by SER46, ASN142, PRO168, and THR190. From MD simula-
tion, it was observed that PDT showed stable conformation at the
catalytic site throughout the entire simulation as evidenced by
small fluctuations in the RMSD, RMSF, and Rg values. However, it
showed the highest binding free energy (-280.170 ± 18.945) among
the tested compounds against Mpro. Based on ADMET studies, PDT
was predicted to have low oral bioavailability. However, PDT was
computed to be safe for oral consumption as its LD50 was predicted
to be 2260 mg/kg. The synthetic accessibility score of PDT was
computed to be 8.43 which suggest that the compound might be
difficult to synthesize. A score of 1 indicates easier synthesis, while
a score of 10 indicates difficulty in synthesis (Daina et al., 2017).

With an XP glide score of �12.360, the present computational
investigation found rutin as a phytocompound of Indian spices that
showed the second most binding affinity for the active site of
Mpro. Rutin formed bonds with the residues from the binding cav-
ity of Mpro as it produced H-bonds with CSY145 and a C-H bond
with HIS41. Among the other amino acids present at the catalytic
site cavity, rutin was reported to form a conventional H-bond with
GLU166; C-H bond with LEU141 and ASN142; and Van der Waals



Fig. 4. RMSD, RMSF, and Rg of co-crystal inhibitor (VBY)-PLpro, luteolin-7-glucoside-40-neohesperidoside-PLpro and DOC-PLpro complexes.

Table 2
MM-PBSA binding energies of complexes.

Parameters Mpro-X77 (kJ/mol) Mpro-PDT (kJ/mol) Mpro-rutin (kJ/mol)

Van der Waals –233.832 ± 13.802 �355.510 ± 17.262 �211.393 ± 14.098
Electrostatic �29.776 ± 6.919 �29.163 ± 6.227 �13.087 ± 5.129
Polar solvation 123.945 ± 13.577 135.832 ± 13.738 98.523 ± 9.361
SASA �20.961 ± 1.249 �31.329 ± 1.393 �20.863 ± 1.470
Binding free energy �160.625 ± 15.840 �280.170 ± 18.945 �146.820 ± 15.448

Mpro: main protease; PLpro: papain-like protease.
MM-PBSA: Molecular mechanics Poisson–Boltzmann surface area.
SASA: solvent-accessible surface area.

Table 3
MM-PBSA binding energies of complexes.

Parameters PLpro-VBY (kJ/mol) PLpro-DOC
(kJ/mol)

PLpro- luteolin-7-glucoside-40-neohesperidoside (kJ/mol)

Van der Waals �184.421 ± 12.283 �191.426 ± 16.939 �214.400 ± 12.998
Electrostatic –33.836 ± 8.954 �6.045 ± 3.906 �8.373 ± 7.114
Polar solvation 94.347 ± 8.732 69.799 ± 13.131 101.490 ± 24.329
SASA �17.663 ± 0.935 20.651 ± 1.724 �21.141 ± 1.784
Binding free energy �141.573 ± 13.971 �148.323 ± 15.338 �142.425 ± 22.452

Mpro: main protease; PLpro: papain-like protease.
MM-PBSA: Molecular mechanics Poisson–Boltzmann surface area.
SASA: solvent-accessible surface area.
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Table 4
ADMET parameters of compounds.

Properties PDT Rutin DOC Luteolin-7-Glucoside-40-Neohesperidoside

Lipinski’s rule violations 3 3 3 3
Bioavailability score 0.17 0.17 0.17 0.17
Synthetic accessibility 8.43 6.52 6.54 7.48
LD50 (mg/kg) 2260 5000 5000 5000
Toxicity class 5 5 5 5
Drug score 0.2016708 0.546604 0.1766791 0.1573803

ADMET: absorption, distribution, metabolism, excretion, and toxicity.
LD: Lethal Dose.
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interactions were shown by SER46, GLN189, and THR190. The
RMSD, RMSF, and Rg data generated from the 100 ns MD simula-
tion indicate that the docked ligand (rutin) is stable throughout
the entire simulation because the observed fluctuations were min-
imal (Prajapati et al., 2021). The binding free energy released dur-
ing Mpro-rutin interaction was computed to be �146.820 ± 15.
448 kJ/mol. Rutin showed a lower binding free energy as compared
to PDT (-280.170 ± 18.945 kJ/mol) which implies that the MM-
PBSA calculation for rutin supports the results of the MD simula-
tion that had previously suggested a stable Mpro-rutin binding.
Moreover, the binding free energy of rutin was also found to be
lower than the co-crystal ligand ‘X770 (-160.625 ± 15.840 kJ/mol).
Rutin was computed by SwissADME (Daina et al., 2017) as a phy-
tocompound with low bioavailability (Bioavailability score = 0.17).
However, rutin (6.53) was predicted to be easier to be synthesized
as compared to PDT (8.43). ProTox-II (Banerjee et al., 2018) pre-
dicted rutin as safe for oral consumption with an LD50 of
5000 mg/kg body weight. DataWarrior software-generated overall
drug score for rutin was 0.546604 and was the highest among all
the studied phytocompounds, even higher than that of PDT
(0.2016708).

The XP glide score of DOC against PLpro was �12.801. DOC had
the best binding affinity towards PLpro among all the compounds
present in Indian spices. Among the amino acids at the active bind-
ing site, TYR268 and GLN269 showed Van der Waals’s interaction
with DOC. DOC also formed conventional H-bonds with ASP164,
GLU167, PRO248, GLY266, and ASN267. Minimum fluctuations
are desirable with the parameters generated from MD simulation.
The RMSD, RMSF, and Rg trajectories of the PLpro-DOC complex
showed small fluctuations. This is indicative of a stable protein–li-
gand interaction. Considering the binding free energy, the PLpro-
DOC (148.323 ± 15.338 kJ/mol) outperforms the protein-native
ligand complex (141.573 ± 13.971 kJ/mol). The low binding free
energy of the PLpro-DOC complex supports the findings from the
MD simulation. DOC violated 3 parameters (mw more than 500,
H-bond acceptor more than 10, H-bond donor more than 5) in rule
of 5 defined by Lipinski (Lipinski, 2004) and showed a low bioavail-
ability score of 0.17. DOC has a synthetic accessibility score of 6.54.
The LD50 and toxicity class of DOC were 5000 mg/kg and 5, respec-
tively. This suggests that although DOC will be safe for oral con-
sumption, it will have low bioavailability. The overall drug score
of DOC as computed by Data Warrior software was 0.1766791.
The drug score of DOC was lower than rutin (0.546604) and PDT
(0.2016708).

Luteolin-7-glucoside-40-neohesperidoside had a binding affinity
score of �9.226 with PLpro. It was the phytocompound that
showed the second most binding affinity towards PLpro next to
DOC. Among the amino acids present at the active binding site,
luteolin-7-glucoside-40-neohesperidoside interacted with TYR268
(hydrophobic interaction) and GLN269 (C-H bond). The compound
also formed conventional H-bonds with LYS157, GLU161, ASP164,
GLU167, ARG166, and THR301. During MD simulation, the interac-
tion was found to be stable as fewer fluctuations were observed in
the RMSD, RMSF, and Rg trajectories. Moreover, the binding free
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energy of luteolin-7-glucoside-40-neohesperidoside (-142.425 ± 22.
452 kJ/mol) was lower than the native ligand (-141.573 ± 13.971
kJ/mol). The MM-PBSA calculations support the results of the MD
simulation. Similar to DOC, luteolin-7-glucoside-40-neohesperido
side also showed the same violations against Lipinski’s rule of 5
(Lipinski, 2004), had a low bioavailability score of 0.17. The LD50

was reported 5000 mg/kg with a toxicity level of 5. This reveals
that luteolin-7-glucoside-40-neohesperidoside will have low
bioavailability but will be safe for oral consumption (Rudrapal
et al., 2021a, 2021b). The synthetic accessibility score of the com-
pound was 7.48. Luteolin-7-glucoside-40-neohesperidoside will be
more difficult to be synthesized than DOC (6.54). Also, luteolin-7-
glucoside-40-neohesperidoside has the lowest drug score
(0.1573803) among all the studied phytocompounds.

The bioavailability issues that might arise with PDT, rutin, DOC,
and luteolin-7-glucoside-40-neohesperidoside can be effectively
solved with novel drug delivery systems such as nanoformulations
since it was reported that bioavailability enhancement was
achieved for antiviral drugs through nanoformulation strategy
(Tatham et al., 2015). The present study identifies rutin and
luteolin-7-glucoside-40-neohesperidoside as potential inhibitors
of Mpro and PLpro, respectively. Other studies have also reported
rutin as SARS-CoV-2 Mpro inhibitor (Huynh et al., 2020;
Zothantluanga, 2021; Zothantluanga et al., 2022). The findings of
our current study support similar studies conducted earlier by
other researchers.
5. Conclusions

From computational investigations, among 225 phytocom-
pounds that are present in 28 different Indian spices, four bioactive
compounds viz., PDT, rutin, DOC, and luteolin-7-glucoside-40-neo
hesperidoside were identified. These four compounds exhibited
promising inhibitory potential against SARS-CoV-2 Mpro and
PLpro. Further experimental studies with the identified phytocom-
pounds from Indian spices can be carried out in order to further
explore their anti-SARS-CoV-2 potential.
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